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Abstract:  
Spurred by advances in AI-driven modeling and experimental methods, molecular 

dynamics simulations are now acting as a platform to integrate these different approaches. 
This combination of methods is especially useful to understand β-barrel proteins from the 
molecular level, e.g., identifying specific interactions with lipids or small molecules, up to 
assemblies comprised of hundreds of proteins and thousands of lipids. In this minireview, 
we will discuss recent advances, mainly from the last five years, in modeling β-barrel 
proteins and their assemblies. These approaches require specific kinds of modeling and 
potentially different model resolutions that we will first describe in Section 1. We will then 
focus on different aspects of β-barrel protein modeling: how different types of molecules 
can diffuse through β-barrel proteins (Section 2); how lipids can interact with these 
proteins (Section 3); how β-barrel proteins can interact with membrane partners (Section 
4) or periplasmic extensions and partners (Section 5) to form large assemblies. 
 
Keywords:  

AA, all-atom; AI artificial intelligence; CG, coarse grained; CIP, ciprofloxacin; LOS, 
lipooligosaccharide; LPS, lipopolysaccharide; Lpt, lipopolysaccharide transport;  MD, 
molecular dynamics; ML, machine learning;  MSM, Markov state model; NMR, nuclear 
magnetic resonance; OMP, outer membrane protein;  OM, outer membrane; PG, 
peptidoglycan; PNA, peptide nucleic acid; TASS, temperature accelerated sliced 
sampling. 
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Introduction: 
β-barrel proteins are made of anti-parallel ß-sheets arranged in a cylindrical shape 

with a hydrophilic interior and a hydrophobic exterior. This confers interesting biophysical 
properties to this class of proteins, which can be modelled using molecular dynamics (MD) 
simulations at different scales, enabling us to capture and explain in particular the 
capability to span biological membranes and interact with protein partners, while allowing 
the diffusion of small molecules through their interior. Several decades of progresses have 
culminated in modeling in silico the complexity of biological membranes [1–3]. This is 
especially true for modeling bacterial membranes [4–7]. In this minireview, we will 
showcase recent advances, mainly obtained during the last five years, in modeling β-
barrel proteins from understanding local interactions with small molecules, surrounding 
lipids, and protein partners to studying large protein assemblies. We will also show how 
methodological advances have helped to model β-barrel proteins and their interactions 
with intra-cellular partners extending the canonical 2D scope (i.e. in the membrane plane) 
to a fully 3D landscape.  
 
 

1- Methodological development to model β-barrel proteins 
Before presenting applications, it is important to first describe the methodological 

context. Methodological advances were driven by improvements  both in computational 
power [8–10] and in experimental techniques capable of determining the structure of very 
large membrane protein assemblies [11–14]. It is currently possible to model both very 
large assemblies composed of millions of particles and very specific interactions between 
few atoms. To switch from one type of modeling to the other, it is often required to adapt 
the resolution of the model to the given size of the system [15].  Two widely used 
resolutions in MD simulations are atomistic (or all-atom, AA) and coarse-grained (CG). 
The former allows modeling all the atoms and molecular interactions while the latter 
groups several atoms (typically 4 heavy atoms – see Notes 1 and 2) into one bead, which 
considerably reduces the complexity of the model [16]. One of the main force fields (see 
Notes 1 and 2) used in CG-MD simulations is the so-called MARTINI force field [17]. In 
comparison with CG-MD simulations, the diversity of the force fields for atomistic 
simulations is more pronounced [18] and researchers need to assess which force field is 
the most suited to their needs [19–22]. It is possible to switch from one type of resolution 
to the other using dedicated tools [23–25]. It is worth mentioning that artificial intelligence 
(AI) approaches are now clearly impacting the development of force fields for MD 
simulations [26, 27]. For interested readers who want to get started using MD simulations 
for their research, accessible tutorials and guides are available to model lipid membranes 
[28] and membrane proteins [29, 30].  
    Before performing the actual MD simulations, it is first necessary to build the 
simulation system, with all its molecular components (proteins, lipids, ligands, ions, and 
water molecules) properly placed. There now exist dedicated tools streamlining the 
process of model creation. One example is CHARMM-GUI Membrane Builder, a 
webserver allowing the creation of a complete membrane system both in AA and in CG 
resolution [31–34].  Notably, CHARMM-GUI Membrane Builder supports various 
lipopolysaccharide (LPS) models from many different Gram-negative bacteria [32]. To 
model membrane systems with the MARTINI CG force field, one can also use a Python 
script called insane (an acronym for INSert membrANE) to model either lipid membranes 
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or membrane protein assemblies [35]. MemProtMD is a database containing thousands 
of membrane proteins, extracted from the Protein Data Bank (PDB), embedded into a 
model membrane [36]. Simulations and the subsequent analysis results can be 
conveniently accessed through a web browser, enabling users to explore interactive 3D 
visualizations of the assembled bilayer, as well as 2D visualizations depicting lipid contact 
data and membrane protein topology. To specifically model outer membrane proteins 
(OMP) from Gram negative bacteria, Baltoumas and colleagues have developed an 
automated pipeline to insert OMP models into LPS-containing membranes [37].   

Once the calculations for MD simulations are completed using one of the various 
simulation codes [38], one needs to visualize and analyze the results. This task has 
become increasingly difficult due to the size and the complexity of the models. Specific 
tools and methodologies are now available to render the visualization and the analysis of 
membrane systems within reach of the majority of researchers [28, 39]. 

 
2- Through the pore: from channels to nanopores  

In bacteria and mitochondria, β-barrel proteins situated in the OM constitute the 
passage point for numerous molecules. MD simulations at AA resolution allow the study 
of how these molecules can interact with protein loops and diffuse through the pore. 
Hereafter, we present a selection of recently modelled molecules, ranging from few-atom 
molecules (ions and small compounds) to oligonucleotides and peptides (see Figure 1).   

Extensive AA-MD simulations were used in combination with a Markov state model 
(MSM) to explore the dynamics of the L3 internal loop in the E. coli OmpF protein [40]. 
These simulations help to distinguish between open and closed states of OmpF. In this 
latter state, electrophysiology simulations revealed a significant reduction of ionic 
currents. AA-MD simulations were also used to study permeation paths of potassium and 
chloride ions in VDAC channels of S. cerevisiae [41]. The ion permeation properties may 
be influenced by surrounding OM lipids. Using AA-MD simulations Lee et al. have shown 
how the outer core and O-antigens of LPS may sterically occlude the channel entrance 
and decrease the diffusion constants of ions approaching the OccK5 protein (also known 
as OpdH) from P. aeruginosa [42]. MD simulations were also used in combination with 
solid-state NMR to study the permeability of AlkL from P. putida, a minimalistic OMP, for 
hydrophobic molecules such as carvone or octane [43]. In this work, the authors proposed 
a release of hydrophobic compounds in the membrane after a diffusion through 
extracellular loops. Contrary to hydrophilic compounds, here the hydrophobic compounds 
do not seem to traverse the pore. This lateral diffusion model was also proposed for the 
FadL channel of P. putida for the uptake of monoaromatic hydrocarbons (MAH) such as 
benzene or toluene [44].  
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Figure 1: Subset of small molecules and peptides, presented in section 2, interacting with β-barrel proteins 
studied by multiscale molecular dynamics simulations.    
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It is possible to transport even larger hydrophilic compounds like amino acids 
through the pore of a β-barrel protein. Samsudin and Khalid performed steered MD and 
umbrella sampling simulations (see Note 3) to determine the permeation pathway of 
arginine through the OprD channel from P. aeruginosa [45]. MD simulations also 
suggested that the arginine is surrounded by a shell of water molecules during the 
translocation through the pore. The binding of the peptide substrate ARRA to E. coli OmpT 
was recently explored by combining AA-MD simulations and umbrella sampling [46]. The 
translocation of even larger peptides like protamine, a 32 amino-acid-long polycationic 
peptide, through the CymA channel from K. oxytoca has been studied [47]. MD 
simulations were also used to study the interaction of E. coli BtuB with a peptide nucleic 
acid (PNA) covalently linked to vitamin B12 [48]. PNA is a synthetic DNA analog with a 
peptide-like backbone that can strongly bind to nucleic acids essential for bacterial growth. 
This can thus constitute an interesting antibacterial strategy. The transport of vitamin B12 
alone through E. coli BtuB was also explored by combining steered MD, umbrella 
sampling, and gaussian force-simulated annealing [49].  

Due to their crucial role in the uptake of nutrients, β-barrel proteins are the target 
of numerous molecules that can potentially block this uptake and thereby act as 
antimicrobial drug candidates. MD simulations can give valuable insight in understanding 
how these molecules affect the structures and functions of β-barrel proteins. 
Fluoroquinolones are a class of broad-spectrum antibiotics. The permeation of 
ciprofloxacin (CIP), through OmpF was studied using a temperature accelerated sliced 
sampling (TASS) approach to characterize the two potential permeation pathways, the 
orientation of CIP inside the pore as well as its interactions with water molecules [50, 51]. 
The effect of divalent ions on the diffusivity of norfloxacin was investigated by AA-MD 
simulations and tested across several OM channels: OmpF and OmpC from E. coli and 
Omp35 and Omp36 from E. aerogenes [52]. Enrofloxacin and CIP permeation pathways 
across OmpC were also explored [53, 54]. Fosfomycin is a small phosphonic acid 
antibiotic discovered in Streptomyces strains. The fosfomycin permeability across the E. 
coli OmpF was investigated by AA-MD simulations including free energy and applied field 
techniques [55]. Fosfomycin translocation was also studied by AA-MD simulations for 
OrpO and OrpP from P. aeruginosa [56]. Recently an extensive set of AA-MD simulations 
and free energy calculations were performed to better understand how the introduction of 
a primary amine might enhance the permeation of antibiotics through OM channels [57]. 
The amine may enhance permeation by allowing the molecule to align its dipole with the 
electric field inside the porin’s lumen, and it also establishes favorable electrostatic 
interactions with charged residues as the molecule moves through the pore. While these 
studies were all performed using AA-MD simulations, the recent developments of the 
MARTINI force field [17], especially aimed towards modeling small molecules [58], may 
allow researchers to use this less expensive approach to study antibiotic interactions with 
β-barrel proteins. Recent work explored how to use CG-MD simulations to investigate the 
interaction of the P. aeruginosa OccD3 porin with different carbapenems [59]. 
 β-barrel proteins can be also engineered [60] and redesigned to serve as synthetic 
nanopores [61], to create e.g. biomimetic membranes for water filtration [62], or to 
sequence nucleic acids [63] or proteins [64, 65]. MD simulations can help to better 
characterize these new molecules and their interactions with different solutes [61]. Two 
main classes of β-barrel proteins were studied using multiscale MD simulations: bacterial 
channels and pore-forming toxins (this is elaborated in Section 4). In the first category, 
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one can cite the investigation of cyclodextrin and ions transport through the ∆CymA 
nanopore, a mutant of the protein without the fifteen N-terminal residues, from K. oxytoca 
[66, 67]. MD simulations were also used to probe the stability of de novo design of a b-
hairpin and its nanopore assembly in a membrane. This assembly formed a pore allowing 
the detection of a single polypeptide chain [68]. In the second category, the biophysical 
properties of several nanopores based on pore-forming toxin were investigated. The a-
hemolysin was studied to assess its ability to recognize homopeptides [69] and its ionic 
transport and selectivity [70, 71]. For the aerolysin nanopore, translocation of different 
poly-arginine peptides [72], nucleotide discrimination [73], as well as detection of 
posttranslational modifications [74] were investigated. Ion conductance of both bacterial 
channels and pore-forming toxin nanopores was investigated using steric exclusion model 
and AA-MD simulations [75]. For interested readers, a recent perspective has 
summarized advances in understanding key issues in molecular simulations of antibiotic 
translocation and in the development of nanopore sensors [76]. 
 

3- β-barrel proteins in their local environment 
Lipids play fundamental roles in the folding [77, 78] and stability [79] of β-barrel 

proteins, and in anchoring OMPs within the OM. MD simulations are uniquely capable of 
identifying and assessing specific protein-lipid interactions [80] as well as allowing the 
characterization of lipid binding sites [81].  

Modeling of bacterial OM lipids has recently seen much progress, both at the 
atomistic scale [82, 83] and at CG resolution [33, 84, 85], enabling a wealth of new studies, 
in particular on OMP-LPS interactions (see Figure 2-a), which are challenging to study 
experimentally. AA-MD simulations have identified the role of calcium in specific OMP-
LPS interactions, and identified binding sites on E. cloacae OmpE36 that were in good 
agreement with those observed in crystal structures [86]. LPS has further been shown to 
have a unique interaction fingerprint with a diverse array of E. coli OMPs (OmpA, FhuA, 
OmpF, EstA, BtuB, and OmpX) [87]. Beyond the structural level, recent studies have 
shown that LPS plays a role in regulating OMP function. As an example, AA-MD 
simulations have shown that interactions of LPS with OprH affect the structure and 
dynamics of its extracellular loops [88].  As mentioned previously, AA-MD simulations of 
Occk5 demonstrated that LPS modulates ion transport through this OMP, by hindering ion 
accessibility to the pore [42].  MD simulations in tandem with NMR spectroscopy showed 
that LPS interactions with the Ail protein change pathogen membrane properties, which 
confers enhanced resistance to the plague-causing bacterium Yersinia pestis [89]. MD 
simulations have also been used to uncover how LPS interactions with OmpD drive 
effective immunization with this OMP from S. Typhimurium but not S. Enteritidis, despite 
only the single amino acid difference between the OmpD homologues [90]. The 
interactions of surface-exposed loops with of lipooligosaccharide (LOS) in a protein 
sequence dependent manner may alter the binding of antibodies to β-barrel proteins as 
seen for PorB from N. meningitidis [91]. MD simulations coupled with advanced mass 
spectrometry techniques have proposed how LPS is inserted by the LPS transport protein 
LptDE from K. pneumoniae  [92] and helped to describe the mechanisms of deacylation 
of LPS by the β-barrel protein, LpxR from S. typhimurium [93]. AA and CG MD simulations 
illustrated how thermodynamics drives membrane association of numerous lipoproteins, 
including the E. coli BAM complex, LptE, and CusC  [94]. 

https://doi.org/10.26434/chemrxiv-2023-mfc5k ORCID: https://orcid.org/0000-0003-4524-4773 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-mfc5k
https://orcid.org/0000-0003-4524-4773
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 2: Illustrative examples of systems presented in sections 3-5. a- AA modeling of the OmpF protein 
surrounded by LPS [150]. b-  AA model of OM and periplasmic space containing proteins and osmolytes 
[129]. c- CG modeling of an OMP island measuring 150 nm2 along the membrane plane [113]. OMPs are 
shown in red and are embedded in an outer membrane model containing 100% RaLPS in the outer leaflet, 
and a 90:5:5 ratio of POPE/POPG/cardiolipin in the inner leaflet. The RaLPS core region is shown in cyan, 
RaLPS phosphates are shown in yellow, and RaLPS acyl chains are shown in white. POPE, POPG, and 
cardiolipin lipids are shown in green, white, and pink respectively. d- AA modeling of the AcrAB-TolC 
multidrug efflux pump spanning the whole cell envelope [130] from the inner membrane (IM), through the 
peptidoglycan (PG) and up to the outer membrane (OM).   

 
Multiscale simulations have also been used to show how other lipids affect β-barrel 

protein function.  For instance, phosphatidylethanolamine of the mitochondrial OM 
influences the anion selectivity of VDAC, and thereby regulates its function [95], while CG-
MD simulations highlighted how ceramide lipids can bind to VDAC2 to trigger 
mitochondrial apoptosis, thus acting as a tumor suppressing lipid [96]. Integrating MD and 
Brownian dynamics and electric field simulations with biochemical data has resulted in the 
ability to model protein complexes, such as the complex formed by the mitochondrial 
VDAC1 and hexokinase-II, which would have been extremely challenging to achieve 
solely by experimental means, due to the interaction of hexokinase-II with the membrane 
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[97]. Phosphatidylglycerol binding to OmpF is sensitive to pH, and MD simulations 
mimicking different pH levels uncovered lipid interaction patterns suggesting that the lipid 
interactions attenuate E. coli OmpF channel closure [98].  

 
4- Biogenesis and large assemblies of β-barrel proteins 

β-barrel proteins are composed of a cylindrical arrangement of antiparallel β-sheets 
with hydrophobic residues tending to face the barrel’s exterior. This structure allows 
specific features and constraints in term of protein folding, biogenesis, and interactions 
with membrane protein partners. Recently, de novo design was applied to engineer 
custom β-barrel proteins [99]. Multiscale (AA and CG) MD simulations are especially 
useful to gain insights into the biogenesis of these proteins, their folding, and the formation 
of larger membrane protein assemblies.  

The biogenesis of OMPs in Gram-negative bacteria is mediated by the β-barrel 
assembly machinery (BAM) composed of five components called Bam A to E [100, 101]. 
The opening of BamA releasing newly folded β-barrel proteins into the OM, called lateral 
gating, was studied by AA-MD simulations [102].  Membrane thinning and distortion near 
this BamA’s lateral gate were observed in simulations [103, 104]. The conformational 
plasticity of BAM was explored by Cryo-EM and MD simulations [105]. This study 
demonstrated that plasticity of the barrel domain of BamA is essential for the function of 
BAM. The BamA plasticity was also studied in the context of its interaction with its 
substrate EspP by Cryo-EM [106] and MD simulations [107] allowing a better 
characterization of the sequential conformational dynamics of BAM during the late stages 
of OMP assembly. Due to its central role of OMP biogenesis, BamA has been a target for 
the development of novel antibiotics. One of them, dynobactin A, identified by 
computational approaches, specifically targets lateral gating [108]. This BamA-antibiotic 
interaction was recently investigated by MD simulations [109]. Recently, a combination of 
cryo-electron microscopy, X-ray crystallography, native mass spectroscopy, in vivo 
experiments and MD simulations was also used to decipher the association of Darobactin 
with BamA [110]. 

After the incorporation into the OM, β-barrel proteins can form large molecular 
assemblies with restricted diffusion, so-called islands [111]. CG-MD simulations 
suggested that island formation was driven by protein-protein interactions  [111, 112]. Due 
to limitations of this CG modeling to depict realistic diffusion of LPS, these initial CG-MD 
simulations were performed without LPS molecules. Recently, however, these models 
were further extended to take into account the role of LPS in mediating protein-protein 
interactions [113] (see Figure 2-c). These large supramolecular assemblies of membrane 
proteins and lipids may affect the rigidity of the membrane as seen by CG-MD simulations 
[114]. Assemblies of other types of proteins, such as pore forming proteins [115, 116], 
may even drastically affect the membrane organization. While individual pore forming 
proteins are soluble, the assembly of multiple copies of these proteins at the membrane 
may lead to the formation of a large β-barrel pore. Assembly, interactions with lipids, and 
membrane pore formation by pore forming proteins were investigated using both AA- and 
CG-MD simulations. Pneumolysin prepore interaction with lipids as well as intermediate 
steps leading to a complete pore were investigated by multiscale simulations [117]. Using 
a similar multiscale approach, the creation of a pore by gasdermin proteins has also been 
characterized [118–120].  
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5- Beyond the membrane plane  
β-barrel proteins can also extend outside the membrane plane both via intra- and 

extracellular domains and interactions with protein partners [121, 122]. Here we will focus 
our attention on periplasmic domains. These may modulate β-barrel proteins functions, 
help transferring substrates, or favor interactions with other layers of the bacterial 
envelope such as the PG. The BamA subunit contains a large periplasmic domain 
composed of five globular polypeptide transport-associated (POTRA) motifs linked in 
tandem and numbered 1–5 from the N-terminal end [123]. Atomistic MD simulations have 
proposed a model of POTRA interacting with the phospholipids via hydrogen-bonds but 
also via hydrophobic interactions engaged with tryptophan residues [124]. These 
interactions may favor different POTRA structural configurations by drifting at the 
membrane surface. Some of these conformations may be compatible with binding to 
BamB and BamD. CryoEM and AA-MD simulations of the BAM machinery (containing 
BamA+POTRA, and BamB-E) in a reconstituted nanodiscs revealed membrane 
deformations [104]. The lipopolysaccharide transport (Lpt) machinery transfers LPS 
molecules into the OM [125]. The release of LPS molecules may also occur via a lateral 
gating mechanism as seen for BamA (see Section 4). AA-MD simulations have suggested 
that the periplasmic domain of LptDE is highly dynamic [126] and that the LPS substrate 
help the opening of the lateral gate [92, 126].  
  The Khalid lab has used AA-MD simulations to study how the dimerization of 
OmpA protein through its cytoplasmic C-terminal domain may maintain a distance 
between the PG layer and the OM hence limiting the PG distortion [127]. AA-MD 
simulations also suggested that OmpA interactions with the PG layer are facilitated by 
tripartite contacts between Braun’s lipoprotein, the PG layer, and the OmpA C-terminal 
domain [128]. The crowded OM and periplasm were also modeled using AA-MD 
simulations to study the travel of the antibiotic polymyxin B1 through the periplasm [129]. 
These simulations revealed that polymyxin B1 forms both transient and long-lived 
interactions with proteins, osmolytes, lipids of the OM, and the cell wall, and is rarely 
uncomplexed when in the periplasm (see Figure 2-b).  

Recent works have also started modeling how trans-envelope processes, such as 
mechanical stress sensing and metabolite efflux, are coordinated across the three 
envelope layers of Gram negative bacterial cells, i.e. IM PG OM [130, 131] (see Figure 
2-d). 
 
Conclusion 
 With their β-barrel core, β-barrel proteins may be seen as less flexible than other 
types of proteins [132, 133]. However, based on recent advances coupling multiscale MD 
simulations with other experimental approaches, it is now clear that their intrinsic flexibility 
coupled to their diffusion in the membrane and their interactions with membrane peripheral 
partners play an important role in their function.  
 Here, we have given an overview of recent advances in MD simulations to decipher 
β-barrel protein dynamics at different scales: from the flexibility of extracellular loops and 
their interactions with lipids and small molecules to large assemblies of proteins and 
diffusion of molecules in different regions of the cell envelope. We are now moving 
towards very large and complex models to create digital twins of the bacterial cell 
envelope to develop new antibiotics or membranes composed of nanopores to design 
new biotechnological tools.  
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 With recent advances in AI and experiments integrated to MD simulations, it will 
become increasingly feasible to model very complex biophysical mechanisms involving β-
barrel proteins and shed new lights onto their function. 
 
 
Notes 
1.    The term “force field” refers to a set of potential energy terms, and specific 
implementation details, including parameter values, to calculate intra- and inter-molecular 
forces between atoms or particles (for CG systems – see below) [38]. Different force fields 
exist that are optimized for specific types of molecules [134–136]. Thus it is important to 
use the most appropriate force field for a given molecular system.    
 
2.  The goal of coarse grained (CG) mapping is to provide accelerated calculations by 
reducing the effective number of particles and using longer time scales, compared to AA 
resolution. In general, CG mapping requires a bottom-up strategy [137] by grouping 
several atoms together into a single bead and by assigning their overall chemical features 
(polarity, hydrophobicity, charge) and center of mass to that bead. For the MARTINI force 
field, the CG mapping originally consisted of grouping tipically four heavy atoms (i.e. not 
including the hydrogen atoms) into one bead. With the development of the third version of 
MARTINI [138], it is now possible to select smaller bead types representing two to three 
atoms. Numerous tools exist that streamline CG mapping, such as PyCGTOOL [139], 
Auto-MARTINI [140], Swarm-CG [141, 142], or MAD [143]. Recently, the use of machine 
learning (ML) has helped to automatically design new CG models for proteins [27, 144, 
145].  
 
3. The two approaches known as steered molecular dynamics (SMD) simulations and 
umbrella sampling (US) belong to the enhanced sampling methods category that allow 
sampling of larger portions of the configuration space of complex systems in a given 
amount of simulation time [146]. Steered molecular dynamics emulates atomic force 
microscopy experiments, by introducing a fictitious 3D particle moving at constant velocity, 
and connected to a molecule by a harmonic spring. It is often used to study 
folding/unfolding of proteins or ligand binding [147, 148]. Umbrella sampling allows 
exploration of one specific path by biasing the simulation along one (or more-dimensional) 
reaction coordinate to calculate energy barriers between different states [149].  
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