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Abstract: A workflow has been developed allowing for the computer aided design and 

optimization of reactive systems using the concept of molecular descriptor-based similarity. 

Unlike single-molecule models most often used in polymer informatics, an important feature 

of this approach is to allow for a more realistic description of reaction mixtures by accounting 

for polydispersity and individual chain topology. 

Starting from a specific set of ingredients, i.e., a chemical recipe or formulation, simulations 

based on Gillespie’s kinetic Monte Carlo scheme are used to generate oligo- and polymeric 

reaction mixtures. By using the distance / similarity in molecular and topological descriptor 

space as a metric, the initial recipe is then modified iteratively using a Bayesian optimizer. 

Target of the optimization procedure is either another chemical recipe with different 

ingredients or alternatively, a set of desirable descriptors and properties. A key step of the 
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process is the transformation of the graph representing individual polymer species as obtained 

by the kinetic simulation into atomistic species described as SMILES strings, which enables 

the computation of a rich set of additional descriptors. This rather general mapping is achieved 

exploiting similarities between the BNGL and the SMILES graph notation. The workflow is 

demonstrated on common polyether and polyester oligomeric systems as typically used in 

chemical industry, but is generally applicable to any other polymer chemistry. 

Introduction 

 

Within the last decades, the rational design of materials via computational modeling has 

become a topic of increasing importance in chemical and pharmaceutical industry. A variety 

of methods ranging from quantum chemistry and molecular dynamics to solvation 

thermodynamics and cheminformatics is available for the computational chemist to solve 

specific challenges in an industrial setting.1-4 

In the context of materials modelling, the term computer-aided materials design (CAMD) is 

usually referring to an approach being used for example in the design of drugs5, polymer 

materials6 or solvents.7-8 In classical CAMD, as for example reviewed by Austin et al.,9 first a 

set of structure-based property prediction models is defined and then single or multiple desired 

target ranges for the specified properties are selected. Subsequently, the inverse design problem 

is solved by systematically varying the chemical structure according to a mathematical 

optimization process. Although such an approach has been used for polymers,6, 10-11 those 

models usually involve monodisperse molecule models, that assume either a single finite or 

infinite polymer chain. 
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For example, group contributions-based approaches developed for single chain molecules 

have been extended to generate candidate polymers with desired properties accounting for 

specific constraints.11  

Another work addresses the design of polymers with optimized macroscopic properties using 

topological connectivity indices and an optimization framework.10 

Mavrantzas and co-workers used atomistic simulations and computer aided molecular design 

techniques based on group contribution models for the design of polymers with desired 

properties.6 Similarly, Ng and coworkers presented an approach for a polymer based inverse 

design problem, where they first identified suitable repeat units via group contribution methods 

and then carried out molecular dynamics at various molecular weights.12 

Another study reports a molecular design approach, using a combination of group 

contribution and quantum chemical descriptors, where a genetic algorithm was used to screen 

candidate molecules.13 

The group of Lin developed a method for automated molecular design using the octanol 

water partition coefficient as target.14 They were using an activity coefficient model and a 

genetic algorithm to identify suitable molecular structures having a defined partition 

coefficient. 

Another approach that relates to the systematic design of biochemicals and the identification 

of respective biomass conversion pathways was developed by Ng et al. and applied to the case 

of biobased fuel production of palm-based biomass.15 They combined group contribution and 

topological indices-based methods for property prediction and molecular signature descriptors 

for solving the structural design problem. 

 

In industrial processes, chemical systems often correspond to mixtures of oligomeric or 

polymeric species. Therefore, properties and descriptors follow a statistical distribution, such 
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as for the molecular weight in the simplest case. In industrial practice, the modification of this 

statistical distribution is often one of the few available levers to adjust processes. However, 

this important aspect is often missing in inverse design approaches. 

Some attempts have been made to address this issue for simulations, for example using 

random branching to take polydispersity into account for molecular dynamics,16 however, not 

in an inverse design context and without consideration of detailed kinetics. Marvin et al. take 

into account chemical reactivity by defining a reaction network and solve an optimization 

problem that yields an optimal product distribution for gasoline blends.17 Recently, Cravero et 

al. have proposed a QSPR approach demonstrating the relevance of taking descriptor 

polydispersity into account.18 To introduce polydispersity, they directly operate on SMILES 

strings to obtain different polymer chains, e.g., keeping the number or weight averaged 

molecular weights constant, without using an explicit kinetic model. 

In the field of lignin research, a few approaches have been developed which systematically 

generate lignin oligomer and polymer structures by kinetic Monte Carlo simulation,19 or other 

Monte Carlo approaches,20-21 to match several structural quantities derived from experiments. 

The idea is to get representative computational models / structure libraries for the rather 

complicated, source dependent lignin compositions. These methods share some similarities 

with this study, but they focus on the unique chemistry and materials associated with lignin, 

which cannot be readily be generalized. 

Recently, another approach has been published enabling the generation and sampling of 

molecular species and respective SMILES using the (generative) BigSMILES notation.22-23 It 

samples from a previously specified theoretical distribution (top-down), and not from explicit 

kinetic equations (bottom-up), and is less well suited for solving inverse design problems of 

industrial relevance. 
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In general, with regard to classical polymers, systems are usually assumed to be 

monodisperse in an inverse design context. This may be a valid approximation for high 

molecular weight systems but usually leads to problems for smaller molecular weights, where 

for example the effect of functional end-groups is non-negligible. Detailed kinetics for 

oligomer or polymer generation are usually out of scope and very simplified molecular 

topologies are used for descriptor or property prediction. 

Therefore, in the following work, a broadly applicable approach is being proposed. Reactive 

systems are addressed by running a kinetic simulation using Gillespie’s algorithm24 generating 

discrete species. Polymers are accounted for by using a network free version of this 

algorithm.24-25 Those kinds of models have been used in the systems biology community for a 

long time and can similarly be used for an organic polymer context.26-27 The finally obtained 

reactive mixtures containing explicit oligomeric and polymeric species are used to compute 

descriptors, e.g., either as mean values or, if necessary, as higher statistical moments. 

To go beyond descriptors and properties that are derived exclusively from the topological 

graphs produced by the kinetic Monte Carlo simulations, discrete molecules are generated in 

the form of SMILES strings28 for each species. This opens the possibility to use 

cheminformatics, group contribution-based methods, molecular dynamics, computational 

chemistry and/or solvation thermodynamics to compute descriptors and properties from the 

molecular distribution. This is also an important improvement compared to the derivation of 

descriptors from plain monomers with unreacted functional groups, which are chemically very 

different when being incorporated into the polymer system. 

In the present work, a mapping from a certain chemical recipe, e.g., the input to the kinetic 

simulation in the form of specific reactive compounds and their stoichiometry, towards a 

unique fingerprint of different descriptors is obtained.  
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Coupled with an optimization procedure, the approach allows for variation of the recipe to 

match either some pre-defined descriptors or an alternative recipe based on different 

ingredients. This is achieved by minimizing the distance in descriptor space between a 

reference and the new system to be optimized. Assuming that the descriptors correlate with 

macroscopic properties, this approach generates different recipes while keeping the product 

properties constant or generates a recipe for a specific set of properties. As a prerequisite, the 

kinetics, including the reaction channels and the respective (relative) rate constants have to be 

known at least approximately. By variation of the initial recipe, instead of the molecular 

structure, it is possible to address industry relevant processes, such as the drop-in replacement 

of chemicals that have to be substituted due to economic, technical or regulatory reasons. In 

contrast, proposals of classical CAMD often suggest novel molecular entities i.e., require the 

synthesis of novel, non-readily available molecules which may be out of scope due to economic 

or technical reasons. Just modifying a known recipe is a simpler but more pragmatic approach, 

at least outside the field of drug development and design.  

In summary, a workflow is proposed starting with the generation of a discrete molecular 

weight distribution using a defined recipe and  kinetics. A subsequent mapping into discrete 

molecular species allows for the computation of diverse molecular descriptors. Finally, the 

recipe is iteratively improved by a global optimization procedure minimizing the distance in 

descriptor space. 

 

1 Generating Chemical Recipes 
 

The central idea of the approach is to optimize a chemical recipe, as defined by several 

molecular components, their stoichiometry and their reaction equations including the kinetic 

parameters. However, instead of optimizing a certain property, the distance (or similarity) in 

multi-dimensional descriptor space to another recipe is optimized instead. This has several 
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advantages: First, some amount of error cancellation is to be expected, as the descriptors of the 

target and the new recipe are computed by the same methodology and the same kind of errors 

are made during their determination. Secondly, in principle, no experimental data is needed for 

such an optimization, which may be at times difficult or costly to obtain in practice. Of course, 

optimizing a certain property instead of descriptors is still possible, as often there is no clear 

separation between a descriptor and a property. However, prerequisite is, that this property or 

descriptor can be modelled sufficiently accurately from the polymer topology and / or the 

molecular structure. For the computation of descriptors, the mapping of the species resulting 

from the kinetic simulation to the atomistic level, in particular SMILES notation, is crucial, as 

this allows to compute additional relevant properties using other simulation tools. 

1.1 General Workflow  
 

The key objective of the general workflow is to substitute raw materials within a polymer 

recipe, for example, due to regulatory or economic reasons, without compromising on the 

properties in a subsequent application. The general concept of the workflow is depicted in 

Figure 1. A concrete example is given in Section 2. Usually, the first step is to select a target 

or reference recipe which is subject to a modification of its ingredients.  

 

 

Figure 1: Schematic representation of the workflow, starting from a kinetic simulation and descriptor calculations for a 

reference recipe and a subsequent optimization process to match the target descriptors with an iteratively modified new 

recipe. 
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Then a kinetic Monte Carlo simulation is carried out based on the available data on the 

reaction mechanism and the (relative) rate constants of the system under investigation. A set 

of meaningful descriptors Xref is then computed for the reference system and stored. The basis 

for the descriptor calculation is the result from the kinetic simulation (Section 1.3) and in 

particular the transformation of the polymer graphs into discrete atomistic species 

(Section 1.5). Details on the available descriptors are given in Section 1.6. Alternatively, a set 

of reference descriptors can be specified directly, without simulating a reference system.  

Once the descriptor set is defined, new recipes are generated systematically by modifying 

the ingredients and their stoichiometries. A set of alternative ingredient combinations is pre-

defined by the user. Also, the underlying chemical reactions could be subject to a change and 

involve for example different polymerization mechanisms (see Section 2.3), however, in 

practice most often the chemistry remains unchanged. For the modified recipe, the same set of 

descriptors Xmod is now computed and compared with the reference set. As a similarity metric 

a variant of the relative error of the two descriptor sets is used, the symmetric mean absolute 

percentage error (SMAPE): 

𝑆𝑀𝐴𝑃𝐸 = ∑
|𝑋𝑖

𝑟𝑒𝑓
−𝑋𝑖

𝑚𝑜𝑑|

(|𝑋
𝑖
𝑟𝑒𝑓

|+|𝑋𝑖
𝑚𝑜𝑑|)/2)

𝑛
𝑖=1 . 

We opted for the SMAPE as the preferred metric over Mean Absolute Percentage Error 

(MAPE) due to its ability to handle situations with zero values in a more robust and balanced 

manner. SMAPE's symmetry in evaluating both overestimation and underestimation errors 

provides a more accurate reflection of prediction accuracy, making it a more suitable choice 

for our analysis. An update of the new recipe is then carried out iteratively using a global 

optimizer as explained in Section 1.7. As soon as the two descriptor sets are sufficiently similar, 

the process is stopped, and a final recipe is proposed. Based on different settings or starting 
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conditions, several diverse recipes can be obtained in this way and subsequently be handed 

over to experimentalists for further validation and refinement. 

 

1.2 Implementation Details 

The overall workflow is implemented as a python library in a modular fashion and a few 

design choices making the code very versatile are highlighted. A class representing a recipe 

holds all information about the recipe itself, like the ingredients and the corresponding molar 

or weight fractions. Furthermore, the kinetic Monte Carlo (kMC) simulation for the recipe can 

be started from an instantiated object of this class. Second, the result of the kMC simulation is 

stored in a different class. This class holds the ensemble of molecular species in a Pandas29 

DataFrame,  represented by their BNGL string (Section 1.4) and corresponding kMC graph 

(Section 1.6.3). As a unique identifier of the molecular species the Weisfeiler Lehman graph 

hash of the kMC graph is used.  

It is possible to compute the set of descriptors from an instance of this class / class object. 

Furthermore, these objects can be used as ingredients for the recipe class, making the 

simulation of n-step synthesis routes or blending possible. 

Another advantage of the modular code design is that the optimization problem can easily be 

adapted. For example, the library was originally designed to optimize recipes regarding their 

properties from known kinetics. However, it is also possible to optimize relative rate constants 

towards recipes with experimentally determined properties and known reaction channels. 

1.3 Kinetic Monte Carlo Simulation  

In contrast to deterministic approaches that address chemical kinetics via a set of coupled 

ordinary differential equations, kinetic Monte Carlo (kMC) simulations allow for the time 

evolution of discrete chemical species by using random processes. Both approaches possess 

their own advantages and disadvantages,30 but in this context, it is important that the discrete 
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species of the kMC process can be converted to an atomistic representation for descriptor 

calculations, see also Section 1.4. 

Those algorithms were pioneered by Gillespie24 about half a decade ago and have been 

applied for stochastic simulations of chemical kinetics in many different fields of chemistry 

and biology since then. In its original formulation, the algorithm requires the enumeration of 

all possible reactions and its associated reaction constants, which is, however, not feasible for 

complex reaction networks as seen in polymers.25, 31 

Most advancements in this direction have been reported in the field of radical 

polymerization31 and systems biology.25 In this context we use the NFsim software package 

which implements a network-free variation of Gillespie’s stochastic simulation algorithm 

(SSA).  It is designed for complex biochemical reaction networks, but due to its generic and 

efficient implementation scheme can also be used for classical polymer chemistry.26 In 

principle it's also possible to switch to different (e.g., network based) numerical solvers in the 

BNGL context.  

The applicability of this simulation package for the use cases in this work has been 

thoroughly validated by comparison with results from experiments, in-house reference 

implementations and classical analytical methods available for polyaddition and 

polycondensation reactions.32-33   

 

1.4 Chemistry in BioNetGen Language 

The NFsim software package employs the rule based BioNetGen Language (BNGL).34-35 In 

this section, it is described how molecules and functional groups are expressed in the BNGL 

notation. Then, implementation details for the representation of chemical reactions in the 

BNGL notation are described in Section 1.4.2. 
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1.4.1 Representation of Oligomers and Chemical Reactions in BNGL Notation 

In Table 1 the BNGL notation terms are mapped to the chemical terms used in this paper. 

Here, a BNGL molecule represents one repeat unit. As an example, it is shown how a typical 

chain growth polymerization reaction, a polyether polyol formation via alkoxylation of an 

alcohol starter with an epoxide, can be represented. Our notation for an exemplary starter, 

glycerol, and an epoxide monomer, propylene oxide, is shown in Figure 2. The repeat unit 

name is abbreviated (GLY and PO) and followed by a list of the reactive functional groups as 

BNGL components. 

Table 1: Mapping of BioNetGen Language (BNGL) terms35 to the chemical terms used in this paper. 

BNGL notation This work 

Molecule Repeat unit or monomer 

Bond A connection between repeat units / monomers 

Component Reactive, functional groups of the repeat unit / monomer 

State Functional group classification or activation 

Complex Oligomer / polymer species 

 

  

GLY(oh,oh,oh) PO(epo,oh~0) 

Figure 2: Representation of the glycerol (left) and propylene oxide (right) monomer in the BNGL notation. 

The KOH catalyzed alkoxylation reaction of the alcohol is schematically shown in Figure 3. 

During the reaction, the epoxide ring is opened, and a hydroxy group is created. Potential side 

reactions are neglected for the moment. The hydroxy group can further react with another 

epoxide. To represent this behavior, the propylene oxide monomer has two components. The 

first component (epo) represents the unreacted epoxide group which can form a bond to the 

hydroxy group of an alcohol. The second component (oh) represents the hydroxy group which 

is formed during the reaction. This hydroxy group carries a state where 0 means that the 
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hydroxy group has not been formed, i.e., the epoxide ring did not react. After the reaction of 

the epoxide group, the hydroxy component is activated, and the state is changed to 1. The 

corresponding reaction rules in BNGL notation are shown in Listing 1. 

 

Figure 3: Alkoxylation reaction of an alcohol with an epoxide. 

 

begin reaction rules 

 GLY(oh) +  PO(epo,oh~0) -> GLY(oh!1).PO(epo!1,oh~1)    1.0 

 PO(oh~1) + PO(epo,oh~0) -> PO(oh!1~1).PO(epo!1,oh~1)   1.0 

end reaction rules 
 

Listing 1: Reaction rules for the alkoxylation of glycerol. 

 

The first reaction rule describes the initial reaction of glycerol with propylene oxide. During 

this reaction the hydroxy component gets activated. Afterwards, the chain can be elongated by 

a reaction of the activated hydroxy group with another propylene oxide, which is described by 

the second reaction. Here, it is assumed for the sake of simplicity that both reactions have the 

same relative rate constants. 

One exemplary polyol species (or complex in the BNGL notation) resulting from this 

reaction is shown in Figure 4. The bonds between the monomers via the functional groups are 

indicated with an exclamation mark followed by a bond number (integer), which essentially 

correspond to an edge list data structure in graph theory. Furthermore, the monomer units 

within the polyol are separated by dots, this will be revisited in Section 1.5. 
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GLY(oh!1,oh!3,oh).PO(epo!1,oh~1!2).PO(epo!3,oh~1).PO(epo!2,oh~1) 

Figure 4: Representation of a polyol species in the BNGL notation. 

 

1.4.2 Classification of Functional Groups 

Until now, we assumed that all three hydroxy groups of the glycerol react with the same 

relative rate constant. However, glycerol contains two primary and one secondary hydroxy 

group, as shown in Figure 2. Compared to the primary hydroxy group, the reaction of the 

secondary hydroxy group with the epoxide is hindered by steric effects. Thus, the relative rate 

constant has to be smaller for the reaction of the secondary hydroxy group. 

In this work, we use states of the BNGL notation to represent the classifications (primary, 

secondary or tertiary) of the functional groups: e.g., GLY(oh~p,oh~p,oh~s) for glycerin (see 

also Figure 1) and PO(epo,oh~0) for propylene oxide. Please note that the functional groups 

are ordered alphabetically during the NFsim workflow. Therefore, the position of identical 

labeled functional group components in the monomer is arbitrary and those should represent 

symmetric equivalent functional groups within the molecule. Furthermore, the reaction rules 

have to be adapted as well. Here, we assume that the secondary hydroxy groups react 2.5 times 

slower with the epoxide than the primary hydroxy groups. In Listing 2 the reaction rules 

incorporating different relative rate constants for primary and secondary hydroxy groups are 

shown. 
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begin reaction rules 

 GLY(oh~p) +  PO(epo,oh~0) -> GLY(oh~p!1).PO(epo!1,oh~1)    1.0 
 GLY(oh~s) +  PO(epo,oh~0) -> GLY(oh~s!1).PO(epo!1,oh~1)    0.4 
 PO(oh~1) + PO(epo,oh~0) -> PO(oh~1!1).PO(epo!1,oh~1)       0.4 
end reaction rules 

 

Listing 2: Reaction rules for the alkoxylation of glycerol incorporating different relative rate constants for primary and 

secondary hydroxy groups. 

1.4.3 Reaction Templating 

Writing out all reaction rules for a system can be quite tedious and error prone since all 

combinations of reacting monomers have to be built. Furthermore, we also have to write out 

the reaction rules for all functional group classifications of the monomers. As an example, a 

system consisting of three different alcohols and two different epoxides would already need 

nine different reaction rules to be fully described, if all monomers had only one functional 

group classification. Therefore, reaction templates are used for all implemented reactions 

which allows for an automatic build of all monomer permutations. For the reaction discussed 

above, the reaction templates are shown in Listing 3. 

{alcohol}(oh) + {epo}(epo,oh~0) -> {alcohol}(oh!1).{epo}(epo!1,oh~1) 
{epo_1}(epo,oh~0) + {epo_2}(oh~1) -> {epo_2}(oh!1~1).{epo_1}(epo!1,oh~1) 

 

Listing 3: Reaction rule templates. 

Within the implemented workflow, every monomer is assigned to one or multiple molecular 

classes. The template reactions above contain these molecular classes within the curly brackets. 

When all combinations of the reactive monomers should be built, an internal function creates 

all permutations of the reactive monomers and inserts them into the template rules at the 

appropriate places. Afterwards, the subsequently created rules are written out for all 

combinations of functional group classifications from the reacting monomers. 

1.5 Generation of Molecular Representations from Polymer Graphs 

This section explains how the molecular structure from the BNGL notation are extra after 

the kinetic Monte Carlo simulation has been performed and the molecular species have been 

obtained. 
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Section 1.4 introduced the representation of monomers, functional groups and oligomers in 

the BNGL notation. Looking at the BNGL notation of a polyol species, it can be recognized 

that the structure is basically a graph edge list based on the functional groups, storing additional 

references to the parent repeat units. The simplified molecular-input line-entry system 

(SMILES) notation allows for some rather untypical reformulation, using ring labels being in 

fact very similar to the edge list notation of BNGL, see Figure 5. Instead of being used 

conventionally for separating compounds, disconnecting dots can be used to separate fragments 

of a molecule (corresponding to the monomer repeat units) and bonds are explicitly re-

introduced by using integer based “(ring) closures” using the numbering from the BNGL 

notation. This approach for rewriting polymer SMILES was mainly inspired by an algorithm 

for the arbitrary reordering of atoms in a SMILES string.36 

 
 

BNGL notation GLY(oh!1,oh!3,oh).PO(epo!1,oh!2).PO(epo!3,oh).PO(epo!2,oh) 

SMILES O1CC(O3)CO.O2C(C)C1.OC(C)C3.OC(C)C2 

Canonical SMILES CC(O)COC(C)COCC(CO)OCC(C)O 

 

Figure 5: Conversion of BNGL to SMILES string. The bonds between the monomers are color coded according to the bond 

number in the BNGL and SMILES string. For simplification, the states of the functional groups have been omitted in the 

BNGL string. 

Using this reformulation, BNGL and SMILES syntax become very similar and repeat units 

can be replaced very efficiently using simple regular expressions, which are defined for every 

implemented monomer. This allows also for a simple way of taking into account unreacted 

groups. An exemplary regex pattern and the corresponding SMILES string is shown in 

Listing 4 for the glycerol monomer. The regex pattern captures the bond numbers of the 

functional groups in the BNGL string and inserts them into the appropriate positions of the 

SMILES string. After this conversion, we obtain a SMILES string with explicitly labeled 

connections that can then be used to be fused with neighboring monomer repeating units. 
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Finally, the resulting string can then be converted to a canonical SMILES or into an InChI 

string (Figure 5). 

Regex pattern: GLY\(oh~p!*(\%?\d*),oh~p!*(\%?\d*),oh~s!*(\%?\d*)\) 

SMILES: O\1CC(O\3)CO\2 
 

Listing 4: Regex pattern to replace the BNGL glycerol string with the corresponding SMILES string. 

This transformation presents a very general scheme for SMILES generation that can as well 

be applied to other polymerization mechanisms, for example polyaddition and 

polycondensation reactions. This approach has the big advantage that it allows for a very 

efficient implementation at the string level and no large molecular objects need to be created 

and manipulated. 

1.6 Descriptors 

This section gives a brief overview of the types of descriptors used in this work. 

1.6.1 Basic Descriptors 

First, a class of basic descriptors is described which can directly be computed from the BNGL 

species string by knowing the molar mass of the monomers. The molar mass of the polymer 

species can be computed conventionally as the sum over the molar masses of the monomers: 

𝑀Species = ∑ 𝑀Monomer,𝑖 − ∑ 𝑀Condensation,𝑗 

𝑁Bonds

𝑗=1

𝑁Species

𝑖=1

. 

For condensation reactions, the sum of the molar masses of the by-product has to be 

subtracted for all bonds formed by the condensation reaction. As an alternative, the molar mass 

of the molecular species can directly be obtained from the SMILES string, if the transformation 

as outlined in Section 1.5 was carried out. 

By having the molar masses of the individual molecular species available, the molar mass 

distribution of the simulated recipe can be investigated as well. This, for example, allows for 
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the simulation of gel permeation chromatography (GPC) spectra, for more detailed information 

we refer to Ref. 37. 

Descriptors based on the molar mass and certain functional groups, like the OH number 

(OH#), can also be obtained directly from the evaluation of the species string.  Additionally, 

descriptors may also be defined by using the option to define observables in the bngl-syntax. 

1.6.2 RDKit Descriptors 

Using SMILES strings (Section 1.5), it is possible to compute various 2D-QSPR descriptors 

and properties with a cheminformatics toolkit like RDKit.38 Examples are the octanol-water 

partition coefficient (logP), the number of rotational bonds or the topological polar surface area 

(TPSA). Furthermore, substructure patterns within the molecular species can be counted using 

SMILES arbitrary target specification (SMARTS) patterns. 

To compute 3D-QSPR descriptors, it is needed to generate a proper 3D structure for the 

oligomers. Currently, RDKit’s “EmbedMolecule” method is used to generate an initial 3D 

structure. This 3D geometry can then be optimized using a molecular mechanics force field or 

an efficient quantum chemical method and descriptors, like the radius of gyration or 

HOMO / LUMO gaps, can be obtained. 

1.6.3 Topological Indices 

Using the BNGL string, graphs can be built, where each node represents a monomer and the 

edges represent the bonds between these monomers, which essentially corresponds to a graph 

representation via an edge list. Each node holds the name of the monomer and the reactive 

functional groups including the bond number (“!x”) as an attribute. Furthermore, the edges may 

hold the functional groups forming the respective connection as an attribute. In the following, 

we will call these graphs “kMC graphs”. 
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Alternatively, SMILES strings can be used to build up graphs where each node represents an 

atom, and the edges are the covalent bonds between the atoms. These graphs will be called 

molecular graphs in the following. 

  

kMC Graph Molecular Graph 

Figure 6: Representation of a kMC graph (left) and a molecular graph (right). On the left graph the nodes are colored as: 

orange: glycerol monomer block, blue: propylene oxide monomer block. On the right graph the nodes are colored as: gray: 

carbon, red: oxygen. 

Using these graphs, it is possible to compute topological indices, like the Wiener index or 

the Balaban index. For the computation of the Wiener index for acyclic and unicyclic graphs, 

we implemented the linear time algorithm published in Ref .39. Otherwise, the standard 

algorithm provided by NetworkX40 is used. 

1.6.4 Descriptor Averages 

Until now descriptors computed on the level of the individual species are discussed. In 

addition, descriptor values for the whole ensemble of molecular species by averaging the 

molecular descriptor values are accessible. Multiple weight functions can be employed here, 

the most common ones are the number (𝐷𝑛) and weight average (𝐷𝑤) of a descriptor 𝐷: 

𝐷𝑛 =  
∑ 𝑛Species,𝑖 ∙ 𝐷Species,𝑖

𝑁Species

𝑖=1

∑ 𝑛Species,𝑖
𝑁Species

𝑖=1

, 
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𝐷𝑤 =  
∑ 𝑛Species,𝑖 ∙ 𝑀Species,𝑖 ∙ 𝐷Species,𝑖

𝑁Species

𝑖=1

∑ 𝑛Species,𝑖
𝑁Species

𝑖=1
∙ 𝑀Species,𝑖

. 

Here, 𝑁Species is the number of unique molecular species, 𝑛Species,𝑖 the count, 𝑀Species,𝑖 the 

molar mass, and 𝐷Species,𝑖 the descriptor of species 𝑖. 

1.6.5 Other descriptors 

Since the library serves as an interface to other tools and tool chains, it is possible to 

incorporate descriptors from various tools providing e.g., quantum chemical calculations or 

liquid phase thermodynamics computations. Furthermore, it is also possible to generate input 

for a Molecular Dynamics Simulation, either on an all atomistic or a coarse-grained resolution. 

Other descriptors for the ensemble of molecular species can be the standard deviation or 

Kullback-Leibler divergence to a reference distribution of a descriptor since the distribution of 

descriptor values over the molecular species is available within the library. 

1.6.6 Selection of Descriptors 

As discussed in the sections above, a wide range of descriptors have been implemented. In 

fact, the selection of a suitable set of descriptors for a given use case is challenging and to some 

degree arbitrary. On the other hand, including descriptors concerning the molecular weight 

distribution, the topology, the cross-linking characteristics and, for example, the polarity seems 

very reasonable. However, the set used in a simulation should be selected individually for each 

use case. For example, for a typical polyol application, the OH number, the functionality should 

be included as descriptors. Furthermore, some descriptors are highly correlated, e.g., Mn 

(number average molecular weight), Mw (weight average molecular weight), and Mz (z-

average molecular weight), as well as graph indices computed on the kMC graph and molecular 

graph are highly correlated (note the discussion in the SI section 1.1). Therefore, unsupervised 

feature / descriptors selection procedures such as inspection of the descriptor covariance matrix 

may be applied.  
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1.7 Optimizer  

For the optimization procedure mainly a Bayesian optimization approach as implemented in 

the optuna python library is used.41 Bayesian optimization is a powerful method for the 

optimization of an objective (black box) function that is expensive to evaluate. It works by 

constructing and updating a probabilistic model of the objective function, a so-called surrogate 

model, during the optimization. New data points are selected using an acquisition function that 

manages the balance between exploration and exploitation of the parameter search space. The 

surrogate model and the acquisition function are updated as new data becomes available, 

allowing the algorithm to focus on the most promising regions of the search space. Bayesian 

optimization has several advantages, including the ability to handle noisy and non-convex 

objective functions, and the ability to find global optima with relatively few evaluations 

without the need for gradients. It is also possible to handle categorical data which is particularly 

well suited for the variation of chemical ingredients. The optuna library uses the Tree-

Structured Parzen Estimator model (TPE), a variant of Bayesian optimization but also other 

implemented samplers and optimizers have proven to be helpful in some cases. For optimal 

performance, benchmarking is recommended for a specific optimization problem. We provide 

such an example for a polyalkoxylation recipe in SI section 1.4. 

 Furthermore, multi-objective optimization is supported. For details on the algorithms and 

implementations we refer to the original publication.41 

 

2 Examples 
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2.1 Computational Details 

All kMC simulations are performed using NFsim v1.12.126 with a simulation length of 0.5 s. 

During the recipe optimization the total number of start molecules is set to 10,000. For the 

property prediction of the reference polymers and the proposed recipe 100,000 initial molecules 

in the kMC simulation were used. The basic descriptors Mn, Mw, Mw/Mn, OH# and their 

standard deviations (where applicable) are computed based on the molar mass information of 

the monomers, as described in Section 1.6.1. logP values are obtained by inserting the SMILES 

string of the molecular species into RDKit 2023.03.2,38 see also Section 1.6.2. The Wiener 

index is computed on the kMC graph of the molecular species, which is described in 

Section 1.6.3. Internally, graphs are built via Networkx 3.1.40 To optimize alternative recipes, 

the optuna 3.3.041 library is used with the TPE sampler. Here, the ingredient lists are described 

as a categorical parameter while the concentrations of the ingredients are continuous 

parameters, as already described above. 

2.2 Raw Material Substitution for a Polyester System 

For demonstration purposes of the algorithm a hypothetical reference recipe was set up with 

the following chemicals and the respective mass fraction in parenthesis: 

trimethylolpropane/TMP (0.5), 1,2-propylene glycol/PG (0.1) and isophthalic acid/ISOPS 

(0.4). The system is subject to a simple polyesterification reaction, including the generation of 

1 molecule water in each reaction step (Figure 7). The kinetic rules for NFsim are defined 

accordingly (Listing S1). For the sake of simplicity any trans-esterification reaction is omitted 

in this model. As TMP has been labeled reprotoxic according to REACH, and the polyester 

produced with the aforementioned recipe contains residual amounts of monomeric TMP, the 

objective of this toy example is to replace TMP by an alternative alcohol. The change of overall 

polyester characteristics (as given from the descriptor similarity as described in Section 1.1) 

should be kept at a minimum. First, the characteristics for the reference system are computed. 
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Figure 7: Esterification reaction of an alcohol functional group with isophthalic acid leading to a mixture of oligomeric 

and polymeric polyester structures. 

TMP is defined to have three primary alcohol groups, propylene glycol one primary and one 

secondary alcohol group, and isophthalic acid to have two carboxylic acid groups. A kinetic 

Monte Carlo simulation is set up where the primary alcohol groups react with carboxylic acid 

groups with a relative rate constant of 1, and secondary alcohol groups slower with a relative 

rate of 0.4. It is assumed that the reaction water is removed by distillation and the esterification 

equilibrium is shifted completely to the ester side. The simulation is carried out using 100,000 

initial seed molecules (monomers in this case) and the graphs of the polymer and molecular 

species are generated according to the workflow described above. 
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Figure 8: Most frequent oligomeric species (ordered by weight fraction) as created by the kinetic Monte Carlo simulation 

for the reference system. The molar mass and weight fraction of the individual species are shown below each species. 

Molecular structures have been obtained by mapping the polymer graphs into molecular graphs after the simulation as 

explained in Section 1.5 

 

Figure 8 shows the most important oligomeric species that have been produced by the 

simulation. From this result, different descriptors have been computed: The OH number (OH#), 

as a measure for the hydrogen bond density, the Wiener index representing the overall 

topology, the average functionality of OH groups (fn(OH)), and the average octanol-water 

partition coefficient (logP). Note that the average logP is used here merely as a descriptor 

related to the overall polarity of the system, not as a real physical property that could be 

determined experimentally. The computed descriptors of the reference system are shown in 

Table 2. 
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Table 2: Showing the computed descriptors for the reference and the new proposed recipe. The monomers are abbreviated as 

trimethylol propane (TMP), propylene glycol (PG), isophthalic acid (ISOPS), hexandiol (HXD) and neopentylglycol (NPG). 

System  OH# Wiener 

Index 

logP fn(OH) monomers 

Reference system 

 

552 52 0.6 3.4 TMP, PG, ISOPS 

Proposed system I 

 

530 57 0.3 3.4 GLY,HXD,ISOPS 

Proposed system II 507 62 0.2 3.3 GLY,NPG,ISOPS 

 

Table 3: Computed observables for the reference and the new proposed recipe.  The monomers are abbreviated as trimethylol 

propane (TMP), propylene glycol (PG), isophthalic acid (ISOPS), hexandiol (HXD) and neopentylglycol (NPG). 

System Mn Mw/Mn TPSA #rot. bonds Monomers 

Reference system 

 

346 3.13 117 31.9 TMP, PG, ISOPS 

Proposed system I 358 2.59 127 27.8 GLY,HXD,ISOPS 

Proposed system II 366 2.63 129 25.1 GLY,NPG,ISOPS 

 

In the next step, a new reactive system is defined, with different starters, and particularly, 

omitting the TMP molecule: glycerol, 1,2-propylene glycol, hexanediol, neopentylglycol, 

triethylene glycol and isophthalic acid. The same set of kinetic rules was defined as for the 

reference system. Starters were grouped in different recipe sets with each set having a 

maximum of four different alcohols, to make the recipe not too complex. 

The Bayesian optimization workflow is then carried out as described in Section 1.1, where 

the different sets were treated as categorical variables and the concentrations as continuous 

variables. The same set of descriptors was computed for the test system, and the stoichiometries 

of the test system were updated by the optimizer, until the distance in the descriptor space 

between the two reaction systems was minimal. The final set of descriptors for two recipes 

with the highest similarity is shown in Table 2. In Table 3 some additional descriptors are 

shown which are reasonably close to the reference but have not been used for optimization, 

such as the number average molecular weight, the polydispersity index (Mw / Mn) and average 
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topological surface area (TPSA) and the number of rotatable bonds (NRB) as computed from 

RDKit. 

As a result, those recipes most similar to the reference system, have the following chemical 

composition in mass fractions: (0.32, 0.21, 0.47) for the system GLY, HXD, ISOPS, and (0.30, 

0.22, 0.48) for the system GLY, NPG, ISOPS, and serve as a rational starting point for focused 

lab trials. 

 

2.3 Finding an Alternative One-Pot Synthesis Route 

The presented approach is also able to represent multi-step synthesis routes, which is 

highlighted on another hypothetical use case. Here, the reference recipe is a blend of two 

polyesters. The synthesis route is depicted in Figure 9. One polyester is obtained through a 

polyesterification reaction of adipic acid (ADPS) with the alcohols ethylene glycol (EG) and 

1,6-hexanediol (HEXD), see Figure 10. To simplify the model, trans-esterification reactions 

are neglected. For the same reasons, it is assumed that the reaction of primary and secondary 

OH groups can be described with the same rate constants. The second polyester is based on 

caprolactone (CPL) where the ring is opened with 1,4-butanediol (BDO) and 1,2-dipropylene 

glycol (DPG), see Figure 11. Please note the very different underlying reaction mechanisms, 

i.e., step growth polycondensation and the chain-growth-based ring opening reaction. Blending 

these two polyesters together yields the final target product. 

In this hypothetical example the aim is to replace this polyester polyol with a polyether 

polyol. Furthermore, a one-pot synthesis route for the polyether polyol is desirable. In addition, 

the final recipe should have a similar Mn value as well as (mean) OH number. Moreover, a 

similar OH number distribution will result in a similar crosslinking functionality later. 
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Figure 9: Hypothetical synthesis route of the reference polyester polyol blend, x as mol fractions. 

 

 

Figure 10: Esterification reaction of adipic acid with an alcohol. 

 

 

Figure 11: Ring-opening reaction of caprolactone with an alcohol. 

2.3.1 Results 
 

The molecular species ensemble of the polyester polyol blend has to be predicted to obtain 

the target descriptor values for the subsequent optimization. To achieve this, the ensemble of 

molecular species is computed for every step (reaction and blending) shown in Figure 9. Each 

reaction step is represented by a kMC simulation while a blending step joins the ensembles of 
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molecular species according to their mole fractions. The nine most frequent molecular species 

of the final polyester polyol blend are depicted in Figure 12. 

Next, the possible monomer combinations for the polyether polyol recipe are created. For 

this, we set up a list containing four different starter molecules and a list with two different 

epoxides, see Figure 13. Subsequently, all possible monomer combinations containing two 

starter monomers and both epoxides are built. This yields 6 different monomer combinations 

the optimizer can choose from. For the polyol reaction a simple chain growth mechanism is 

assumed (i.e. epoxide ring opening via OH functional groups) and side reactions during KOH 

catalysis such as monol formation are neglected, see also Figure 3. 

In this example, the average and standard deviation of the OH number, Mn and the averaged 

value of the Wiener Index are used as descriptors. All descriptors are weighted equally during 

the optimization. As a metric for the loss, the symmetric mean absolute percentage error 

(sMAPE) is used. By optimizing the recipe towards the average and standard deviation we aim 

to yield a similar distribution of OH numbers. 
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Figure 12: Most frequent oligomeric species (ordered by weight fraction) as created by the kinetic Monte Carlo simulations 

and subsequent blending for the reference system. The molar mass and weight fraction of the individual species are shown 

below each species. Furthermore, the hydroxyl number (OHZ) is listed below each species. Molecular structures have been 

obtained by mapping the polymer graph into molecular graphs after the simulation as explained in Section 1.5. 
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Figure 13: Generation of possible polyether polyol ingredient lists. 

The one-pot polyether polyol recipe proposed by the optimizer is depicted in Figure 14. In 

addition, the nine most frequent oligomeric species of the recipe are depicted in Figure 15. 

Furthermore, the descriptor values of the reference polyester recipe as well as the proposed 

polyol recipe are shown in Table 4. It can be observed that, except for the topological index of 

the kMC graph, the descriptor values show good agreement. Additionally, Table 5 lists 

computed observables for both recipes, which were no targets during the optimization. Also, 

for these descriptors a good agreement is observed. Especially the standard deviation of the 

molar mass and mass-based descriptors (Mw and Mw/Mn) are very similar, indicating that the 

distribution of the molar mass should be similar between the recipes. 

 

Figure 14: One-pot polyether synthesis route as proposed by the optimizer. 
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Figure 15: Most frequent oligomeric species (ordered by weight fraction) as created by the kinetic Monte Carlo simulation 

for the optimized polyether polyol using the TPE sampler. Molar mass and weight fraction of the individual species are shown 

below each species. Molecular structures have been obtained by mapping the polymer graph into molecular graphs after the 

simulation as explained in Section 1.5. 

 

Table 4: Computed descriptors for the polyester reference and the optimized polyether recipe proposal. The monomers are 

abbreviated as caprolactone (CPL), 1,4-butanediol (BDO), 1,2-dipropylene glycol (DPG), adipic acid (ADPS), ethylene glycol 

(EG), 1,6-hexanediol (HEXD), Pentaerythritol (PERYT), ethylene oxide (EO), propylene oxide (PO). 

System OH# std(OH#) Mn Wiener Index Monomers 

Reference Polyester 

 

528 441 212 0.57 I: CPL, BDO, DPG  

II: ADPS, EG, HEXD 

Proposed Polyether 555 393 210 11.63 EG, PERYT, EO, PO 
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Table 5: Computed observables for the polyester reference and the optimized polyether recipe proposal. The monomers are 

abbreviated as caprolactone (CPL), 1,4-butanediol (BDO), 1,2-dipropylene glycol (DPG), adipic acid (ADPS), ethylene glycol 

(EG), 1,6-hexanediol (HEXD), Pentaerythritol (PERYT), ethylene oxide (EO), propylene oxide (PO). 

System std(M) Mw Mw/Mn logP std(logP) Monomers 

Reference 

Polyester 

 

123 284 1.34 0.73 1.17 I: CPL, BDO, DPG 

II: ADPS, EG, HEXD 

Proposed 

Polyether 

100 258 1.23 –0.06 0.64 EG, PERYT, EO, PO 

 

A GPC like spectrum simulated from the molar mass distributions is depicted in Figure 16, 

following the basic ideas represented in Ref. 37. Although not being a perfect match, they show 

similar characteristics, despite originating from very different underlying polymerization 

mechanisms (chain growth vs step growth!). Similarly, the distribution of OH numbers shows 

a good agreement between the proposed and reference recipe, as shown in the SI section 1.2. 

 

Figure 16: GPC like spectra for the reference polyester polyol (black) and optimized polyether polyol (blue) recipes simulated 

from the molecular weight distribution. For an improved visual comparison with experimental data, the simulated spectra were 

broadened, according to eq 16. from Ref. 37 using a Gaussian distribution parameter of 𝑏𝜎𝜈 = 0.06. 
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In this example an ingredient list consisting of four different monomers the optimizer can 

choose from is created. Please note that this only limits the absolute number of ingredients in 

the final recipe. In the SI (section 1.3), an example is presented in which the molar fractions of 

two of the ingredients were set to zero during the optimization process, reducing the total 

number of ingredients and resulting in a significant simplification of the overall composition.  

 

3 Conclusions and Outlook 

A workflow for the computer aided chemical recipe design (CARD) is presented which 

allows for the optimization of existing recipes by interfacing kinetic simulations and 

cheminformatics tools.  

The approach extends computer-aided molecular design (CAMD) approaches, with the focus 

on relevant uses cases in oligomer and polymer manufacturing. The motivation from an 

industrial perspective is the consolidation of product portfolios and formulation components, 

coupled with the in silico testing of (new) biogenic raw materials or those sourced from 

chemical circular economy (CE) origins. The core idea is to compute descriptor-based 

fingerprints for a polymer-based reference recipe and propose alternative recipes with similar 

fingerprints using Bayesian optimization.  

In particular, the challenge of dealing with polydispersity, is directly addressed by employing 

kinetic simulations, with access to realistic chain architectures.  

Another key feature of the approach is to use a descriptor-based distance metric (similarity) 

for optimization. This simplifies issues concerning the replacement of chemicals where the 

main objective is basically to not deteriorate material properties instead of improving 

properties, for example in a regulatory context.  

In addition, a simple but general mapping from the graphs obtained by the kinetic Monte 

Carlo graphs to atomistic SMILES strings using regular expressions is introduced, exploiting 
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similarities between the BNGL and the SMILES notation. This mapping gives access to a 

variety of cheminformatics-based descriptors (RDKit) and acts as an interface to simulation 

models from quantum chemistry or molecular mechanics.  

Although, this approach is currently utilized for oligomeric or moderately sized polymeric 

mixtures, there are no principal restrictions to its potential applications for larger and more 

complex polymeric systems. Furthermore, processing conditions like temperature dependency 

or sequence of monomer addition can be addressed.  

Ongoing and future work comprises the inclusion of further atomistic simulation tools e.g. 

molecular dynamics or liquid phase thermodynamics as well as incorporation of experimental 

data already during the optimization procedure.  

4 Data And Software Availability 

The data that support the findings of this study are available in the supplementary information 

for this article. The overall workflow is implemented in Python and builds only upon open 

source packages. It uses an efficient tool for kinetic Monte Carlo simulations (NFsim v1.12.1). 

Input file for NFsim for the examples of Section 2 can be found in BNGL notation in the 

supplement. Other packages used are optuna v3.3.0 for the optimization procedure, the 

RDKit 2023.03.2 for descriptor calculations and networkx v3.1  for graph handling.  

5 Supplemental Material 

Generated molecular species, graphs, SMILES and descriptor values for the examples 

(reference and target systems) are available as .csv files in the supplement. Furthermore, NFsim 

input files are attached in BNGL notation. In the supplementary section there are additional 

details for the examples such as descriptor distributions and alternative recipe results. Finally, 

a section on optimizer benchmarks is attached.  
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