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Abstract

Computational tools are revolutionizing our understanding and prediction of chem-

ical reactivity by combining traditional data analysis techniques with new predictive

models. These tools extract additional value from the reaction data corpus, but to effec-

tively convert this value into actionable knowledge, domain specialists need to interact

easily with the computer-generated output. In this application note, we demonstrate

the capabilities of the open-source Python toolkit LinChemIn, which simplifies the

manipulation of reaction networks and provides advanced functionality for working

with synthetic routes. LinChemIn ensures chemical consistency when merging, edit-

ing, mining, and analyzing reaction networks. Its flexible input interface can process

routes from various sources, including predictive models and expert input. The toolkit

also efficiently extracts individual routes from the combined synthetic tree, identifying

alternative paths and reaction combinations. By reducing the operational barrier to

accessing and analyzing synthetic routes from multiple sources, LinChemIn facilitates

a constructive interplay between Artificial Intelligence and human expertise.
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Introduction

The size of the corpus of chemical reaction data1–8 obtained from public, proprietary, and

licensed sources has progressively grown over the years, matched by an increasing demand

for extracting more value from chemical experiments.9,10 Scientists use computational tools

and smart search methods to navigate this data effectively. For example, the Network of

Organic Chemistry (NOC)11,12 approach converts individual chemical reactions into a graph-

like object, allowing for graph-based searches13 and the discovery of new synthetic routes.14,15

Additionally, the application of predictive modeling has led to the development of Computer-

Aided Synthesis Planning (CASP) tools,16–22 which provide actionable insight in the form

of synthetic plans to molecular targets. To address the need for common frameworks across

multiple CASP/NOC tools, including the manual input of experts,23 we extended the Python

toolkit LinChemIn24 with new functionalities. By merging digital synthetic routes from mul-

tiple sources (both CASP platforms/models and input from experts), LinChemIn identifies

novel connections between reactions, even ones not initially present in the initial inputs.

This approach offers multiple alternative paths to strategic intermediates, enhancing the

decision-making process and, ultimately, improving synthetic route design. This application

note provides an overview of the concepts introduced in LinChemIn’s new module and out-

lines its usage. It showcases the route operations enabled by the toolkit through a practical

case study. The note concludes with a glimpse of the future development roadmap. The

source code of LinChemIn is freely available on GitHub at

https://github.com/syngenta/linchemin

and it is open to feedback and contributions from the community.

Methods

The data model implemented in LinChemIn (SynGraph)24 maps the first ontological25 layer

of reaction networks (CASP output and NOCs) to directed graphs where REACTANT and
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PRODUCT relationships connect Molecule and Chemical Equation nodes.11 LinChemIn al-

lows the user to set the level of structural sensitivity26,27 while assigning unique identifiers to

nodes by selecting among an extensible range of structure-derived molecular hashes28 such

as the Canonical29 SMILES30 (capturing all structural information), non-isomeric Canoni-

cal SMILES (ignoring stereoisomeric information), standard31 and non-standard32 InChIKey

(ignoring tautomeric33 information). Chemical Equation hash codes24 derive from Molecule

hash codes through a simple combination logic inspired by the Reaction InChI34 and ex-

tended to other molecular hashes. Using a structure-derived molecular hash as a unique

node identifier is a convenient expedient to control node and graph structural equality.

Among the possible sub-graph types of a reaction network, a small set of graph architec-

tures bears special chemical meaning. The Synthetic Route is a particularly relevant example

because it maps (with a set of Chemical Equation and Molecule nodes) the chemical syn-

thetic steps necessary and sufficient to synthesize a target molecule (root node) from a set

of starting materials (leaf nodes). By dissecting the Synthetic Route, we define the Syn-

thetic Path as a linear sequence of Chemical Equation and Molecule nodes linking the root

node (synthetic target) and one leaf node (starting material); we can extend the concept

to include linear paths connecting two nodes within the NOC. The combination (union) of

multiple Synthetic Routes sharing a common root gives a Synthetic Tree. Moving one level

up, the combination (union) of multiple Synthetic Trees, each stemming from a different root,

leads to a Synthetic Forest, one of the (potentially many) connected sub-graphs contained in

a chemical reaction network like the NOC. Linked by a clear hierarchical relationship, these

distinct graph architectures provide a basic description of the reaction network (Figure 1,

panel a).
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Figure 1: a) Examples of the elementary synthetic graph architectures described in the text.
b) merge/mine operations on graph architectures.

Route Operations

Single route operations

Route identification A SynGraph instance is a value object entirely defined by its prop-

erties: the set of unique nodes and their relationships. SynGraph instances are identified as

Synthetic Routes if they match some completeness criteria defined at the chemistry (pres-

ence of all necessary and sufficient synthetic steps to produce a chemical target) and graph

(unique root, correct node, and relationship labels) levels.

Route editing Any change to either or both the set of nodes and relationships encoded

into a SynGraph leads to a distinct SynGraph instance. Users can edit Synthetic Routes by

adding or removing Chemical Reaction nodes from the graph while ensuring the chemical

consistency of the output synthetic route. This functionality enables users to modify routes

predicted by CASP tools by removing undesired steps or by adding necessary ones based
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on other predictions, literature data, direct experience, or chemical intuition. The common

operational framework ensures that the properties (descriptor, metrics, etc.) of the new route

can be compared with those of the original one, thus enabling property-driven interactive

route design.

Multi-route operations

Route Equality SynGraph instances are value objects because they are entirely defined by

their constituting nodes, object values themselves, whose identity stems from the chemical

structure they represent. This approach leverages the underlying Python data model to

simplify the equality assessment between pairs of Synthetic Routes.

Merging Merging two or more Synthetic Routes into a Synthetic Tree corresponds to the

union operation between the individual set of nodes (see Figure 1, panel b)). To this aim,

a node equality assessment enables a meaningful combination of multiple routes, removing

redundant nodes and keeping edges appropriately to keep original node-relationship infor-

mation.

Mining The mining (or extracting) Synthetic Routes from a Synthetic Tree is the inverse

operation of merging. This operation is linked to the “route enumeration ” from NOC35

and, in our case, is tailored to operating on a Synthetic Tree. To ensure a chemically

sensible route reconstruction, the mining procedure relies on a modified depth-first search

algorithm that leverages the directional nature of the Synthetic Tree and responds to the

local node connectivity. Starting from the root node (target) the algorithm moves toward

the leaf nodes (starting materials), memorizing in a stack the nodes discovered until a

divergence point (node “OR ”, see Figure 1, b) is encountered: a Molecule node connected

through PRODUCT relationships with multiple Chemical Equation nodes. This situation

represents, from a synthetic standpoint, a chemical that multiple reactions can produce and

hence identify alternative routes to the target. The algorithm identifies these bifurcation
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points by dynamically analyzing node connectivity and, after duplicating the node stack,

keeps accumulating nodes along each branch defined by these Chemical Equation nodes.

The exhaustive exploration of the Synthetic Tree up to the leaves nodes yields a set of node

stacks, each converted into a distinct Synthetic Route.

Results

To exemplify the new functionalities described above, we predicted synthetic routes for the

antiviral drug Amenamevir.36 To highlight the versatility of the LinChemIn input inter-

face, we harvested predictions from tree CASP platforms: IBM RXN19 (model trained with

the NextMove Pistachio data-set), AstraZeneca’s AiZynthFinder17 (model trained with the

NextMove USPTO data-set)) and Askcos from MIT37,38 (model trained with the REAXYS

data-set). It is worth noticing that, not aiming at a benchmark between platforms and

models, we did not attempt to align training sets of prediction options. In the following

examples, the canonical SMILES is the molecular hash that defines the identity of Molecules

nodes; reagents are omitted from the chemical reaction hash (‘r p’ : reactants and products),

ensuring that only reactant and products contribute to the identity of Chemical Equation

nodes.

As a first step, we load the prediction output for the common target as saved by the

individual CASP platforms. After reading the first six routes from each file, a dedicated

LinChemIn façade yields a monopartite (reaction only) SynGraph instance for each input

route. A preliminary duplicate check follows data intake to identify potential duplicate

routes in the input set.

Listing 1: The output from the CASP tools are read and the routes converted into SynGraph
objects.

import json

from linchemin.interfaces.facade import facade

input_dict = {

’data/IBMRXN_routes.json’: ’ibm_retro’,

’data/AZ_routes.json’: ’az_retro’,
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’data/ASCKOS_routes.json’: ’mit_retro’,

}

all_routes = []

for file, casp in input_dict.items():

graph = json.loads(open(file).read())[:6]

output, _ = facade(’translate’, input_format=casp, input_list=graph,

out_data_model=’monopartite_reactions’)

all_routes.extend(output)

At this stage, we use atom-to-atom mapping39 to challenge the role of reaction compo-

nents and, if necessary, redistribute the individual chemicals among the reactant, reagent,

and product roles. After ensuring reagents are excluded by the reaction hash, the workflow

reconstructs routes, checks again for duplicates, and yields the unique routes. In this case,

the initial set contained two routes differing only reagents in one or more reactions (see SI,

routes ibm 1, Figure SI-7, and ibm 2, Figure SI-8), hence considered equivalent. This leaves

only seventeen routes.

Listing 2: The role reassignment procedure based on the atom-to-atom mapping is per-
formed.

from linchemin.cheminfo.atom_mapping import perform_atom_mapping

from linchemin.cgu.syngraph_operations import extract_reactions_from_syngraph

from linchemin.cgu.syngraph import MonopartiteReacSynGraph

def atom_mapping(route_list: list, mapper: str) -> list:

""" Performs the atom mapping of a list of chemical equations smiles """

mapped_routes: list = []

for route in route_list:

reaction_list = extract_reactions_from_syngraph(route)

out = perform_atom_mapping(reaction_list, mapper_name=mapper)

syngraph = MonopartiteReacSynGraph(out.mapped_reactions)

mapped_routes.append(syngraph)

return mapped_routes or None

mapped_routes = atom_mapping(unique_initial_routes, ’rxnmapper’)

unique_routes = []

for route in mapped_routes:

if route not in unique_routes:

unique_routes.append(route)
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As a further check, we seek routes that are a subset of each other. This step removes one

route more (see SI, route az 5, showed in Figure SI-17, is a subset of route az 4, showed in

Figure SI-16), leaving sixteen unique routes.

Listing 3: Subsets are removed.

subsets = facade("subsets", unique_routes)

for item in subsets:

route_to_remove = next((r for r in unique_routes if r.uid == item[0]), None)

if route_to_remove and route_to_remove in unique_routes:

unique_routes.remove(route_to_remove)

Editing routes by adding or removing chemical steps is a key requirement for any infor-

matics system that aims at leveraging the knowledge and experience of scientists alongside

the predictive power of reactivity models. For this reason, besides the possibility of entering

whole human-provided routes alongside CASP predictions, we ensure scientists can add or

remove individual reaction steps from synthetic routes. These features improve the overall

route design efficiency: rather than starting from a blank canvas, the scientists edit, if nec-

essary, the route background already laid out by CASP tools. The example highlights the

simplicity of both edit operations applied to the askcos 3 route. (Figure 2).

Listing 4: A route is edited by removing a chemical reaction and then by adding a new
chemical reaction

from linchemin.cgu.syngraph_operations import remove_reaction_from_syngraph,

add_reaction_to_syngraph

route = unique_routes[11]

node_to_remove = (f’[CH3:17][C:16]([CH3:18])([CH3:19])[O:14][C:13](=[O:15])’

f’[NH:12][C:3]1=[CH:2][CH:1]=[C:6]([CH:5]=[CH:4]1)[C:9]’

f’1=[N:10][O:11][CH:7]=[N:8]1>>[NH2:12][C:3]1=[CH:2][CH:1]’

f’=[C:6]([CH:5]=[CH:4]1)[C:9]1=[N:10][O:11][CH:7]=[N:8]1’)

new_route_removal = remove_reaction_from_syngraph(route, node_to_remove,

remove_dandling_nodes=True)

node_to_add = (f’CC[O:3][C:2](=[O:1])[CH:4]1[CH2:5][CH2:6][S:7](=[O:8])(=[O:9])’

f’[CH2:10][CH2:11]1>>[O:1]=[C:2]([OH:3])[CH:4]1[CH2:5][CH2:6][S:7]’

f’(=[O:8])(=[O:9])[CH2:10][CH2:11]1’)

new_route_addition = add_reaction_to_syngraph(route, node_to_add)

The route mining example shows that the number of routes extracted from a Synthetic
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Figure 2: a) the original route. b) the same route after the removal of a node. c) the same
route with the addition of a new node.

Tree might be considerably larger than the number of routes used to build it. The merging

operation creates in the resulting Synthetic Tree new valid cross-route synthetic pathways,

possibly including multiple new divergence points (“OR” nodes). In our case, the procedure

yields 150 individual routes after merging and mining from the initial 16. The procedure

enriches the information contained in the original input, creating innovative combinations

that differ in both size (number of steps) and complexity (number of branches)(Figure 3).

Listing 5: Synthetic Routes are mined from the Synthetic Tree obtained by merging the
original predictions.

from linchemin.cgu.route_mining import mine_routes

root = ’Cc1cccc(C)c1N(CC(=O)Nc1ccc(-c2ncon2)cc1)C(=O)C1CCS(=O)(=O)CC1’

mined_routes = mine_routes(unique_routes, root)
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Figure 3: Frequency of a) number of steps, I.e., number of Chemical Equations and b)
number of branches for the original set of routes and the mined routes.

Conclusions

In this contribution, we highlighted the newly developed functionalities of LinChemIn, an

open-source Python toolkit for editing and analyzing synthetic routes. These functionali-

ties aim to bridge the gap between digital resources (data, models, predictions) in synthetic

chemistry and end-users, enabling. Through a case study, we showcased the key features

offered by LinChemIn: the identification of unique routes, their chemical-aware manipula-

tion, the possibility of merging routes into a synthetic tree, and mining synthetic routes

from a tree. This work is a step toward a data-driven and model-enabled route design and

selection. We aimed at lowering the barrier for a scientist to interact with model output,

taking inspiration from them and editing whenever necessary or appropriate. A streamlined

program interface will support software developers in using the toolkit to develop custom

workflows. In the future releases of the toolkit, we will enhance the analytical capabilities

of the toolkit to yield quantitative assessment of or route properties through the calculation

of descriptors and metrics.

10

https://doi.org/10.26434/chemrxiv-2023-g84vw ORCID: https://orcid.org/0000-0001-6761-7142 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g84vw
https://orcid.org/0000-0001-6761-7142
https://creativecommons.org/licenses/by/4.0/


Competing Interests

The authors declare that they have no competing interests.

Author’s Contributions

Marco Stenta: Conceptualization, Methodology, Supervision, Writing - Original Draft,

Writing - Review & Editing. Marta Pasquini: Methodology, Sotware, Validation, Writing

- Original Draft, Writing - Review & Editing.

Supporting Information Available

Pictures of the synthetic routes used in the case study are reported in the Supplementary

Information file.

A Jupyter Notebook, alongside the data to reproduce the work described in the article, is

available at:

https://github.com/syngenta/LinChemIn publications/LinChemIn RouteArithmetic

All the examples require linchemin version 2.2.5 and linchemin services version 1.0.0.

The source code of LinChemIn is freely available on GitHub at

https://github.com/syngenta/linchemin

The source code of linchemin services, containing services accessible via API are available

at https://github.com/syngenta/linchemin services

References

(1) Baldi, P. Call for a Public Open Database of All Chemical Reactions. Journal of Chem-

ical Information and Modeling 2022, 62, 2011–2014, doi: 10.1021/acs.jcim.1c01140.

(2) Fialkowski, M.; Bishop, K. J. M.; Chubukov, V. A.; Campbell, C. J.; Grzybowski, B. A.

Architecture and evolution of organic chemistry. Angewandte Chemie (International ed.

in English) 2005, 44, 7263–7269, Journal Article.

11

https://doi.org/10.26434/chemrxiv-2023-g84vw ORCID: https://orcid.org/0000-0001-6761-7142 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g84vw
https://orcid.org/0000-0001-6761-7142
https://creativecommons.org/licenses/by/4.0/


(3) Grethe, G. The Future of the History of Chemical Information; ACS Symposium Series;

American Chemical Society, 2014; Vol. 1164; Chapter 6, pp 95–108, doi:10.1021/bk-

2014-1164.ch006.

(4) Jablonka, K. M.; Patiny, L.; Smit, B. Making the collective knowledge of chemistry

open and machine actionable. Nature Chemistry 2022, 14, 365–376.

(5) Kearnes, S. M.; Maser, M. R.; Wleklinski, M.; Kast, A.; Doyle, A. G.; Dreher, S. D.;

Hawkins, J. M.; Jensen, K. F.; Coley, C. W. The Open Reaction Database. J Am

Chem Soc 2021, 143, 18820–18826, Kearnes, Steven M Maser, Michael R Wleklinski,

Michael Kast, Anton Doyle, Abigail G Dreher, Spencer D Hawkins, Joel M Jensen,

Klavs F Coley, Connor W eng Research Support, Non-U.S. Gov’t 2021/11/03 J Am

Chem Soc. 2021 Nov 17;143(45):18820-18826. doi: 10.1021/jacs.1c09820. Epub 2021

Nov 2.

(6) Mercado, R.; Kearnes, S. M.; Coley, C. W. Data Sharing in Chemistry: Lessons Learned

and a Case for Mandating Structured Reaction Data. Journal of Chemical Information

and Modeling 2023, doi: 10.1021/acs.jcim.3c00607.

(7) Thakkar, A.; Kogej, T.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E. J. Datasets and

their influence on the development of computer assisted synthesis planning tools in the

pharmaceutical domain. Chemical science 2020, 11, 154–168, Journal Article.

(8) Warr, W. A. A Short Review of Chemical Reaction Database Systems, Computer-Aided

Synthesis Design, Reaction Prediction and Synthetic Feasibility. Molecular Informatics

2014, 33, 469–476, https://doi.org/10.1002/minf.201400052.

(9) Fitzner, M.; Wuitschik, G.; Koller, R. J.; Adam, J.-M.; Schindler, T.; Reymond, J.-L.

What can reaction databases teach us about Buchwald-Hartwig cross-couplings? Chem-

ical science 2020, 11, 13085–13093, Journal Article The authors declare no competing

financial interest.

12

https://doi.org/10.26434/chemrxiv-2023-g84vw ORCID: https://orcid.org/0000-0001-6761-7142 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g84vw
https://orcid.org/0000-0001-6761-7142
https://creativecommons.org/licenses/by/4.0/


(10) Gao, W.; Raghavan, P.; Coley, C. W. Autonomous platforms for data-driven organic

synthesis. Nature Communications 2022, 13, 1075.

(11) Grzybowski, B. A.; Bishop, K. J. M.; Kowalczyk, B.; Wilmer, C. E. The ’wired’ universe

of organic chemistry. Nature chemistry 2009, 1, 31–36, Journal Article.

(12) Jacob, P.-M.; Lapkin, A. Statistics of the network of organic chemistry. Reaction Chem-

istry Engineering 2018, 3, 102–118.

(13) Grzybowski, B. A.; Badowski, T.; Molga, K.; Szymkuć, S. Network search algorithms
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