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ABSTRACT

Photocatalytic nitrogen fixation has the potential to provide a greener route for producing nitrogen-
based fertilizers under ambient conditions. Computational screening is a promising route to discover
new materials for the nitrogen fixation process, but requires identifying "descriptors" that can be
efficiently computed. In this work, we argue that selectivity toward the adsorption of molecular
nitrogen and oxygen can act as a key descriptor. A catalyst that can selectively adsorb nitrogen
and resist poisoning of oxygen and other molecules present in air has the potential to facilitate the
nitrogen fixation process under ambient conditions. We provide a framework for active site screening
based on multifidelity density functional theory (DFT) calculations for a range of metal oxides,
(oxy)borides, and (oxy)phosphides. The screening methodology consists of initial low-fidelity fixed
geometry calculations and a second screening in which more expensive geometry optimizations were
performed. The approach identifies promising active sites on several TiO2 polymorph surfaces and a
VBO4 surface, and the full nitrogen reduction pathway is studied with the BEEF-vdW and HSE06
functionals on two active sites. The findings suggest that other TiO2 polymorphs may play a role in
photocatalytic nitrogen fixation, and that VBO4 may be an interesting material for further studies.

Keywords ammonia synthesis · in silico screening · titanium dioxide

1 Introduction

The production of ammonia (NH3) from atmospheric nitrogen on an industrial scale is accomplished through the
Haber-Bosch process1, which has been called the most important invention of the 20th century2. As the main ingredient
in nitrogen-based fertilizers, ammonia has directly helped increase food production, enabling the global population
to nearly quadruple in the early 20th century2. Despite its impressive positive impact on fertilizer production, the
Haber-Bosch process is energy and emissions intensive3–5. Emitting 340 million tonnes of CO2 equivalent per year and
consuming 2.5 exajoule energy per year, ammonia synthesis has become one of the most carbon and energy intensive
processes in the chemical industry5–8. The cost of energy consumption is mainly controlled by the production of
molecular hydrogen and nitrogen feedstocks5,9,10. Molecular hydrogen is produced via methane steam reforming
that contributes to 340 million tonnes of CO2 equivalent per year11. Molecular nitrogen is obtained from cryogenic
distillation, which requires 6.9 kJ per mol N2

12. Furthermore, the highly centralized ammonia production process
leads to high distribution costs and inequitable distribution of fertilizers throughout the world, especially in developing
areas13–15. These downsides of the Haber-Bosch process push the need to develop alternative catalytic systems that
enable sustainable and economical fixed nitrogen production in a distributed manner.

Photo(electro)catalytic nitrogen fixation has the potential to produce ammonia under ambient conditions16–24. Pho-
tocatalytic ammonia synthesis has shown particular promise as a low capital and highly distributed alternative5, but
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current efficiencies indicate that significant additional research is required. Current progress on photocatalytic nitrogen
fixation has provided valuable insights regarding the mechanism at a molecular scale. One of the first computational
studies of photocatalytic nitrogen fixation was performed by Comer and Medford7. This theoretical study explored both
dissociative and associative nitrogen reduction on rutile (110) TiO2 active sites, including pristine, oxygen vacancies
and iron substitution sites using density functional theory (DFT). However, the results indicated a thermodynamic
barrier that is higher than the conduction band edge of rutile TiO2. The interaction between surface hydroxyl groups
and nitrogen radicals was also explored in a theoretical study by Xie et al25. It was suggested that the hydroxyl groups
produced by surface hydroxylation of water26–30 on titania surfaces could drive the nitrogen reduction process, although
no direct experimental evidence was provided. An alternative hypothesis proposed by Comer et al. in a study based
on ambient pressure X-ray photoelectron spectroscopy and DFT calculations31, where a carbon substitution site on
rutile TiO2 and demonstrated a thermodynamically feasible carbon-assisted nitrogen reduction reaction (NRR) pathway.
Building on this observation, Huang et al.32 used electron paramagnetic resonance, infrared spectroscopy, and DFT to
show that radical species derived from methanol also interact with nitrogen, providing a more detailed perspective on
carbon-assisted nitrogen dissociation.

Despite current progress in probing the mechanistic pathway of photo(electro)catalytic NRR, these mechanisms typically
assume a pure nitrogen feedstock, and issues of competitive adsorption in the presence of molecular oxygen have not
been explored. To achieve the ultimate goal of NRR under ambient conditions, it will be critical to reduce the need for
air separation5. As mentioned above, the cost of high-purity nitrogen from cryogenic distillation in the Haber-Bosch
process accounts for approximately 25% of the total capital cost of the entire plant33. In the Haber-Bosch process,
high purity nitrogen is required to preserve the catalyst and prevent ammonia oxidation34. Furthermore, industrial
catalysts used in the process can be poisoned by oxygen or hydroxyl groups below industrial conditions (700 K, 100
bar)35,36. Catalyst poisoning severely hinders the rate of production, which is even more pronounced when water vapor
is present35. Similar phenomena were observed in photocatalytic and electrocatalytic nitrogen fixation experiments.
The photocatalytic activity of rutile TiO2 in air has been reported to be reduced by 65% compared to a high-purity
nitrogen environment37. Under ambient conditions, oxygen can react with photogenerated electrons and holes and
turn into reactive oxygen species, decreasing the conversion efficiency31,38,39. Remarkably, a recent study from the
electrocatalysis community showed that the Faradaic efficiency and stability of a lithium-mediated NRR can actually
be improved by adding small amounts of oxygen, which limits excessive lithium reduction by decreasing the lithium
diffusion rate40. This is a promising result, but the small amounts of oxygen that enhance the NRR will likely be hard
to control and will require further experiments and scale-up studies to assess feasibility. If a nitrogen fixation process is
not resistant to contamination from oxygen and other common components under ambient conditions, investment in air
separation will be unavoidable and will likely become the dominant capital cost5. Hence, discovering photocatalysts
that are directly compatible with air or low-purity nitrogen is an important step towards enabling the photocatalytic NRR
process under ambient conditions5,6. Furthermore, finding materials that can selectively adsorb N2 over O2 presents a
fundamental chemistry challenge, given the relatively high reactivity of O2 compared to N2. These materials may prove
interesting as case studies in fundamental chemistry or find applications in other fields such as air separations.

In this work, we propose that the selectivity of adsorbing nitrogen over oxygen is an interesting descriptor of the
performance for photocatalytic ammonia synthesis under ambient conditions. Adsorption of N2 is a necessary condition
for any N2 conversion process, regardless of the mechanism, so selective adsorption of N2 is a necessary (but not
sufficient) condition for aerobic photocatalytic synthesis of ammonia. Employing DFT enables surface adsorption
energy calculations, which can be used to predict adsorption selectivity. We quantify the selectivity by comparing the
nitrogen and oxygen adsorption free energy on the active site. The inert nature of nitrogen means that many surfaces
will not bind it strongly, and if a surface can stably adsorb a nitrogen molecule, it is likely that it can adsorb oxygen even
more strongly. Furthermore, this descriptor also provides an implicit approximation of the (meta)stability of a given
active site, since extremely unstable active sites are likely to react more strongly with oxygen than nitrogen, particularly
for oxides. Therefore, the descriptor will identify metastable active sites with an abnormally strong reactivity toward
N2, which we hypothesize will correlate with low barriers for conversion of N2 to ammonia.

Naturally, a thorough description of the photocatalytic performance of a material would require detailed analyses of
surface stability, high coverage thermodynamics and reaction barriers, and microkinetic modeling41,42. However, these
analyses require a significant amount of resources, which makes them impractical to scale to large search spaces of
materials43. Thus, it is often most efficient to utilize relatively simple binding energy descriptors to narrow down the
catalyst search space and follow up with more detailed studies of the most promising materials and surfaces.

In this study, we started with 516 bulk structures of metal oxides, borides, and phosphides from the Materials Project44

as candidate photocatalysts. Then, low Miller index (i.e. 100, 101, 001 and 111) surfaces were generated from
each bulk structure. Adsorbate-slab configurations were generated for every active site on a surface. To screen these
candidate active sites, we used a two-stage screening strategy. In the first round of low-fidelity screening, we calculate
nitrogen and oxygen adsorption energies while holding slab atoms in fixed positions. We then used the binding energy
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descriptors from low-fidelity calculations to guide the selection of calculations that allowed for surface relaxation
and reconstruction. We refer to these subsequent calculations as the "second round screening" throughout this paper.
Allowing surface relaxations on metal compounds led to substantial surface reconstructions and significantly weaker N2

adsorption energies in most cases, suggesting that the approach of using a fixed slab is more likely to produce false
positives than false negatives, and indicating the importance of considering relaxations in future screening studies.
Strong and selective N2 adsorption was observed in three active sites even after the second round of screening.

Remarkably,two of the three identified sites occur on uncommon polymorphs (space group P3121 and C2/m) of TiO2,
which is one of the most commonly reported catalysts for photocatalytic ammonia synthesis. The other site is on VBO4

(space group P21/c), a material that has not yet been tested for photocatalytic ammonia synthesis. In our detailed
investigation, we focused on the (001) surface of a meta-stable trigonal TiO2 P3121 polymorph45, which demonstrated
the highest selectivity for N2 among the TiO2 sites, and the (100) surface of VBO4. Using both BEEF-vdW and HSE06
functionals, we performed an extensive thermodynamic analysis of the NRR pathway on these two active sites. The
results confirmed that these surfaces show strong and selective reactivity toward N2 and have thermodynamic barriers
similar to the (110) rutile TiO2 surface, indicating that other polymorphs of TiO2 may play a role in photocatalytic
ammonia synthesis, and that VBO4 may be a promising material for further experimental investigations.

2 Methods

2.1 DFT calculations

In this work, we used both generalized gradient approximation (GGA) and hybrid level calculations to simulate the
electronic structure of relevant slab systems. It has been widely suggested that the catalytic properties of TiO2 can be
appropriately treated with GGA functionals,46–48, while hybrid methods have shown promising results when describing
the detailed electronic and band structure of various polymorphs and nanoparticles of TiO2

49,50. Thus, we utilize the
BEEF-vdW51 GGA functional for all high-throughput screening and geometry optimizations, and we utilize single-point
HSE06 calculations to evaluate the energetics of the most promising active site.

All GGA functional calculations and geometry optimizations were performed in the Quantum ESPRESSO software
package52,53 together with the Atomic Simulation Package (ASE)54. Uncertainty estimation due to the GGA approx-
imation for each calculation was obtained from the ensemble of values produced by BEEF-vdW. The plane-wave
cutoff energy was set at 600 eV for all GGA calculations, and a Monkhorst-Pack k-point grid spacing of 4 × 4 × 1
was used for all slab models55. The Standard Solid State Pseudopotentials (SSSP) efficiency set56 was chosen to treat
core-electron interactions. Spin polarization and dipole corrections57 were applied to all GGA slab calculations. All
geometries were optimized using the BFGS line search method with a maximum total force of 0.05 eV/Å. Gas phase
calculations were performed at the Γ point in a unit cell with 6 Å vacuum with all other settings identical to slab
calculations. Geometries of adsorbed surfaces were determined by trying adsorbates at multiple orientations and taking
the lowest-energy configuration.

We used the Heyd-Scuseria-Ernzerhof functional (HSE06)58 to more accurately probe the energetics of the complete
associative ammonia synthesis mechanism on the most promising trigonal TiO2 (001) and VBO4 (100) active sites.
HSE06 calculations were performed in the Simulation Package for Ab-initio Real-space Calculations (SPARC) software
package59–67. Soft and transferable pseudopotentials from multi-objective optimization (SPMS)62 were used as the
potential corresponding to the nucleus and core electrons. The Monkhorst-Pack k-point grid of 4× 4× 1 and a mesh
spacing of 0.1 Å, corresponding to an approximate plane-wave cutoff of 1800 eV68,69, were used. For slab calculations,
periodic and Dirichlet boundary conditions were prescribed in the plane and perpendicular to the plane of the slab,
respectively. For gas phase molecules calculations, Dirichlet boundary conditions are employed in all three coordinate
directions. The convergence tolerance on the normalized residual of electron density of the SCF iteration was set at 10-6.
The convergence tolerance on the Fock energy was set at 10-4 Hartree. The maximum number of Fock iterations was
20. The hybrid range screening parameter was set at 0.106 Å

−1 58,70. The parameters of all DFT simulations with both
codes and exchange-correlation functionals are selected such that the numerical error is expected to be below 0.025 eV.

We also computed the free energies of adsorption for the relevant adsorbed intermediate states on the specific trigonal
TiO2 (001) and VBO4 (100) surfaces. Since DFT calculates energies at 0 K in a perfect vacuum, we must add zero-point
energy (ZPE) and thermal corrections. To include ZPE and thermal contributions, vibrational frequency calculations and
statistical mechanics corrections were performed using the BEEF-vdW level fo theory and the ASE thermochemistry
implementations. The ground state electronic energies (Eele) calculated by DFT were converted to free energies (Go

i )
using the following equation:

Go
i = Eele + EZPE +∆H − T∆S (1)
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where EZPE is the zero point energy, ∆H and T∆S are thermal contributions. Gas phase molecules were treated as
ideal gases and adsorbates were treated with the harmonic approximation with a low-frequency cutoff of 30 cm−1 71.
Relative free energies were computed with respect to reference states using the formula72:

Gi = Go
i −

∑
j

njµj (2)

where Gi is the free energy of species i, Go
i is the total energy computed from DFT and free energy corrections, ni

is the number of atoms j in species i, and µj is the reference chemical potential. The reference for nitrogen was N2

(µN = 1
2G

o
N2

), the reference for hydrogen was H2 (µN = 1
2G

o
H2

), and the reference for oxygen was O2 (µO = 1
2G

o
O2

).
All thermodynamics were evaluated at 300 K. Gas partial pressures were set to approximate atmospheric conditions
(0.8 atm N2, 0.2 atm O2). No gas-phase electronic corrections are applied.

2.2 Material Screening

We used the Materials Project44 online database to obtain a pool of bulk metal oxide structures. For this study, we
chose transition metal oxide, (oxy)boride, and (oxy)phosphide species containing Sc, Ru, V, Sn, Nb, Zr, Mo, and Ti
(nonmagnetic metals that are commonly active for nitrogen chemistry in heterogeneous and homogeneous catalysis73–84).
We included borides and phosphides due to the fact that boron is known to interact strongly with nitrogen85,86, and
phosphorus is a nutrient that is commonly used in fertilizers and thus phosphides may have practical advantages for
fertilizer production. The targeted band gap of the material was set at 0.1 eV to 5.0 eV to identify materials that may
be effective photocatalysts. The range was intentionally chosen to be very wide due to well-known errors of GGA
functionals in estimating band gaps. There were 516 bulk structures from Materials Project with unique space groups
that met these conditions at the time queried, and a full list of bulk structures is given in the SI. From the pool of bulk
structures, we generated surfaces from the low Miller index facets (i.e. 100, 101, 001 and 111) of each bulk structure.
This results in 2554 low-index surfaces. Then we searched for top, bridge and hollow active sites for N2 binding on
these surfaces by applying methods from Materials Project. The O2 adsorbed geometries were obtained by substituting
N atoms with O from the preliminary N2 adsorbed geometries. This resulted in 905 active sites that eventually reached
SCF convergence in the initial geometry optimization for both N2 and O2.

During the initial screening, we performed low-fidelity calculations on all candidate surfaces. For each candidate, all
slab layers were fixed in initial positions to reduce computational cost, and geometry optimizations were performed
with standard DFT settings to allow the N2 and O2 adsorbate to relax on each surface. The binding energies of both
adsorbates on the surface were obtained. We expect that the adsorption energies from this approach will generally
overestimate the adsorption strength, since the surface atoms are in a more reactive nonrelaxed state. Thus, only
materials that exhibit more stable N2 binding energies than O2 were selected to enter the second round of screening.

In the second round of screening, we performed high-fidelity calculations guided by results from the initial screening.
For each adsorption site identified as promising from the initial screening, the top half of the surface layers were
unconstrained and additional vacuum space of 6 Å was added between each layer. Then, geometry optimization was
performed via DFT to obtain the lowest N2 and O2 adsorption energies. Similarly to the initial screening, surfaces that
exhibit more selective adsorption toward N2 than O2 remain in the candidate materials pool. Then, each candidate
surface was visualized and examined carefully. Any surfaces with major reconstruction, adsorbate dissociation, or
desorption were re-optimized with additional constraints (e.g. to prevent bond dissociation) or removed from the
screening pool if no stable configurations exhibiting stronger N2 than O2 binding could be identified.

In the third round of screening, only three surfaces remained, two of which were based on TiO2 bulk structures. Given
the compositional similarity, we selected a single TiO2 structure (with the strongest N2 selectivity) and the VBO4

structure for a final detailed study. We evaluated the feasibility of NRR on the surface by calculating the energetics of
each intermediate adsorbed state involved in the NRR reaction at both GGA and hybrid levels of theory. Every NRR
intermediate adsorbate from the associative NRR mechanism7 was placed on the surface constructed from the bulk
geometry and corresponding Miller indices. Geometry optimization was performed on each intermediate state using the
BEEF-vdW functional, also yielding the corresponding binding energies. Vibrational frequencies and free energies are
also computed using the BEEF-vdW functional. Single-point hybrid functional calculations using the HSE06 functional
were performed on lowest energy intermediate state as described in Section 2.1.

All structures from each level of screening, along with scripts used for analysis and DFT simulations, are provided
in the Supplementary Information (SI). The SI containing additional data, code, and materials associated with this
study can be found in the GitHub repository https://github.com/nianhant/metal_oxides_screening_for_
photocatalytic_nitrogen_fixation. The repository includes all screening data, and instruction for querying bulk
structures and generating surfaces for the screening.
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3 Results and Discussion

3.1 Material Screening Results

A comparison of N2 and O2 obtained for initial screening by low-fidelity calculations is shown in the parity plot in Fig.
1. In this initial screening, there are 6606 surface relaxations in total (total compute time of ∼500K CPU-hr), including
bare and adsorbed surfaces and systems that were ultimately deemed unphysical. In this parity plot, the shaded area
indicates the desired range of relative binding. Candidates within this region exhibit more favorable binding towards N2

(EN2 ≤ EO2). These are candidate surfaces that would enter the second round of screening. These candidate metal
compounds include metal species V, Mo, Sn, Zr, Sc, and Ti, and a full list is provided in the SI. The bar plot in Fig. 2
shows a comparison of the abundance of various elements before and after the first round of screening. The results
indicate that there is a significant imbalance in the metal types present before and after the screening, and no strong
correlation between the proportion of a given metal before and after the screening. This indicates that the screening
process is identifying chemical interactions that are distinct to different metal types, rather than simply down-selecting
regardless of the metals present. The bar graph also reveals that there are far more (oxy)phosphides than (oxy)borides,
and despite a large number of (oxy)borides and (oxy)phosphides in the initial screening, relatively few exhibited strong
N2 adsorption.

Figure 1: Parity plot of candidate surfaces’ N2 vs O2 DFT binding energies. Scatter points below the parity line
indicate more favorable N2 binding. The shaded area indicates the desired range of relative binding energies, where
EN2 ≤ EO2 .

Figure 2: Number of metal oxide candidate species per element. Blue bars indicate the number of total candidates
before the first round of screening, and orange bars indicate the number of qualified candidates after the first round of
screening.
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In the second round of screening, we performed high-fidelity geometry optimizations by allowing the top half of the
slab to relax from initial positions. A total of 265 candidate adsorption sites passed the first screening round with
stronger reactivity towards N2 than O2. A total of 804 DFT geometry optimizations were performed (∼80K CPU-hr)
on these candidate sites. The relative binding energies after the second screening round are shown in Fig. 3. In many
cases, significant surface reconstruction was observed during relaxation. In other cases, the surface N2 desorbed from
the active site, resulting in unstable adsorption energies. These findings are consistent with chemical intuition, since the
constraints on the slab led to highly reactive surface atoms that are more prone to react with N2, but after relaxation
these surface atoms reorganize to bind with each other in the (sub)surface, making them less reactive. The criteria
for the second round of screening are EN2

≤ EO2
, EN2

≤ -0.35 eV and EO2
≤ 0 eV. The first criterion requires N2

to be adsorbed onto the active site via chemisorption, with a binding energy (EN2) of equal to or less than -0.35 eV.
This threshold indicates a strong interaction between N2 and the catalyst surface. We also implemented a criterion that
ensures that the energy of O2 adsorption (EO2) is less than or equal to 0 eV, since positive O2 adsorption energies are
due to computational artifacts (e.g. a less stable spin state in the adsorbed O2 calculation). None of the surfaces that
were omitted due to this criterion exhibited strong N2 adsorption, so a more detailed analysis of these structures was not
carried out.

Fig. 4 shows a comparison of N2 and O2 binding energies between the first and second rounds of screening. The parity
line represents equal binding energies for the first and second rounds of screening. Approximately 44% O2 binding
energies lie below the parity line, indicating that a considerable portion of candidate active sites exhibit stronger O2

adsorption when the top layers of atoms are allowed to relax. On the other hand, a weaker adsorption strength towards
N2 was observed in 84% of the candidate active sites after the top layers were relaxed. This is likely due to the fact
that many of the screened materials are oxides, so it is more likely that the surface reconstructions accommodate the
chemisorption of O2. The findings indicate that the screening strategy is unlikely to yield false negatives, since N2

adsorption almost always becomes weaker, but that the lack of surface reconstruction in the first round leads to a large
number of false positives.

After the second round of screening, the majority of candidates were deemed unsuitable as they did not exhibit strong
and selective N2 adsorption over O2 adsorption. However, we identified three active sites that demonstrated the
desired range of relative binding energies, as illustrated in Fig. 3. One oxyboride, VO4B, passed the screening, but
all other (oxy)borides and (oxy)phosphides were eliminated from consideration. The VO4B surface displays the
strongest N2 adsorption (-0.85 eV), but the O2 adsorption is nearly equal (-0.80 eV). A total of 29 (oxy)borides and
457 (oxy)phosphides were evaluated in the initial screening, with all (oxy)phosphides eliminated and one (oxy)boride
identified. In comparison, 425 oxides were included in the initial screening round and two promising active sites were
identified. Given the small numbers involved, it is difficult to draw strong conclusions about trends between these
classes of materials, but the results suggest that (oxy)borides may be a promising class of materials for further study.
Interestingly, all oxide surfaces that passed the second screening round have a bulk stoichiometry of TiO2, although
with differing bulk polymorphs and surface facets. Furthermore, the TiO2 R3m (111) active site did not pass the
second round screening criteria, but also showed strong and comparable N2 (-0.47 eV) and O2 (-0.50 eV) adsorption
strengths. The fact that the three oxide surfaces with the strongest adsorption and selectivity towards N2 all have TiO2

stoichiometry suggests that there may be underlying electronic structure factors that favor interaction between N2 and
TiO2, but a more detailed analysis is beyond the scope of this work.

The VBO4 material identified has a modest band gap of 2.07 eV and is metastable with a formation energy 0.089
eV/atom above the hull87, suggesting that this material is an interesting candidate for photocatalytic nitrogen conversion
and suitable for a more detailed analysis. Instead of studying all TiO2 sites in more depth, we selected the trigonal
titanium oxide (001) active site that exhibits the strongest and most favorable adsorption of N2 (-0.7 eV) over O2 (-0.45
eV). The surface is based on the P3121 space group of TiO2, a material with a formation energy of 0.049 eV/atom
above the most stable polymorph of TiO2 and with a band gap of 3.421 eV. Given the metastable nature of the material,
and the band gap that is similar to rutile and anatase titania, we conclude that it is also suitable for a more detailed study.
The fact that only a few active sites pass the second round of screening reflects the difficult nature of identifying oxides
that adsorb N2 more selectively than O2, suggesting that this is a “needle in a haystack” problem since only 3 out of
905 total active sites screened passed the second round of screening.

Given the comparison of binding energies between the first and second screening rounds, the substantial computational
power needed for each round, and the rarity of successfully identifying candidate materials, this material screening
scheme using fixed geometry calculations is likely impractical for the discovery of additional materials and active sites.
Although computing time can be saved when all atoms are fixed, this approach neglects the overly reactive nature of
some candidate surfaces, suggesting that geometry optimization is an important part of the screening pipeline. On
the other hand, full geometry optimizations of all surfaces using DFT is even more computationally impractical. This
suggests that novel screening approaches based on machine-learning or fast physics-based models will likely be required
to identify additional active sites with strong and selective N2 adsorption. However, as shown in the subsequent section,
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the surfaces that were identified indeed exhibit strong adsorption of other intermediates and reasonable thermodynamic
barriers for nitrogen reduction, suggesting that N2 vs. O2 selectivity is an effective descriptor for identifying surfaces that
are promising for nitrogen reduction. Expanding the materials search space to include more hypothetical (oxy)borides,
mixed metal oxides, or additional classes of materials that are known to selectively adsorb N2, such as metal-organic
frameworks88–90, may also be a promising strategy for future investigations.

Figure 3: Parity plot of candidate surfaces’ N2 vs O2 binding energies from the second round screening. Materials
that are deemed promising after the second round screening are colored, others are grey. The shaded area indicates the
desired range of relative binding energies, where EN2 ≤ EO2 , EN2 ≤ -0.35 eV and EO2 ≤ 0 eV.

Figure 4: Parity plot of candidate surfaces’ N2 vs O2 binding energies, before and after the second round screening.

3.2 Nitrogen Reduction Pathway on VBO4 (100) and Trigonal TiO2 (001)

In the third round of screening we begin by confirming the selective adsorption of N2 at the HSE06 level of theory for
both VBO4 (100) and trigonal TiO2 (001), since HSE06 is known to be more accurate for the treatment of gas-phase
O2. The findings are confirmed for both surfaces, with VBO4 (100) having an N2 adsorption free energy of -0.82 eV
and O2 adsorption energy of -0.40 eV, and trigonal TiO2 (001) having N2 and O2 adsorption energies of -0.62 eV and
-0.36 eV respectively. Next, we compute adsorption energies for all intermediate states in the associative NRR pathway,
i.e. NxHy∗ at both the GGA (BEEF-vdW ) and hybrid (HSE06 ) levels of theory as discussed in the methods section.
The free energy diagrams can be seen in Fig. 5a, along with the free energy pathway of the associative mechanism on
the proposed oxygen vacancy active site of (110) rutile TiO2 for reference7. The trends in adsorption energies between
the two functionals are largely consistent, although HSE06 predicts generally stronger adsorption for all species and
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(a) (b) (c)

Figure 5: Free energy diagrams for the associative NRR pathway on the trigonal TiO2 (001) active site (a), the VBO4

(100) active site (b), and the O-br vacancy site of rutile TiO2 (110) (c), both calculated using the BEEF-vdW and HSE06
functionals.

surfaces, and a much stronger adsorption of N2H for trigonal TiO2. Furthermore, HSE06 significantly overestimates
the total reaction energy for NH3 formation, while BEEF-vdW under-estimates it by a smaller margin. This indicates
that although HSE06 includes Fock exchange and is expected to improve the treatment of the electronic structure of
VBO4 and TiO2, the computed adsorption energies are not necessarily more accurate than BEEF-vdW since bonding
between nitrogen and hydrogen in the gas phase has significant errors. A detailed comparison of the level of theory is
beyond the scope of this work, but the fact that both follow a similar trend provides strong evidence that the qualitative
conclusions are reliable.

The free energy diagram for VBO4 is generally similar to that of the oxygen vacancy on rutile (110), with a significant
thermodynamic barrier for N2H formation, followed by exergonic steps to form strongly bound NH3. The N2H2

intermediate is more stable on VBO4 than on rutile, and the height of the thermodynamic barrier of ∼1.4 eV between
gas-phase N2 and N2H is slightly lower or higher than the barrier on rutile (110), depending on the level of theory. The
thermodynamic barrier for N2H formation is significantly higher than the ∼0.75 eV threshold for processes that are
active at room temperature19, but the selective adsorption of N2 and strong interaction with other intermediates suggest
that other mechanisms that stabilize or avoid N2 H may allow ammonia production on this surface. A full exploration
of possible mechanisms is beyond the scope of this work, so we tentatively conclude that although the VBO4 surface
exhibits strong N2 activity, it is not expected to be active for ammonia synthesis.

The free energy diagram for trigonal TiO2 (001) exhibits a significant thermodynamic barriers for the conversion of
N2H to N2H2 (1.7 or 2.3 eV with BEEF-vdW or HSE06 ), as well as strongly-adsorbed NH3. The high thermodynamic
barrier for N2H hydrogenation on the trigonal TiO2 (001) active site is due to very stable adsorption of the *N2H
intermediate state, which is in contrast to the VBO4 and rutile (110) surfaces, where formation of N2H is one of the
most endergonic steps. Indeed, N2H formation has been identified as the likely rate-limiting step for numerous NRR
catalysts in the literature18,91,92, indicating that the trigonal TiO2 (001) exhibits notable stabilization of N2H. The fact
that N2H formation is exergonic compared to the initial state suggests that under reaction conditions the N2H coverage
will likely increase, effectively increasing the free energy of the state due to configurational entropy and thus lowering
the barrier for N2H formation and providing a possible route for experimental validation via spectroscopic studies. In
the limit that adsorbed N2H is in equilibrium with the initial state (causing the free energies to be identical by definition)
the barrier to N2H2 formation would decrease to ∼1 eV, bringing it close to the ∼0.75 eV limit needed for an active
NRR catalyst19.

The barrier that arises due to strong NH3 adsorption exists to varying degrees for most surfaces, although NH3 adsorption
is stronger on the trigonal TiO2 (001) surface than the VBO4 or rutile (110) surfaces. This barrier is less important
for NRR, since the free energy of gas or solution phase NH3 will decrease at low concentrations. In the absence
of significant desorption barriers, ammonia produced will equilibrate with the final state, effectively lowering this
thermochemical barrier but limiting the conversion that is possible. In general, analysis of the free energy pathway
suggests that the active site of trigonal TiO2 has comparable or lower thermochemical barriers to the oxygen vacancy of
rutile (110) for the conversion of N2 to adsorbed NH3, although more detailed investigations are needed to establish the
most appropriate exchange correlation functional, explore alternative pathways such as carbon-assisted N2 fixation20,
and identify kinetic barriers. Furthermore, it is possible that the trigonal TiO2 (001) site exists in polycrystalline TiO2

and works synergistically with other sites by stabilizing N2H.

Given that nearly all the surfaces that were identified from the second round of screening (Fig. 3) are TiO2, it is relevant
to consider the stability of these surfaces to determine how likely they are to occur in polycrystalline TiO2 or how
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Figure 6: Surface formation energy of various candidate promising active sites vs the adsorption energy of N2 evaluated,
relative to pristine rutile (110) and rutile (110) with O vacancies.

difficult they would be to synthesize. Fig. 6 compares the N2 adsorption and formation energies of all TiO2 surfaces
qualified in the second round of screening. The surface formation energies are computed relative to pristine rutile TiO2,
one of the most stable forms of titania. While trigonal TiO2 displays the strongest N2 adsorption, and the most selective
N2 adsorption over O2, it also displays the highest surface energy. This suggests it may be difficult to synthesize and is
unlikely to form spontaneously, but the fact that O2 does not strongly adsorb or spontaneously dissociate suggests that
the site will likely be meta-stable if it does form.

The trigonal TiO2 polymorph has not been experimentally reported to our knowledge and has not been specifically
tested for photocatalytic nitrogen fixation. However, other titania polymorphs and nanoparticles have been reported
to photocatalytically produce ammonia in a number of studies5,7,37,93–97, including under aerobic conditions98. The
performance has also been reported to vary significantly depending on the polymorph and even supplier of the catalyst37,
and there are numerous inconsistent results in the literature. The presence or influence of trigonal TiO2 active sites has
never been suggested, but the meta-stable nature of the polymorph suggests that it may appear in polycrystalline titania,
or that some defect sites may have a similar structure. The presence and role of these non-standard TiO2 polymorphs
and surface structures may be relevant for photocatalytic ammonia synthesis, especially under aerobic conditions. In
addition, the finding suggests that intentional synthesis of the trigonal polymorph may be a promising strategy to
increasing photocatalytic ammonia performance, especially if the abundance of the 001 facet99–103 can be enhanced
through capping agents or other techniques.

4 Conclusion and Future Outlook

The high-throughput DFT screening used in this work successfully identified a novel titanium dioxide active site that
exhibits selective adsorption of N2 over O2 as well as promising energetics for the NRR reaction, and a VBO4 active
site that selectively adsorbs N2 over O2, but exhibits a high thermodynamic barrier for N2H formation. The screening
process revealed that surface relaxation and reconstruction can substantially affect reactivity and selectivity toward N2,
suggesting that future screening strategies should take reconstruction into account. However, the computational cost of
the DFT-only screening process will likely be prohibitive for relaxations, suggesting that machine-learned force fields
or other techniques should be explored. However, the findings also reveal that evaluating N2 vs. O2 selectivity is a
promising route to substantially reduce the search space and identify active sites that are metastable and exhibit strong
reactivity toward N2.

The results of the screening process revealed several interesting active sites with TiO2 and VBO4 stoichiometry. Among
them, the VBO4 surface demonstrated the strongest N2 adsorption and the trigonal TiO2 (001) surface exhibited the
strongest selectivity towards N2. A detailed investigation of both surfaces at the GGA (BEEF-vdW) and hybrid (HSE06)
levels of theory was conducted. The results show that the selective adsorption of N2 over O2 holds at both levels of
theory, and that N2H formation is limiting on the VBO4 surface, while the trigonal TiO2 surface exhibits a particularly
strong reactivity toward N2H. Free energy diagrams indicate that the trigonal TiO2 surface exhibits a somewhat large
thermochemical barriers for conversion of N2H to N2H2 (1.7 or 2.3 eV for BEEF-vdW or HSE06), but these barriers
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occur due to the strongly exergonic adsorption of N2H, and may become surmountable at high N2H coverages. These
findings suggest that trigonal TiO2 may exhibit increased photocatalytic NRR performance, or that defect sites with
topologies similar to the active sites of trigonal TiO2 (001) may contribute to photocatalytic ammonia synthesis in
polycrystalline titania catalysts, especially under aerobic conditions. The findings also suggest that (oxy)borides may be
a promising material class for future screening studies and that the surfaces of VBO4 and trigonal TiO2 surfaces may
also be of interest for other applications, such as air separation. Furthermore, the fundamental chemistry underlying
the selective adsorption of inert N2 over reactive O2 on oxide surfaces is not well understood and requires further
investigation. In general, the screening process was successful in identifying an interesting trigonal TiO2 active site
structure, and revealed that surfaces capable of selectively adsorbing N2 over O2 are relatively rare, at least among the
compounds included in this screening process.
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