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Abstract: Machine learning force fields (MLFFs) have emerged as a new method for 

molecular simulation that combines the accuracy of ab initio approaches with the 

computational efficiency of classical force fields. However, the performance of MLFFs in 

describing the solvation configuration has yet to be explored. Here, we compare and contrast 

the performance of ANI-1ccx MLFF, the GAFF classical force field, and the ab initio 

molecular dynamics (AIMD) in simulating nine organic solutes in acetonitrile solvents. We 

examine the solvent-solute interaction described by these methods from four aspects: the solute 

conformation landscape, the solvation shell structure, the structure and dynamics of the O-

H⋯N hydrogen bond, and the dynamics of the first solvation shell. For solute conformation 

description, ANI-1ccx and GAFF both yield minima that agree with density functional theory 

optimization for rigid solutes. However, their results diverge for flexible solutes. For solvation 
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shell structure description, ANI-1ccx agrees better with AIMD on the location of the first 

solvent shell than GAFF does. For the description of the O-H⋯N hydrogen bond formed 

between acetonitrile and the solute, ANI-1ccx generates stronger hydrogen bonds with shorter 

bond lengths, wider bond angles, and longer hydrogen bond lifetimes, agreeing better with 

DFT-optimized structure. ANI-1ccx also describes a more frequent exchange of acetonitrile 

molecules in and out of the first solvation shell than GAFF. Our study demonstrates the 

potential benefits of utilizing MLFF for simulating solution-phase dynamics and generating 

solvation configurations. 

I. INTRODUCTION 

The study of the interactions between solute and solvents is fundamental to understanding 

phenomena such as solvation, molecular recognition, and biological function.1 For a solvated 

molecule, determining its solvation configuration is the prerequisite for quantum chemistry 

calculations to predict its properties and activities, such as redox potential,2 pKa,3 

fluorescence,4 and catalytic efficiency.5 Various computational approaches have been 

developed to determine molecules’ solvation configurations based on molecular dynamics 

(MD) simulations,6, 7 or the direction generation of microsolvated conformations from global 

optimization or stochastic algorithms.8-13 Among them, MD simulations are still widely used 

due to their flexibility in simulating solvation under different temperatures, pressures, and 

concentrations.14, 15  

MD simulations of solvated molecules can be classified based on the theoretical methods 

for evaluating the forces (gradients of the system’s potential energy function), including 
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classical force fields (FFs), ab initio methods, and machine learning force fields (MLFF). 

Classical FFs have the highest computational efficiency, but their accuracy strongly depends 

on the simulation parameters for the potential energy functions, which are typically generated 

from experimental data of nuclear magnetic resonance (NMR) spectroscopy, X-ray 

crystallography, or quantum mechanical calculations. Tuning classical FFs’ parameters can be 

highly time-consuming and system-dependent. In contrast, ab initio methods do not rely on 

predefined simulation parameters and can be directly applied to simulate various chemical 

systems with high accuracy. However, the high computational costs of ab initio methods limit 

the MD simulation’s system size and time scale.  

In recent years, machine learning force fields (MLFFs) have emerged as a new alternative 

method to evaluate forces in MD simulations.16-22 Trained on massive quantum mechanical 

calculation data, MLFFs aim at bridging the accuracy of ab initio methods and the efficiency 

of classical force fields. Unlike the classical force fields that use parameterization to describe 

atomic interactions, MLFFs employ an artificial intelligence (AI) framework to learn the 

energy of atoms based on their specific chemical environment.20 MLFFs enhance the 

adaptability across diverse molecules and improve transferability. In recent years, MLFFs have 

been widely used in the simulations of gas-phase molecules,23-25 condensed-phase materials26, 

27 and liquid solutions.28, 29 Specifically, TorchANI is one of the most widely used MLFF 

packages for molecular systems using the PyTorch framework.30 TorchANI facilitates the 

training/inference of ANI (or ANAKIN-ME: Accurate NeurAl networK engINe for Molecular 

Energies) deep learning models for the computation of potential energy surfaces and various 
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molecular physical properties.30, 31 Currently, the model zoo of TorchANI has three ANI 

models including ANI-1x,32 ANI-1ccx,33 and ANI-2x.34 Various studies have demonstrated the 

superior accuracy of ANI models compared to classical force fields, including the comparison 

of peptide conformations generated by ANI-2x vs. two classical FFs by Rosenberger et al.,35 

and the benchmark of torsional potential energy surface of biaryl drug fragments by. Lahey et 

al.36 However, few studies37 have investigated the performance of ANI models in simulating 

the solvation of small organic molecules in organic solvents.  

In this work, we aim to understand the differences between classical FFs and MLFFs in 

simulating solvation by performing MD simulations of nine organic solutes in acetonitrile 

solvents with classical FFs and MLFFs. We focus on the acetonitrile-solvated systems because 

acetonitrile is among the most commonly used organic solvents in chemical studies due to its 

unique physical properties such as high dielectric constant and high dipole moment.38 For our 

classical FF simulations, General Amber Force Field (GAFF)39, 40 is chosen to describe the 

solutes because of its auto-parameterization41 using semi-empirical quantum chemistry 

methods and the resulting broad applications in diverse organic compounds.41-44 The six-site 

acetonitrile model by Gravuleda et al. is used for the solvent because of its good agreement 

with experimental data in density, heat of vaporization and isothermal compressibility.45 Our 

MLFF simulations are all performed with the ANI-1ccx model consisting of an ensemble of 8 

different networks, which were developed utilizing transfer learning techniques on the ANI-

1ccx dataset.46, 47 The aimed accuracy of ANI-1ccx corresponds to the CCSD(T)/CBS (coupled 

cluster considering single, double, and perturbative triple excitations utilizing a complete basis 
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set) level of theory. 33, 48, 49 The trained potentials of ANI-1ccx implicitly include dispersion 

interaction, which might give a better description of solute-solvent interactions.35 

To compare the conformations sampled from GAFF and ANI-1ccx, we measured the 

closeness between the solute and solvent through minimum distance distribution function 

(MDDF) analysis. We also assessed the dynamic residence of the hydrogen bond formed 

between phenol and acetonitrile. Further, we examined the dynamic behaviors of solvents 

within the primary solvent shell surrounding the solutes, drawing from the trajectories of both 

ANI-1ccx and GAFF. The GAFF and ANI-1ccx solvation configurations were also compared 

with ab initio MD simulations or ab initio geometry optimization results. Our findings 

underscore the promise of MLFFs to generate solvation configurations with a better agreement 

with ab initio methods than the classical FFs. 37 

II. COMPUTATIONAL METHODS 

 

Scheme 1. Nine neutral solutes composed of C, H, N, O from ROP313 data. The bold numbers 

below the structures are the serial numbers in ROP313 data including 9: 1,2-Dimethyl-4-

ethylbenzene, 23: Indene, 51: Phenol, 58: 1,3-Dimethoxybenzene, 71: 4-Phenylmorpholine, 

73: Diphenylamine, 121: 2-Methylstyrene, 158: Benzonitrile and 171: Maleic anhydride. 
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Classical MD simulation. Nine neutral solutes composed of C, H, N, O from ROP313 data50 

(see Scheme 1) were selected for MD simulations. All classical MD simulations were carried 

out using Amber GAFF force field40 in AmberTool22.39 As Scheme 2 shows, each solute was 

solvated in a 24 Å × 24 Å × 24 Å cubic periodic box of acetonitrile packed by Autosolvate.43 

The atomic charge was determined by AMI-BCC method.51 The parameters for the acetonitrile 

solvent model were adopted from the six-site model detailed in reference.45 The cutoff of non-

bonded interactions was set to 8 Å. Bonds involving hydrogens were constrained by the 

SHAKE algorithm.52 In the stage of energy minimization, a steepest descent algorithm was 

employed within 2000 steps. In the following heating stage, the temperature of the system was 

increased from 0 to 300 K, using Langevin thermostat with a collision frequency of 2.0 ps-1. A 

total of 10,000 steps were performed with a time step of 2 fs under the NVT ensemble. After 

heating, the system was equilibrated under the NPT ensemble, running for 300000 steps with 

a time step of 2 fs at 300 K. The Berendsen method was used for pressure coupling at 1 atm. 

Starting from the last frame of the equilibrated NPT stage as the initial condition, an 80-ps 

production run was performed under the NVT ensemble at 300 K using Langevin dynamics 

with a collision frequency of 2.0 ps-1. The coordinates and energy values were saved every 10 

steps.  
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MLFF simulations All the initial coordinates and velocities were obtained from the last 

frames of equilibrated NPT classic simulations as described in the previous subsection. For 

each solute, an 80-ps NVT MD simulation was performed using the TorchANI.ANI-1ccx 

module30 in the Atomic Simulation Environment (ASE).53 No restraints were applied to bonds 

involving hydrogens. The time step was 0.2 fs. Temperature control was achieved using the 

Langevin thermostat, with a friction coefficient set at 0.02, as implemented in ASE.  

Ab initio MD simulations Ab-into molecular dynamics simulations (AIMD) were carried 

out using the GPU-accelerated quantum chemistry package, TeraChem.54 For each acetonitrile-

 

Scheme 2. The flowchart of MD and QM simulations in this work. The geometries generated 

in the colored blocks (green: AIMD, gray: DFT geometry optimization, orange: MD with ANI-

1 ccx, and blue: MD with GAFF) are used for comparison. 

solute.xyz file +

Autosolvate 24 Å × 24 Å × 24 Å cubic periodic box

acetonitrile.pdb

1000 steps NVT-heating 0 K to 300 K  GAFF

600-ps NPT at 300 K GAFF

equilibrated geometry velocities

ANI-1ccx
80 ps NVT

GAFF
80 ps NVT

1500 step
NVT-heating

AIMD
0-300 K

RHF/3-21G/D3 

8 Å-thickness
microsolvated

cluster

4 Å-thickness
microsolvated

cluster

geometry
optimization

B3LYP-D3
6-31G*

5.1 ps 300 K
NVT AIMD

RHF-D3/3-21G 

https://doi.org/10.26434/chemrxiv-2023-sd4b2-v2 ORCID: https://orcid.org/0000-0002-1936-8732 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-sd4b2-v2
https://orcid.org/0000-0002-1936-8732
https://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

solvated system, the microsolvated cluster, including the solute and the solvent molecules 

within 8 Å of the solute, was extracted from the final frame of the classical FF NPT simulation 

to be used as the initial structure for AIMD simulations. AIMD simulations were performed at 

Restricted Hartree-Fock (RHF)/3-21G level of theory with Grimme’s D3 dispersion 

correction55 and a time step of 0.3 fs. It is worth noting that despite being a small basis set, the 

3-21 G basis set was shown to capture most of the important chemistry of organic molecules 

in AIMD in previous studies.56-58 Our choice of RHF-D3/3-21G allows us to save 

computational resources while obtaining a modest description of these microsolvated clusters 

with more than 327 atoms. The AIMD simulations were initialized at 10 K, gradually 

increasing to a target temperature of 300 K through a Langevin thermostat within 1500 steps. 

The spherical boundary condition with a force constant of 10.0 kcal/(mol×Å2) and target 

density of 0.78 g/mL matching the density of acetonitrile was set surrounding the cluster 

throughout the simulation to prevent the solvents from evaporating into the vacuum. After the 

heating process, a 5.1-ps NVT AIMD was conducted for each solute-acetonitrile system at 300 

K through a Langevin thermostat.  

Quantum mechanics (QM) geometry optimization To obtain a more accurate assessment 

of solute-solvent interactions using quantum mechanics, we performed geometry optimization 

of microsolvated clusters at the B3LYP59/6-31G* level of theory with D3 dispersion 

correction,55 hereby denoted as B3LYP-D3, by using TeraChem. Our choice of B3LYP-D3/6-

31G* is based on its good performance in predicting solution-phase properties in our previous 

explicit solvent calculations,2 and that dispersion correction is needed for the solute-solvent 
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interaction. We did not use higher-level methods (e.g., CCSD(T)) because of the large size of 

the microsolvated clusters (more than 91 atoms) and the unavailability of analytical energy 

gradients for the low-scaling alternative DLPNO-CCSD(T).60 From the final frame of the 

classical FF NPT simulations, the microsolvated cluster, including the solute and any solvent 

within a 4-Å-thick shell around the solute, was extracted for QM geometry optimization. The 

Graphics Processing Unit(GPU) accelerated61, 62 conductor-like polarizable continuum model 

(CPCM)63-66 with a dielectric constant of 35.7 was used to account for the electrostatic 

interactions between the microsolvated cluster and the solvents outside. 

Principal Component Analysis of solutes We use principal component analysis (PCA) to 

investigate the high-dimensional movements of solutes in NVT simulations. Each production 

MD trajectory of the solute obtained from GAFF and ANI-1ccx was saved every 20 fs and 

resulted in 4000 frames. After removing the rotational and translational motions, the Cartesian 

coordinates of the solutes were expressed as 4000 × 3N matrix  

𝐀 =	 %

𝑥!,! 𝑦!,! 𝑧!,! ⋯ 𝑥!,# 𝑦!,# 𝑧!,#
𝑥$,! 𝑦$,! 𝑧$,! ⋯ 𝑥$,# 𝑦$,# 𝑧$,#
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑥%&&&,! 𝑦%&&&,! 𝑧%&&&,! ⋯ 𝑥%&&&,# 𝑦%&&&,# 𝑧%&&&,#

+ (1) 

	𝐀'()*!++, =

⎣
⎢
⎢
⎢
⎡ 𝐱!

'()-

𝐱$'()
-

⋮
𝐱%&&&'() -⎦

⎥
⎥
⎥
⎤
, 	𝐀.'// =	

⎣
⎢
⎢
⎢
⎡𝐱!
.'//-

𝐱$.'//
-

⋮
𝐱%&&&.'//-⎦

⎥
⎥
⎥
⎤
	 (2) 

Here, N is the total number of atoms in each solute. The row vectors in 𝐀 represent the 3-

dimentional coordinates of atoms from the solutes at a specific frame during simulations. 

𝐀.'// and 𝐀'()*!++, denote the Cartesian coordinates matrices of NVT simulations from 

GAFF and ANI-1ccx, respectively. We use 𝐱0.'//
-  and 𝐱0'()

-  to represent the i-th row 
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vectors in 𝐀.'//  and 	𝐀'()*!++, , respectively. Then, we define the covariance matrix of 

𝐀.'//	, 𝐂.'// ∈ ℝ1#×	1(, as the following. 

𝐂.'// = 	cov(𝐀.'//) (3) 

By performing eigen decomposition of 𝐂.'//, we obtain 

𝐂4566 	𝐘 = 𝐘𝚲	
𝐘 = A	𝐲!.'//, 𝐲!.'//, ⋯ , 𝐲!.'//C	
𝚲 = diag(λ!.'//, λ$.'//, … , λ1(.'//) (4) 

Here, {𝜆0.'//} are the eigen values ordered by the magnitude from large to small, and the 

column vectors {𝐲!.'//} are the corresponding eigenvectors. We then project the cartesian 

coordinates of the solute in the i-th frame of the GAFF simulation to �⃗�!.'// and �⃗�$.'// to 

represent the solute conformation in the PCA space: 

PCA10.'// = 𝐱0.'//
-𝐲!.'//，PCA20.'// =	𝐱0.'//

-𝐲$.'// (5) 

To get a side-to-side comparison between the GAFF and ANI-1ccx conformation, we also 

project the ANI-1ccx conformations to the same set of PCA vectors: 

PCA10'()*!++, = 𝐱0'()*!++,
-𝐲!.'//，PCA20'()*!++, =	𝐱0'()*!++,

-𝐲$.'// (6) 

Analysis of Hydrogen Bonds Given that there are few references specifying the criteria for 

intermolecular hydrogen bonding between phenol and acetonitrile in an explicit solvent 

environment, we have adopted the criteria for intermolecular hydrogen bonds (O-H⋯O) in 

water-water interatcions67 to determine the existence of hydrogen bonds between phenol and 

acetonitrile solvent in molecular dynamics simulations: 

𝑅(H⋯N) ≤ 2.45	Å, 

𝑅(N − O) ≤ 3.50	Å, 

𝜃(O − H⋯N) ≥ 150°. 
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Here, 𝑅	is the distance of the atom-atom pair between the acetonitrile solvent and the phenol 

(Scheme 3). N denotes the nitrogen in the acetonitrile. H and O denote the hydrogen and 

oxygen atom in the hydroxyl group of phenol. The angle 𝜃(O − H⋯N)  represents the 

oxygen-hydrogen-nitrogen angle between the hydrogen donor and acceptor.  

The autocorrelation function has been widely used to describe the dynamic behaviors in MD 

simulations including hydrogen-bonding interaction, solvent-solute interactions, etc.6, 68 The 

integration of the autocorrelation function over time yields the lifetime of the interactions. To 

characterize the dynamic hydrogen bonds between the solvent (acetonitrile) and solute (phenol) 

in system 51, we evaluate their relevant lifetime (𝜏78	 ) in both ANI-1ccx’s and GAFF’s 

production trajectories. Here, 𝜏78	of the 𝑖-th acetonitrile-phenol pair engaged in hydrogen 

bonding is defined as68 

𝜏09: = ` 𝐶09:(𝑡)𝑑𝑡
;

&
, (7) 

where the 𝐶09:(𝑡) is the autocorrelation function for the 𝑖-th hydrogen bond, defined as 

𝐶09:(𝑡) =
ℎ09:(𝑡&)ℎ09:(𝑡& + 𝑡)

ℎ09:(𝑡&)$
. (8) 

Here, ℎ09:(𝑡)  indicates whether a hydrogen bond between the phenol solute and the i-th 

solvent is present at time t. If the hydrogen bond is present,	 ℎ780(𝑡) = 1;	 otherwise ℎ780 =

 

Scheme 3. Schematic diagram of a hydrogen bond between the phenol and an acetonitrile  
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0. 𝑡& denotes the first time the hydrogen bond appears. The average lifetime, 𝜏9:iiiii, is defined 

as 

𝜏9:iiiii = 	
∑ 𝜏09:<!"
0=!

𝑛9: (9) 

Where 𝑛9: is the total number of acetonitrile-phenol pairs engaged in hydrogen bonding. 

Analysis of the First-Solvent Shell To estimate the lifetime of solvents in the first-solvent 

shell from GAFF and ANI-1ccx NVT MD simulations, we define the autocorrelation function 

as 

𝐶(𝑡) = m
∑ ℎ0(𝑡&)ℎ0(𝑡& + 𝑡)<
0=!
∑ ℎ0(𝑡&)$<
0=!

n . (10) 

Here, n represents the total number of solvents within the periodic boundary condition (PBC) 

box. The function ℎ0(t) is set to 1 if the solvent is present in the first-solvent shell at time t and 

0 otherwise. We use the minimum distance 𝑑0 	between the solvent and solute as the criteria to 

define the presence in the first-solvent shell if 𝑑0 ≤ cutoff, where the cutoff is estimated from 

the minimum distance distribution functions (MDDF). The brackets in Eq (9) indicate taking 

the average over 40-ps windows throughout an 80-ps NVT simulation. The lifetime of the 

solvent in the 1st shell, 𝜏, is defined as  

𝜏 = ` 𝐶(𝑡)𝑑𝑡
%&	>?

&
. (11) 

III. RESULTS AND DISCUSSIONS 

1. Principal Component Analysis of solutes’ motions 

Different force fields yield varied potential energy surfaces, leading to divergent motion 

patterns for the solute during simulations. The dynamics of solutes in MD simulations occur in 

a high-dimensional space. To assess the differences in these motions and the conformations 
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observed in the NVT simulations, we employ principal component analysis (PCA)—a widely 

used tool for dimensionality reduction to depict the solute motions in both GAFF and ANI-

1ccx NVT simulations. 

 

Figure 1. The plots illustrate the PCA projections along the PCA1 and PCA2 directions for 

nine solutes based on 80 ps of NVT simulations. For every system presented, the left panel 

shows results from GAFF, while the right panel reflects those from ANI-1ccx. Solid black 

circles in the plots represent projections of the DFT-optimized solute structures at B3YLP-

D3/6-31G level within a 4 Å solvent shell. 
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As illustrated in Figure 1, systems with rigid structures, such as system 23, system 51, 

system 158, and system 171, display a single minimum in their PCA plots. These minima from 

the MD simulations also align well with the DFT-optimized outcomes. Conversely, systems 

with more flexible functional groups—like system 9, system 58, system 71, system 73, and 

system 171 exhibit multiple local minima in their PCA plots. For systems 9, 58, and 121, the 

minima produced by GAFF are in closer proximity to the DFT-optimized results. Meanwhile, 

for systems 71 and 73, the minima from both GAFF and ANI-1ccx diverge from the DFT-

optimized findings. Therefore, the motions of solutes under GAFF and ANI-1ccx can differ 

depending on the system. Within limited conventional-simulation time, GAFF and ANI-1ccx 

display different preference of the conformations in systems with flexible solutes. When 

benchmarked against QM geometry optimizations using B3LYP, GAFF tends to show a 

marginally better agreement compared to ANI-1ccx. The observed outcome might be attributed 

to the initial geometry used in the QM optimization, which was derived from the final 

equilibrated structure of GAFF-NPT simulations. 

2. Solvation Shell Structure Comparison 

Obtaining reliable solvation shell structures is a major goal of solution-phase MD 

simulations and the starting point for subsequent quantum chemistry studies. Traditionally, 

solvation shell structures are often characterized by radial distribution functions (RDFs). 

However, RDF is not ideal for depicting the detailed distribution of solvents around non-

spherical solutes. With solutes in various sizes and shapes, the minimum-distance distribution 

function (MDDF) measures the shortest distances between the solute and solvents, and the 
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results can be more easily compared across different systems69, 70 including protein71 and 

chemical compounds.72 Here, to compare the solvation shell structures generated by ANI-1ccx 

and GAFF simulations, we exploited the ComplexMixtures70 software to generate the solute-

acetonitrile MDDFs from the 80 ps of NVT simulation trajectories and compared them against 

the reference AIMD trajectories (5.1 ps long). 

As shown in Figure 2, the location of the first-solvent shell, corresponding to the peak of 

the MDDF curve, varies distinctly among the different simulation methods. The MDDF curves 

from the ANI-1ccx simulations shift slightly to the left compared to those from the GAFF 

simulations, indicating closer proximity between the solvent and the solute in the ANI-1ccx 

simulations. Furthermore, the ANI-1ccx MDDF curves are more aligned with the MDDF 

 

Figure 2. MDDFs of ANI-1ccx GAFF (blue line), MLFF (orange line) and AIMD (green line) 

NVT simulations at 300 K. The up-right number of each panel is the serial number from 

scheme 1. 
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curves derived from AIMD simulations. To quantify the differences in the MDDFs, we 

estimate the first solvation shell’s cutoff distance as the MDDF curve’s first local minimum 

after the first peak. For each solvated system, different simulation methods yield distinct cutoffs 

for the first solvation shell (Table 1). The ANI-1ccx and AIMD estimated cutoff distances 

agree reasonably well, with a difference of less than 0.6 Å for each of the nine systems studied. 

In contrast, the cutoff distances estimated by GAFF simulations are systematically larger than 

the ANI-1ccx results by 0.6-1.0 Å, exceeding 4 Å for all nine systems. 

Table 1. The estimated cutoffs of the first-solvent shells according to the MDDF curves 

system GAFF(Å) 
ANI-

1ccx(Å) 
AIMD(Å) 

9 4.5 3.7 3.3 

23 4.3 3.5 3.5 

51 4.5 3.5 3.3 

58 4.3 3.5 3.1 

71 4.3 3.5 3.3 

73 4.3 3.6 3.9 

121 4.3 3.5 3.7 

158 4.7 4.1 3.5 

171 4.5 3.5 3.7 

3. Hydrogen Bond Dynamics Between Phenol and Acetonitrile in system 51 

Hydrogen bonds between solvents and solutes have been shown to play crucial roles in 

various chemical processes, from causing solvatochromism73-76 to tuning enzyme activity77, 78 

and selectivity.79 Since implicit-solvent models cannot describe hydrogen bonds, 
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computational studies of solutions involving hydrogen bonds often require explicit-solvent 

simulations, whose accuracy is reflected in the hydrogen-bonding structure and dynamics. As 

a polar aprotic solvent, acetonitrile can form O-H⋯N-type hydrogen bonds with many solutes. 

However, few studies have examined the accuracy of MLFF in describing the hydrogen-

bonding interaction between acetonitrile and the solute. We investigate the geometric 

parameters and dynamics of the hydrogen bond formed between the phenol (solute) and 

acetonitrile (solvent) in system 51 to evaluate how GAFF and ANI-1ccx describe hydrogen 

bonding interactions. As shown in Scheme 3, the proton donor is the hydroxyl group of the 

phenol, and the acceptor is the nitrogen atom in acetonitrile.  

 

Figure 3. The histograms of A) R(H⋯N) and B) 𝜃(O-H⋯N) in hydrogen bonds formed 

within 80-ps NVT simulations using ANI-1ccx (orange columns) and GAFF (blue columns) 

The orange and blue solid lines indicate the values with the highest probability in ANI-1ccx 

and GAFF simulations respectively. The black dashed lines denote the R(H⋯N) and 𝜃(O-

H⋯N) in QM calculation at B3LYP-D3 level. 
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The hydrogen bond lengths and angles between the phenol and solvents exhibit different 

distributions in the ANI-1ccx and GAFF force fields (Figure 3). The hydrogen bonds simulated 

by ANI-1ccx have shorter bond lengths and larger angles than those by GAFF. The most 

probable hydrogen bond length simulated by ANI-1ccx (the peak of the orange line) is 1.9 Å, 

shorter than that of GAFF (the peak of the blue line) by 0.1 Å (Figure 3A). Additionally, the 

most probable hydrogen bond angle simulated by ANI-1ccx (the peak of the orange line) is 

larger than that of GAFF by 7.5° (Figure 3B). The hydrogen bond length optimized by B3LYP-

D3/6-31G* is 1.8 Å, shorter than those from both ANI-1ccx and GAFF MD simulations. The 

hydrogen bond angle obtained from B3LYP-D3 geometry optimization is also the largest 

(172.7°). Overall, the hydrogen bonds between the phenol solute and acetonitrile solvents 

predicted by B3LYP-D3 geometry optimization are stronger than those predicted by ANI-1ccx 

and GAFF MD simulations. Compared to the GAFF simulation results, the hydrogen bond 

geometric parameters simulated by ANI-1ccx are closer to the QM results. 
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The hydrogen bond dynamics of phenol-acetonitrile pairs obtained by GAFF and ANI-1ccx 

are summarized in Figure 4 and Table 2. In the GAFF simulations, 11 pairs of phenol-

acetonitrile participate in hydrogen bonding, whereas the ANI-1ccx simulations only feature 3 

such pairs. As depicted in Figure 4, hydrogen bonds in the GAFF simulations both form and 

break more frequently than in the ANI-1ccx simulations. Additionally, the average lifetime, 

𝜏9:iiiii, of hydrogen bonds in GAFF is notably shorter than in ANI-1ccx. When the GAFF force 

field is employed, acetonitrile molecules that bonded with phenol display a higher dissociation 

rate from the hydroxyl groups of the solute. Furthermore, these molecules also show an 

increased tendency to interchange with other acetonitrile molecules in the solvents. 

 

Figure 4. The hydrogen bonds formed by different acetonitrile-phenol pairs in system 51 from 

80-ps NVT (A)GAFF and (B)ANI-1ccx simulations. The HB pair ID on the left indicate the 

phenol-acetonitrile pairs involved in hydrogen bonding, listed in order of their appearance 

from early to late in the simulations. 
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Table 2. The lifetime 𝜏9:	iiiiii(Eq. (9)) of each hydrogen bond formed by different acetonitrile-

phenol pairs in system 51 from 80-ps NVT GAFF (left) and ANI-1ccx simulations. 

GAFF ANI-1ccx 
aHB pair ID 

IDI 
𝜏78 (ps) aHB pair ID 

ID 
𝜏78 (ps) 

1 5.13 1 16.71 
2 11.73 2 0.01 
3 0.01 3 50.64 
4 0.31 𝜏9:iiiii 22.45 

5 12.95   
6 6.57   
7 0.05   
8 1.45   
9 8.39   
10 4.51   
11 3.02   

𝜏9:iiiii 4.92   

a The solvent molecules that participated in hydrogen bonding with the solute were identified 
and numbered sequentially based on the time of their engagement during the simulation, from 
the earliest to the latest occurrence 

In summary, when simulated by ANI-1ccx, hydrogen bonds are more prone to forming at 

shorter distances and larger angles, resulting in more confined and robust hydrogen bonds. Our 

observation of stronger O-H⋯N hydrogen bonds in ANI-1ccx compared to GAFF is similar to 

Babin et al.’s results where the O-H⋯O hydrogen bonds of water solvents in torchani.ANI2x 

were compared with that obtained from SPC80 and TIP3P81 water models.35 

4. The solvents’ dynamics in the first solvent shell 
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Finally, we analyzed the retention of acetonitrile solvents in the first solvation shell for all 

nine solvated systems in this study. In Figure 5, the autocorrelation functions of solvents within 

the first solvation shell simulated by GAFF consistently lie above those by ANI-1ccx. This 

suggests that solvents remain within the first-solvent shell for a longer duration in GAFF 

simulations compared to ANI-1ccx. Furthermore, as shown in Table 3, when integrated over a 

40-ps simulation duration, the lifetime 𝜏 in GAFF exceeds that of ANI-1ccx by 1.6 to 10.5 ps, 

depending on the specific system under consideration. The assessment of the solvents' lifetime 

within the first-solvent shell suggests a more frequent solvent exchange in ANI-1ccx. This 

could imply that the potential well, which traps the solvents in GAFF's first-solvent shell, might 

be deeper compared to that of ANI-1ccx. However, this conclusion does not contradict our 

observation of stronger hydrogen bonds in ANI-1ccx. For the nine solvation systems 

.  

Figure 5. Autocorrelation functions for solvents within the first-solvent shell surrounding the 

solute during 40-ps NVT simulations as a function of simulation time. Comparisons are made 

between GAFF (blue line) and ANI-1ccx (orange line) simulations. 
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investigated in this study, the first solvation shell typically contains 16 to 22 solvent molecules. 

For system 51, at most one acetonitrile-phenol hydrogen bond presents at a specific time point 

during the simulation (see Figure 4). Although the hydrogen-bonded acetonitrile interacts more 

strongly with the solute in ANI-1ccx than in GAFF, the other acetonitrile in the first solvation 

may be less trapped in ANI-1ccx. This can result in the overall more frequent solvent exchange 

in ANI-ccx.  

Table 3. The lifetime 𝜏 in Eq. (11) of solvents in the first-solvent shell integrated over 40 ps. 

system GAFF (ps) ANI-1ccx (ps) 
9 19.8 12.7 
23 20.1 12.0 
51 20.0 10.9 
58 20.1 10.0 
71 21.7 11.2 
73 21.2 19.5 
121 19.8 16.8 
158 16.9 15.4 
171 22.2 18.1 

IV. CONCLUSION 

In this research, we compared the ANI-1ccx machine learning force field and the GAFF 

classical force field in simulating the solvation of organic molecules in acetonitrile from 

various aspects. To ensure fair comparisons, we performed production MD simulations with 

ANI-1ccx and GAFF from the same starting structure and velocities equilibrated by GAFF. 

We constructed PCA landscapes for nine organic solutes from their ANI-1ccx and GAFF 

simulation trajectories in acetonitrile solvents. For solutes with rigid structures, both ANI-1ccx 

and GAFF display similar minima, consistent with the DFT-optimized results. For solutes with 

more flexibility, the dynamics of solutes can vary significantly between GAFF and ANI-1ccx. 
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We then use MDDF to evaluate the closeness between the solute and acetonitrile solvents. The 

solvents are closer to the solute in ANI-1ccx simulations than in GAFF simulations. The ANI-

1ccx’s MDDF also agrees better with AIMD’s MDDF than GAFF’s. Additionally, we 

compared ANI-1ccx and GAFF in describing the O-H⋯N hydrogen bond in system 51 between 

the phenol solute and the acetonitrile solvents. Hydrogen bonds in ANI-1ccx tend to have 

shorter bond lengths, more expanded bond angles, and longer lifetimes, leading to more 

localized and stronger hydrogen bonds. In contrast, acetonitrile solvents bonded to phenol 

demonstrate a faster rate of dissociation from the solute's hydroxyl groups in GAFF. Finally, 

we investigated the solvent dynamics in the first solvation shell for all nine systems. The 

autocorrelation functions suggest a more rapid solvent exchange in ANI-1ccx than GAFF. This 

might indicate a deeper potential well for non-hydrogen-bonded solvents in GAFF than in ANI-

1ccx, responsible for retaining solvents in its primary solvent shell.  

In summary, we compared ANI-1ccx MLFF and GAFF classical FF in the simulations of 

solute-acetonitrile interactions from different aspects. Overall, ANI-1 ccx has more agreements 

with QM level descriptions (geometry optimization or AIMD) on the solvation shell structure 

and hydrogen bonds. However, GAFF has marginally better agreement with QM geometry 

optimization on the solute minimum-energy structure. These potential benefits of using MLFF 

to simulate solvated systems motivate their applications in automated solvation configuration 

generation workflows,43 which may further improve the accuracy of computationally generated 

chemical property data sets with the help of machine-learning-based corrections.2, 82 
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