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ABSTRACT: I present new, robust, and measurable nonparametric statistical averages that summarize major features of 
the distribution of the hydrodynamic radius. I explain how these descriptive statistical averages—the mean, standard de-
viation, and skewness of the intensity-weighted distribution—are obtained. Next, I demonstrate that—unlike the well-
known and widely used Z-average and polydispersity index—these statistical averages bear a direct and physically mean-
ingful interpretability. At the same time, these statistical averages are straightforward to obtain from experimental corre-
lograms, and therefore, they merit a place in characterizing particle systems via DLS.

 

Dynamic light scattering (DLS) is a half-centennial exper-
imental technique,1,2 and it has become essential in char-
acterizing the size distribution of colloidal particle sys-
tems.3 DLS is considered a mature technique, yet even 
nowadays, there are still ongoing efforts to render the 
technique more accessible and the analyses more trans-
parent.4-7  

DLS begins with the so-called electric field auto-
correlation function g1(t) of identical particles:  

1) g1(t) = e− t 

where  is the so-called relaxation rate, which is a func-
tion of the diffusion coefficient of the particles, polariza-
tion mode,8,9 and the amplitude of the scattering vector 
(also known as momentum transfer). If DLS probes the 
translational diffusion of particles with hydrodynamic 
radius r, then (r, q) =  q2DT(r) and DT(r) = kBT /
(6 π  r) where kB is the Boltzmann constant, T the tem-
perature,  the viscosity of the solvent in which the parti-
cles are dispersed, q the momentum transfer q =
4π

λ
n sin (

θ

2
), θ the scattering angle, λ the wavelength of the 

scattered light, and n the effective refractive index of the 
dispersion. In case of polydispersity, the electric field au-
to-correlation function is expressed by the well-known 
Laplace transform via the probability density function of 
the distribution of  

2) g1(t) =  ∫ f() e− t d
∞

0
. 

In a DLS experiments one records the so-called intensity 
auto-correlation function g2(t), and the two are tied to-
gether by the Siegert relation: 

3) g2(t) = α + β |g1(t)|2,  

where α ≈ 1 and 0 < β ≤ 1 is an experimental and in-
strumentation pre-factor. These two are regarded as an 

adjustable parameter when fitting the experimental data 
points.10-12  

In particle sizing, the aim is at obtaining information 
about the distribution of particle sizes and not on either 
the decay rates or diffusion constants. Accordingly, one 
can reformulate Equation 2, and express g1(t) via the in-
tensity-weighted distribution of the hydrodynamic radius 

4) g1(t) = ∫ fr(r) e−
κ

r
 t dr

∞

0
 

where κ = q2kBT / 6 π . In fact, f() and fr(r) are inti-
mately related, and one can be computed from the other 
via the rule of transforming random variables:8 

5) fr(r) = f((r)) ∙  |∂r(r)|. 

Obtaining the true fr(r)—in adequate details no mat-
ter the complexity of the distribution—by analyzing the 
experimental data g2(t) is the ultimate goal of DLS parti-
cle size analysis. Success, however, cannot be guaranteed, 
which owes to fundamental limits posed by the fact that 
Equation 2 and 4 are integral transform embodying ill-
conditioned inverse problems, whose numerical inversion 
is highly sensitive to a) experimental noise present in 
g2(t),13-15 and b) the algorithm used to invert numerically 
the integral transform.16,17 Therefore, ‘absolute’ methods 
of analyses that exhibit a much weaker dependence on 
experimental noise have become highly relevant, and re-
porting the results of nonparametric model-free analysis 
on two statistical averages of the intensity-weighted dis-
tribution of the hydrodynamic radius (the Z-average and 
the polydispersity index),18-20 has become de facto a 
standard in DLS.21 

The Z-average hydrodynamic radius (rZ) and the poly-
dispersity index (PDI) are directly related to the so-called 
cumulant analysis of polydispersity.18-20 The essence of the 
cumulant analysis (and its variations) is expanding the 
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negative exponential function into its Maclaurin series (a 
polynomial around t = 0) 

6)  e− t = 1 −+ 
1

2


2
t2 −

1

6


3
t3 + ⋯  . 

From Eq 6, any polydisperse auto-correlation function 
may be expressed via the statistical moments of f() 

7) ⟨
m

⟩ =  ∫ 
m

f()d
∞

0
. 

The first two terms—a linear and a quadratic term—are 
used for quantifying the Z-average hydrodynamic radius 
and the polydispersity index: rZ is defined through the 
inverse of the mean value of , 

8) rZ = κ/⟨⟩ 

and PDI is the normalized variance of the distribution of 
 

9) PDI =  ⟨
2
⟩ /⟨⟩2 − 1. 

The mean and the variance of the distribution of  
have a clear and physically intuitive meaning if it comes 
to the analysis of relaxation rates. Indeed, so far, several 
thousands of peer-reviewed publications have cited the 
method,18-20 which indicates that statistical averages, even 
if their information content is limited to a summary, are 
appreciated. Next, one can follow the same route (Eq 6) 
and apply it to Eq 4, and it is not difficult show that 

10) rZ =
1

 ∫ r−1fr(r)dr
  

and 

11) PDI =
∫ r−2fr(r)dr

(∫ r−1fr(r)dr)2
− 1. 

Therefore, at a given scattering angle, a) the z-average 
radius is the harmonic mean of the intensity-weighted 
probability function of the hydrodynamic radius, and b) 
the polydispersity index is more complex expression of 
‘inverted’ averages. That is, in the context of hydrodynam-
ic radius, the physical interpretation of the statistical av-
erages obtained via the cumulat method is rather obscure 
and unintuitive, especially when it comes to describe pol-
ydispersity. 

The question I address here is whether—from the same 
kind of DLS experiments—one could obtain statistical 
averages that describe the intensity-weighted distribution 
of the hydrodynamic radius in a direct and physically in-
tuitive manner, such as mean, relative standard deviation, 
and skewness of the distribution of r. The answer is posi-
tive, and instead of series expansion, I will address this 
question through integrating the exponential function 
(Eq 4) in time 

12) Ip ≡ ∫ tp g1(t) dt
∞

0
. 

I will show that via temporal integration one can readily 
obtain physically intuitive statistical averages. For this, I 
consider that Eq 12 may be written as a double integral, 

13) Ip = ∫ tp (∫ fr(r) e−
κ

r
 t dr

∞

0
) dt

∞

0
, 

and to benefit from Eq 13, one needs to recognize two 
things. First, the order of integration in time and in radius 
may be exchanged 

14) Ip = ∫ fr(r) (∫ tp  e−
κ

r
 t∞

0
)  dt dr

∞

0
. 

Second, the inner part of Eq 14 confined within the brack-
ets may be defined as the p-th temporal moment of the 
exponential term 

15) Mp = ∫ tpe−
κ

r
 tdt

∞

0
, 

and evaluating this integral provides a closed form valid 
for nonnegative integers (p > −1)  

16) Mp = p! (
r

κ
)

1+p

  

and if p is not an integer, the factorial becomes the gam-
ma function: Gamma[1 + p]. Now, the temporal integral 
of Eq 12-14 can be expressed as 

17) Ip = ∫  fr(r)Mpdr
∞

0
. 

I know of precedents of temporal integration with p =
0 only. It was used to define coherence time correspond-
ing to random optical fields in statistical optics,22,23 and it 
was used to the estimate harmonic mean of the diffusion 
coefficient via DLS.24 To the best of my knowledge, the 
potential to describe the hydrodynamic radius has not 
been recognized elsewhere. However, the relevance of Eq 
17 becomes evident when I substitute the first three non-
negative integer values of p: M0 = r/κ, M1 = (r/κ)2, M2 =
2(r/κ)3, and subsequently evaluate Eq 17 

18) Io =
1

κ
∫  fr(r) r dr =

1

κ
⟨𝑟⟩

∞

0
  

19) I1 =
1

κ2 ∫  fr(r) r2 dr
∞

0
=

1

κ2
⟨r2⟩  

20) I2 =
2

κ3 ∫  fr(r) r3 dr =
2

κ3
⟨r3⟩

∞

0
. 

The surprising result is that the temporal integrations 
yield the raw statistical moments of the distribution of 
the hydrodynamic radius (identically as defined in Eq 7 
for the relaxation rate). 

From these raw moments, the standard deviation and 

skewness may be easily computed: 𝜎 = √⟨r2⟩ − ⟨r⟩2 and 
𝛾1 = 𝜎−3 (2⟨𝑟⟩3 − 3⟨𝑟⟩ ⟨r2⟩ + ⟨r3⟩). Therefore, I just 
proved that by integrating the experimental auto-
correlation function, one has the potential to quantify 
nonparametric statistical averages that summarize the 
major features of the intensity-weighted distribution of 
the hydrodynamic radius. 

 

AUTHOR INFORMATION 

Corresponding Author 

sandor.balog@unifr.ch 

 

https://doi.org/10.26434/chemrxiv-2023-580rb ORCID: https://orcid.org/0000-0002-4847-9845 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

mailto:sandor.balog@unifr.ch
https://doi.org/10.26434/chemrxiv-2023-580rb
https://orcid.org/0000-0002-4847-9845
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

ACKNOWLEDGMENT  

I am grateful for the financial support of the Adolphe Merkle 
Foundation and the University of Fribourg. This work also 
benefitted from support of the Swiss National Science Foun-
dation through the National Center of Competence in Re-
search Bio-Inspired Materials (25%). 

REFERENCES 

(1) Oster, G. The Scattering of Light and Its Applications to 
Chemistry, Chemical Reviews, 1948, 43, 319-365. 
(2) Foord, R.; Jakeman, E.; Oliver, C. J.; Pike, E. R.; Blagrove, 
R. J.; Wood, E.; Peacocke, A. R. Determination of Diffusion 
Coefficients of Haemocyanin at Low Concentration by 
Intensity Fluctuation Spectroscopy of Scattered Laser Light, 
Nature, 1970, 227, 242-245. 
(3) Chu, B. In Soft Matter Characterization, Borsali, R.; 
Pecora, R., Eds.; Springer Netherlands: Dordrecht, 2008, pp 
335-372. 
(4) Bhattacharjee, S. Dls and Zeta Potential – What They Are 
and What They Are Not?, Journal of Controlled Release, 2016, 
235, 337-351. 
(5) Farkas, N.; Kramar, J. A. Dynamic Light Scattering 
Distributions by Any Means, Journal of Nanoparticle 
Research, 2021, 23, 120. 
(6) Burastero, O.; Draper-Barr, G.; Raynal, B.; Chevreuil, M.; 
England, P.; Garcia Alai, M. Raynals, an Online Tool for the 
Analysis of Dynamic Light Scattering, Acta Crystallographica 
Section D, 2023, 79, 673-683. 
(7) Salazar, M.; Srivastav, H.; Srivastava, A.; Srivastava, S. A 
User-Friendly Graphical User Interface for Dynamic Light 
Scattering Data Analysis, Soft Matter, 2023, 19, 6535-6544. 
(8) Balog, S.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Michen, 
B.; Obiols-Rabasa, M.; Casal-Dujat, L.; Rothen-Rutishauser, 
B.; Petri-Fink, A.; Schurtenberger, P. Dynamic Depolarized 
Light Scattering of Small Round Plasmonic Nanoparticles: 
When Imperfection Is Only Perfect, The Journal of Physical 
Chemistry C, 2014, 118, 17968-17974. 
(9) Levin, A. D.; Shmytkova, E. A.; Khlebtsov, B. N. 
Multipolarization Dynamic Light Scattering of Nonspherical 
Nanoparticles in Solution, The Journal of Physical Chemistry 
C, 2017, 121, 3070-3077. 
(10) Lemieux, P. A.; Durian, D. J. Investigating Non-Gaussian 
Scattering Processes by Using Nth-Order Intensity 
Correlation Functions, Journal of the Optical Society of 
America A, 1999, 16, 1651-1664. 

(11) Voigt, H.; Hess, S. Comparison of the Intensity 
Correlation Function and the Intermediate Scattering 
Function of Fluids: A Molecular Dynamics Study of the 
Siegert Relation, Physica A: Statistical Mechanics and its 
Applications, 1994, 202, 145-164. 
(12) Ferreira, D.; Bachelard, R.; Guerin, W.; Kaiser, R.; 
Fouché, M. Connecting Field and Intensity Correlations: The 
Siegert Relation and How to Test It, American Journal of 
Physics, 2020, 88, 831-837. 
(13) Jakeman, E.; Pike, E. R.; Swain, S. Statistical Accuracy in 
the Digital Autocorrelation of Photon Counting Fluctuations, 
Journal of Physics A: General Physics, 1971, 4, 517. 
(14) McWhirter, J. G.; Pike, E. R. On the Numerical Inversion 
of the Laplace Transform and Similar Fredholm Integral 
Equations of the First Kind, Journal of Physics A: 
Mathematical and General, 1978, 11, 1729. 
(15) Bertero, M.; Boccacci, P.; Pike, E. R. On the Recovery and 
Resolution of Exponential Relaxation Rates from 
Experimental Data: A Singular-Value Analysis of the Laplace 
Transform Inversion in the Presence of Noise, Proceedings of 
the Royal Society of London. A. Mathematical and Physical 
Sciences, 1982, 383, 15-29. 
(16) Stock, R. S.; Ray, W. H. Interpretation of Photon 
Correlation Spectroscopy Data: A Comparison of Analysis 
Methods, Journal of Polymer Science: Polymer Physics Edition, 
1985, 23, 1393-1447. 
(17) Finsy, R. Particle Sizing by Quasi-Elastic Light Scattering, 
Advances in Colloid and Interface Science, 1994, 52, 79-143. 
(18) Koppel, D. E. Analysis of Macromolecular Polydispersity 
in Intensity Correlation Spectroscopy: The Method of 
Cumulants, The Journal of Chemical Physics, 1972, 57, 4814-
4820. 
(19) Frisken, B. J. Revisiting the Method of Cumulants for the 
Analysis of Dynamic Light-Scattering Data, Applied Optics, 
2001, 40, 4087-4091. 
(20) Mailer, A. G.; Clegg, P. S.; Pusey, P. N. Particle Sizing by 
Dynamic Light Scattering: Non-Linear Cumulant Analysis, 
Journal of Physics: Condensed Matter, 2015, 27, 145102. 
(21) International Organization for Standardization, 2017. 
(22) Berne, B. J.; Pecora, R., 1976. 
(23) Goodman, J. W. Statistical Optics; Wiley, 2000. 
(24) Roger, V.; Cottet, H.; Cipelletti, L. A New Robust 
Estimator of Polydispersity from Dynamic Light Scattering 
Data, Analytical Chemistry, 2016, 88, 2630-2636. 

 

https://doi.org/10.26434/chemrxiv-2023-580rb ORCID: https://orcid.org/0000-0002-4847-9845 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-580rb
https://orcid.org/0000-0002-4847-9845
https://creativecommons.org/licenses/by-nc-nd/4.0/

