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Abstract

Activation energy characterization of competing reactions is a costly, but crucial step

for understanding the kinetic relevance of distinct reaction pathways, product yields, and

myriad other properties of reacting systems. The standard methodology for activation energy

characterization has historically been a transition state search using the highest level of

theory that can be afforded. However recently, several groups have popularized the idea of

predicting activation energies directly, based on nothing more than the reactant and product

graphs, a sufficiently complex neural network, and a broad enough dataset. Here, we have

revisited this task using the recently developed Reaction Graph Depth 1 (RGD1) transition

state dataset and several newly developed graph attention architectures. All of these new

architectures achieve similar state-of-the-art results of ∼4 kcal/mol mean absolute error on

withheld testing sets of reactions but poor performance on external testing sets composed
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of reactions with differing mechanisms, reaction molecularity, or reactant size distribution.

Limited transferability is also shown to be shared by other contemporary graph to activation

energy architectures through a series of case-studies. We conclude that an array of standard

graph architectures can already achieve results comparable to the irreducible error of available

reaction datasets but that out-of-distribution performance remains poor.

1 Introduction1

Reaction activation energies (Ea) and heats of reaction (∆Hr) are essential to understanding of2

reactivity in applications ranging from biofuel utilization,1–6 drug design,7–10 and materials sta-3

bility.11–13 Collecting this information from experiments is costly,14–18 making it highly desirable4

to develop predictive methods that can be used prior to synthesis to expedite hypothesis for-5

mation and optimization.19–25 Over the past several decades, quantum chemistry has delivered6

many algorithms for localizing transition states (TSs) and characterizing activation energies;26–317

however, finding transition states remains relatively expensive for on-the-fly and high-throughput8

applications. It would be a qualitative advance if reaction properties like activation energy could9

be directly calculated without first localizing a transition state.10

In the past few years several groups have shown the feasibility of predicting activation energies11

from only the reactant and product graphs (Fig. 1A). Early examples focused on summarizing12

changes between reactants and products using expert-generated features32–36 and molecular fin-13

gerprints.37–40 With the advent of larger reaction datasets,41–43 several standard practices have14

been identified, including the necessity to avoid including reverse reactions in testing datasets (i.e.,15

having an example in the testing set that was seen during training with the reactant and product16

switched),44 the potential usefulness of the heat of reaction (∆Hr) as an input feature,38,44 and17

the advantage of learnable reaction fingerprints over pre-defined expert fingerprints.44–46 In paral-18
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lel, prediction strategies are also being developed based on three-dimensional featurizations of the19

reactant and product,47,48 relatively inexpensive information from approximate levels of theory,4920

and additional features from quantum chemistry.39,50–55 The cost of additional features can nullify21

the advantage of using a graph-based approach (albeit, with potentially higher transferability). In22

this sense, the ideal model would be able to achieve high accuracy based solely on the reactant23

and product graphs. The negotiation of these trade-offs remains a live issue.44,56,5724

Figure 1: Overview of the graph to activation energy (G2Ea) prediction task. (a) A minimal fea-
turization of this problem consists of only using the reactant and product graphs, while sometimes
relatively inexpensive but informative features like heat of reaction (∆Hr) are also used. (b) Ea

depends on the reference initial state and the sampling distribution used to localize the transition
state. Illustrative examples are shown for the sequential versus concerted Diels-Alder mechanisms.
Comparisons across datasets and predictions on unseen reactions will be out-of-distribution if such
factors are not consistently sampled.

Despite many practical demonstrations of the graph-to-activation-energy (G2Ea) concept, sev-25
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eral challenges persist that limit the usefulness of these models as drop-in replacements for quantum-26

chemistry based TS searches. One challenge is that the scarcity of large reaction datasets has27

limited convincing out-of-distribution tests of the transferability of G2Ea models. Under the as-28

sumption that reaction mechanisms are conserved, G2Ea models should be capable of extrapolating29

to unseen substrates involved in classes of reactions that have been directly trained on, but this30

remains a largely untested hypothesis.31

A more fundamental challenge that is specific to the G2Ea learning task is that the prediction32

problem is underdetermined with respect to the manner in which computational Ea datasets are33

currently generated (Fig. 1B). While experiments measure an effective activation energy based34

on the Boltzmann average over all accessible conformations and transition states, computationally35

derived activation energies are typically extracted from a single pair of energies corresponding36

to a particular reactant and TS conformation that are not always uniquely defined. Available37

datasets have no guarantee of conformational completeness or of having found a globally minimum38

energy barrier for the observed reactions. This will lead to an irreducible error for any G2Ea39

model trained on available quantum-chemistry derived datasets, since predictions are conditioned40

on the conformational distribution of reactants and TSs used during curation. For example, the41

Conformer-Rotamer Ensemble Sampling Tool (CREST)58 algorithm was used during the curation42

of the Reaction Graph Depth 1 (RGD1) dataset41 to find the minimum energy conformer of the43

isolated reactants, and a protocol specific to Yet Another Reaction Program (YARP) was used44

to select up to three conformations for double-ended TS searches.59 These choices will show up45

as inductive biases in models trained on RGD1 and any incomplete conformational sampling will46

show up as an irreducible error when predicting on unseen reactions.47

Here, the transferability of G2Ea models has been revisited using the recently developed RGD148

dataset and an adaptation of the graph attention architecture.60–62 The motivation for this study49

was that the size and mechanistic diversity of the RGD1 dataset potentially allows for the training50
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of more data-demanding architectures with better transferability. Using a graph attention archi-51

tecture we are able to train models that reliably approach the estimated irreducible error of RGD152

and perform well on withheld reactions drawn from the same distribution. Nevertheless, these53

models show minimal transferability in external testing scenarios, oftentimes performing worse54

than näıve mean-predicting models. Through several comparative case-studies it is shown that55

this behavior is shared by models using closely related featurizations, and other contemporary56

graph to property architectures recently published for use in the G2Ea prediction task.57

2 Methods58

Several variations of the Edge-featured Graph Attention Network62 (EGAT) architecture are de-59

veloped here for the prediction of activation energies from reactant and product graphs. The main60

elements shared by all the architectures are described in the Model Overview, Input Features,61

and Description subsections (Sections 2.1-2.3) and the differences between models are described in62

Learning Tasks subsection (Section 2.4). These models are compared with Chemprop,63 a directed63

message passing neural network (D-MPNN) model that has previously been trained for the G2Ea64

task. The training and implementation details of Chemprop in this work followed those supplied65

by the developers through their distributed code,63 additional can be found in the SI (Section 2).66

2.1 Model Overview67

Edge-featured Graph Attention Networks (EGAT) are a subset of Graph Attention Networks68

(GAT).60–62 The basic idea behind EGATs is to use the features of each edge to create an attention69

score that is used to weight the information mixing between nodes. Each pass through an EGAT70

layer results in the mixing of information between nodes as determined by learnable attention71

scores. Thus, the use of n EGAT layers results in the mixing of information from nodes up to n72
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edges away into the fingerprint of each node. A fingerprint of the whole reaction graph is obtained73

by pooling the node and edge fingerprints, which can be used for reaction property prediction.74

Here, the EGAT architecture is adapted for Ea prediction by featurizing each atom as a node75

and each bond as an edge. The reactant and product are separately passed to the model, converted76

to individual fingerprints, and then the fingerprint difference is used to predict Ea subject to several77

small architectural variations (See Section 2.4). The relative atom-mapping between reactants and78

products affects the prediction of the model, but the architecture includes an intermediate pooling79

operation to ensure the prediction is invariant to the absolute numbering of the atom sequence.80

Differences in atom mapping reflect distinct bond-changes and so the atom-mapping awareness81

is an important feature of the model that is not captured by models based on simpler Morgan82

fingerprints.83

The edge topology that is used for the reactant and product corresponds to the union of the84

bonds that are presented in either of the species. This results in molecular fingerprints for the85

reactant and product that have the same number of edges when taking the fingerprint difference.86

Thus, when processed by the EGAT model, bonds that are only physically present in the reactant87

or product (i.e., they are formed or broken in the reaction) are still present as edges in the product88

and reactant graphs, respectively, albeit with a special feature indicating that the bond was broken89

or formed.90

2.2 Input Features91

The input to the EGAT architecture is an ordered set of features for each atom and bond in the92

reactant and product. Table 1 and 2 list the input atom (i.e., node) features, n, and bond (i.e.,93

edge) features, e, fed into the EGAT model, respectively, and their comparisons with input features94

of Chemprop. Many of the features could be incorporated as either distinct numeric values (i.e.,95

integers) or categorical values (i.e., one-hot vectors). In such cases we elected to use integers over96
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one-hot vectors wherever possible to simplify the representation. For example, hybridization in97

EGAT is represented using a four bit one-hot vector (i.e., this is clearly a categorical feature), but98

the number of bonded hydrogens are featurized with integers (i.e., this is a case that could be99

treated either numerically or categorically). Wherever one-hots are used, they are transposed and100

concatenated with the other features during the input preprocessing. The resulting dimensions for101

the featurized node and edge vectors are 17x1 and 14x1, respectively.102

The rationale for some of the new features is as follows. A node’s proximity to a bond that103

is broken or formed is novel to the EGAT model, which denotes the effect it may have on the104

reaction as atoms closer to the reaction center exhibit more local changes than those farther away.105

Node features corresponding to the number of bonded CHON atoms were also directly featurized,106

even though this is an implicit feature that might be learned from the convolution. The novel edge107

features include a set of binary features corresponding to whether the bond was broken, formed,108

if the bond order changed, or was unchanged. These features are necessary to use the union of109

the reactant and product graphs as the inputted graph topology to the model. For example, the110

reactant may have some edges with bond order zero, because these might only exist in the product,111

but it is nonetheless potentially useful for the model to mix information along these edges given112

the fact that a bond forms or breaks between such atoms in the reaction.113

2.3 Model Description114

The overall model architecture consists of four EGAT layers that yield compressed fingerprints of115

the reactant(s) and product(s), which are then used to predict the Ea using a feed-forward stack116

(Fig. 2). Even though there are four total EGAT layers, only two are distinct, with the first being117

unique and the last three sharing weights. The first is responsible for embedding the raw node118

and edge features in a higher dimensional space so it has different internal dimensions from the119

other three. The three-fold application of the second EGAT layer results in mixing of information120
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Table 1: Input Node Features in the EGAT and Chemprop Models

Features Chemprop EGAT
Atom Type 100x1 one-hot vector Integer

Number of Bonds 6x1 one-hot vector -
Charge 5x1 one-hot vector Integer

Neighboring H 5x1 one-hot vector Integer
Neighboring C - Integer
Neighboring N - Integer
Neighboring O - Integer

Distance to Nearest Reacting Atom - Float
Hybridization 5x1 one-hot vector 4x1 one-hot vector 1

Aromaticity One-hot Value One-hot Value
Atomic Mass Mass/100 Float
Chirality 4x1 one-hot vector 3x1 one-hot vector
Ring Atom - One-hot value

1. The bits correspond to whether the atom is s,sp,sp2,or sp3 hybridized. These should be
expanded if applying the model beyond second row chemistry.

Table 2: Input Edge Features in the EGAT and Chemprop Models

Features Chemprop EGAT
Bond Type 4x1 one-hot vector 5x1 one-hot vector 1

Conjugated One-hot Value One-hot Value
In Ring One-hot Value One-hot Value

Stereochemistry 4x1 one-hot vector 3x1 one-hot vector
Bond Change - 4x1 one-hot vector2

Change in Bond Order - One-hot value

1. Four of the vector values determine the order of the bond, while the
additional value determines whether the bond is aromatic.
2. One of the bits denotes whether there is a bond break, a second denotes
whether a bond forms, a third denotes whether the bond order changes, a
fourth denotes whether the bond is unchanged.
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Figure 2: Overview of the EGAT model architecture developed in this work. The model consists of
a stack of edge-featured graph attention layers (green and red) that generate the derived features
for each edge and node in the reactant and product. The differences in these features are then
transformed and pooled to generate a global fixed-size reaction fingerprint (purple) that is used as
an input for the Ea prediction task (gray). Depending on the formulation of the learning task, the
final predictor may be trained to solely predict Ea, Ea and ∆Hr in multi-task fashion, or α and β
the linear free energy parameters associated with Ea. The lower inset illustrates the edge-featured
graph attention mechanism applied to a single node and its edges.
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from nodes separated by up to four edges away. Experiments on validation data showed no further121

benefit from using more EGAT layers or distinct weights in consecutive layers.122

Within each EGAT layer, each edge is embedded based on both the edge and node features of123

the atoms connected by the edge. For an edge connecting nodes, i and j, the edge features, eij,124

and connected node features, ni and nj, are embedded as a concatenated vector125

e′ij = A (ni||eij||nj) + a (1)

where || refers to the catenation operation, A is a learnable linear transformation, and a is126

a bias term. In the first EGAT layer, A has dimensions of 512x48, where 48 is the size of the127

catenated inputted node and edge features (Tables 1 and 2) and 512 is the embedding dimension128

such that e′ij has dimensions of 512x1. In subsequent EGAT layers, A has dimensions of 512x1536,129

where 1536 is the size of the catenated embedded node and edge features, and e′ij has unchanged130

dimensions of 512x1. Recall that edges are defined based on the union of the bonds in the reactant131

and product graphs, such that an edge may exist in the reactant or product where no physical132

bond exists. The embedded edges are directional (i.e., e′ij ̸= e′ji) and so there are twice as many133

embedded edges as connected nodes.134

Each node is embedded into a size 512x1 space using a learnable linear projection of its node135

features according to136

n′
i = Bni + b (2)

where B is a learnable linear transformation and b is a 512x1 bias vector. In the first EGAT layer,137

B has dimensions of 512x17, where 17 is the size of the inputted node features (Table 1) and 512138

is the embedding dimension such that n′
i has dimensions of 512x1. In subsequent EGAT layers,139

B has dimensions of 512x512, where 512 is the size of the embedded node features after the first140

EGAT layer, and n′
i has unchanged dimensions of 512x1.141
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Each graph edge attention layer performs a non-linear transform and mixing operation between142

nodes connected by edges. The embedded edges, e′ij, are transformed to create attention scores that143

determine the degree of mixing between nodes along each attention head. Here, each EGAT layer144

has four heads, meaning that the embedded 512x1 node feature vector, n′
i, is reshaped into four145

128x1 vectors, n′,h
i , each of which is mixed with the corresponding reshaped vectors of neighboring146

nodes, n′,h
j , based on the attention values of each head, αh

ij. The mathematical description of these147

steps is as follows.148

The edge vectors are reshaped into a 128x1x4 tensor, e′,hij , where each column vector corresponds149

to a query for each head in the attention mechanism. This matrix is non-linearly transformed using150

the LeakyReLU function and projected along learnable directions by each head according to151

ϵij = CLeakyReLU
(
e′,hij

)
(3)

where C is a 1x128x4 learnable tensor, with each row vector corresponding to the key for each152

head in the attention mechanism, and ϵij is a 1x1x4 tensor holding the logits for each head. The153

ϵij values for each head are then softmax normalized over all edges originating at node i to obtain154

the attention scores155

αij = softmax (ϵij) =
eϵij∑

k∈N(i) e
ϵik

(4)

where N(i) refers to all edges originating at node i, the operations are performed per-element,156

and αij is a 1x1x4 tensor. The softmax guarantees that
∑

k∈N(i) αik = 1 such that the attention157

scores associated with each head can be interpreted as mixing probabilities along each edge. Finally,158

the inputted 512x1 node feature vectors, n′
i, are reshaped into 128x1x4 tensors, n′,h

i , where each159

row vector plays the role of a value in the attention mechanism. The updated node features are160

calculated as attention-weighted mixtures of the neighboring node features according to161
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nh
i,out =

∑
k∈N(i)

αikn
′,h
k (5)

where nh
i,out is a 128x1x4 tensor that is reshaped to a 512x1 vector, ni,out, before being returned162

by the layer. Each EGAT layer returns both the edge features, e′ij, and node features, ni,out, for163

use by subsequent layers.164

The nodes and edges of the reactant and product graphs are separately transformed by the165

EGAT layers to yield a set of 512x1 node and edge vectors for the reactant and product. The same166

stack of layers and weights are used for the reactant and product graphs. Reaction node and edge167

features are obtained based on the differences between these vectors,168

ni,rxn = ni,product − ni,reactant (6)

eij,rxn = eij,product − eij,reactant (7)

Where the product and reactant labels refer to the vector features outputted by the final EGAT169

layer. The reaction features are then subjected to a final projection and non-linear transform170

n′
i,rxn = GeLU (Dni,rxn + d) (8)

e′ij,rxn = GeLU (Feij,rxn + f) (9)

where D and F are 512x512 learnable matrices and d and f are 512x1 bias vectors. At this171

stage there are a variable number of node and edge features depending on the size and topology of172

the reactant and product graphs. A fixed size 1024x1 reaction fingerprint, FP, that is invariant to173
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the absolute atomic numbering is obtained sum pooling the reaction node and edge features and174

concatenating the result175

FP =
∑
i

n′
i,rxn||

∑
ij

e′ij,rxn. (10)

FP is used as an input to a stack of three feed-forward layers, with hidden dimensions of176

[256,128,1], a GeLU activation function after the first and second layers, and the last linear layer177

mapping to one output in the simplest model. Several small variations of the FP predictor stack178

were explored, depending on the formulation of the learning task as described next.179

2.4 Learning Tasks180

Four models were developed using the shared architecture for generating reaction fingerprints181

described in the previous section but with minor variations in the predictor stack. The basic182

model predicts Ea as a scalar output of the model using only the reactant and product graphs.183

The FP predictor stack for this model has dimensions of [256,128,1], with the final layer predicting184

Ea. We refer to this model in the results as the graph to Ea model (G→ Ea).185

Three other models were developed that use ∆Hr as an additional input feature or as an186

additional prediction target. The first uses ∆Hr as an additional input to the FP predictor stack,187

so that it has dimensions of [257,128,1], with the final layer predicting Ea. We refer to this model in188

the results section as the graph and ∆Hr to Ea model (G,∆Hr → Ea). The second uses ∆Hr as an189

indirect feature by having the model predict Ea using the Bell-Evans-Polanyi64 (BEP) relationship190

Ea = α∆Hr + β (11)

where α and β are constants predicted by the model. The predictor stack for this model191

has dimensions of [256,128,2], where α and β are predicted in the final layer and ∆Hr is used192
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to calculate Ea. The rationale for this physics-inspired formulation is that it might show better193

transferability due to the well established linear free-energy relationships expected for reactions194

sharing a common mechanism. We refer to this model in the results as the graph to BEP model195

(G→BEP).196

The last model uses a multi-task predictor stack with dimensions of [256,128,2] that predicts197

both ∆Hr and Ea in the last layer. Whereas both of the previous models require ∆Hr to make198

a prediction, the rationale for multi-task training is that it indirectly informs the model of the199

underlying mechanistic information associated with ∆Hr without requiring it at the time of pre-200

diction. This is a common form of transfer learning. We refer to this model in the results as the201

graph to ∆Hr and Ea model (G→ ∆Hr, Ea).202

2.5 Training Details203

The loss function for training the single-task models (G→ Ea; G,∆Hr → Ea; G→BEP) was the204

mean absolute error in Ea prediction205

L =
1

Nbatch

Nbatch∑
i

|Ea,i,0 − Ea,i,p| (12)

where i runs over all samples in the batch, Nbatch is the number of samples per batch, Ea,i,0206

refers to the reference activation energy, and Ea,i,p refers to the predicted activation energy. For207

the multi-task model (G→ ∆Hr, Ea) trained to predict both ∆Hr and Ea, the loss function was208

weighted to prioritize Ea accuracy according to209

L =
1

Nbatch

Nbatch∑
i

0.8|Ea,i,0 − Ea,i,p|+ 0.2|∆Hr,i,0 −∆Hr,i,p| (13)

where ∆Hr,i,0 refers to the reference heat of reaction, ∆Hr,i,p refers to the predicted heat of210

reaction, and all other symbols have the same meaning as in Eq. 12.211
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All EGAT models were trained using the Adam optimizer and a batch size of 50. The learning212

rate, η, was initially set to 5e-4, linearly increased each update step for 10 epochs to 1e-3, followed213

by an exponential decay to a minimum of 1e-5. Early stopping was applied to terminate train-214

ing if the validation loss did not decrease in 30 consecutive epochs. Further information on the215

hyperparameters for each model can be found in the Supplemental Information. All Chemprop216

models were trained using the optimized parameters found via the hyperopt package listed in the217

Supplemental Information (SI) section of the Heid et. al.46 paper.218

2.6 Data219

The Chemprop and EGAT models used in this paper were trained on the RGD1 dataset,41 which220

contains around 177,000 reactions with up to ten heavy atoms consisting of carbon, hydrogen,221

nitrogen and oxygen. In brief, the RGD1 dataset was generated by a graph-based enumeration222

of ∼700,000 reactions involving reactants sampled from PubChem.20,65 A reaction conformational223

sampling strategy20,58 was applied to generate up to three conformations for each reaction that224

were used to initialize double-ended TS searches,29 followed by Berny optimization,66 and in-225

trinsic reaction coordinate67 (IRC) validation at the GFN2-xTB68 level of theory. The GFN2-226

xTB optimized TSs were further refined using the Gaussian1669 quantum chemistry engine at the227

B3LYP-D3/TZVP70,71 level of theory with D3 dispersion.72 The DFT-level TS were classified as228

intended or unintended using an XGBoost73 model that uses geometric features of the TS and the229

GFN2-xTB level information to classify the TS as intended or unintended (i.e., whether the TS230

corresponds to the reaction that was used to seed the TS search). This model exhibits a testing231

set accuracy of ∼ 95% in a previous smaller testing set.20 For a detailed description of the RGD1232

database, we direct readers to our previous publication.41233

Several data processing steps were applied to prepare the RGD1 data for training the activation234

energy models. Firstly, reactions were pruned by the uniqueness of the reactant and product235
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InChIKeys74 to eliminate the presence of cases where reactions may have the same reactant and236

product but only differ by tautomerization. This was done to prevent possible data leakage by237

training on one tautomer while including another in the testing set. Secondly, only the minimum238

activation energy and its corresponding heat of reaction was listed for each reaction. This step is239

required because RGD1 contains multiple conformationally distinct TSs for many of the reactions.240

In total 135,455 distinct reactions passed these filters. Random splitting was used to generate241

80/10/10 training (101,236 reactions), validation (12,139), and testing splits (12,139). The splits242

included only one direction of each reaction (i.e., the data was not augmented by including the243

reverse versions of reactions in training or testing). Unless otherwise stated, all accuracies are244

reported for prediction accuracy on the RGD1 testing set.245

3 Results and Discussion246

3.1 Overall RGD1 Performance247

The overall performance of the various EGAT architectures was tested by predicting the activation248

energy of the 12.3k reactions in the RGD1 testing split (Fig. 3A). There is remarkably little249

variation across the different EGAT architectures; all models show uniformly low mean absolute250

prediction errors (MAE) of ∼4 kcal/mol. None of the models show a significant systematic bias251

based on the negligible mean signed errors (Fig. S1A). The G→ Ea model that doesn’t use the252

∆Hr information intuitively shows the largest MAE, but only performs ∼0.5 kcal/mol worse on253

average than G→ BEP, the best EGAT model. The models were tested as ensembles of five254

independently trained models of each class. The standard deviation in the mean testing split255

performance of the individual models comprising the ensemble provides an estimate of the testing256

performance uncertainty (error bars in Fig. 3A). The mean performance uncertainty is also within257
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Figure 3: Performance of the G2Ea architectures on the RGD1 dataset. (A) Mean performance of
each EGAT and Chemprop architecture on the RGD1 testing set ranked by accuracy. Error bars
correspond to the standard deviation in mean performance across the ensemble. Each datapoint
reflects the mean over five models trained with independent starting weights but the same training
data. (B) Testing set error versus training dataset size for the EGAT architectures and best overall
Chemprop model. Linear scaling is expected on a log-log plot. Each datapoint represents the best
performance of a single model. (C) Parity plot showing the performance of best EGAT model
(G→BEP) on the testing set reactions. Individual pixels are colored by the density of datapoints
(purple to yellow is low to high).
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∼0.5 kcal/mol in all cases.258

The performance of analogous Chemprop models trained and tested on RGD1 provide a useful259

reference (Fig. 3A). Similar to the EGAT architectures, the Chemprop model that eschews ∆Hr260

information performs the worst on average, but only by∼0.5 kcal/mol compared with the multitask261

Chemprop architecture (G→ ∆Hr, Ea). The best EGAT architecture marginally outperforms the262

best Chemprop architecture in this comparison, but we do not consider this difference significant263

for reasons that are further explored below.264

How should we interpret all of the architectures approaching a MAE of ∼4 kcal/mol on the265

RGD1 testing split? To answer this the reader should consider that there are several known sources266

of irreducible error in RGD1—indeed to some extent all available computational TS datasets suffer267

from these issues. These sources include the inaccuracy of the underlying DFT method (B3LYP-268

D3/TZVP), incomplete conformational sampling of TSs and reactants, and the potential inclusion269

of TSs that correspond to unintended reactions (i.e., they connect a reactant and product that270

are different than the label). Because we are testing on DFT-level Ea values and not experimental271

values, the absolute DFT errors should not contribute to the irreducible error for this particular272

learning task; but incomplete conformational sampling and mislabeled TSs still represent sources273

of irreducible error. Below we will provide some lower bound estimates of the latter errors, but274

cumulatively they are expected to easily amount to an uncertainty of 4 kcal/mol across the entire275

dataset. As such, we interpret the prediction errors of all the models as effectively approaching276

the irreducible error of this prediction task.277

If the models are approaching the irreducible error of this particular learning task, then that278

should be evident in the known reducible sources of error, such as dataset size, approaching zero.279

To test this, the training data size versus testing set accuracy learning curves were generated by280

training individual models for each architecture on subsets of the training data and evaluating281

their performance (Fig. 3B). Between training sample sizes of 10k and 40k, the models show282
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large error reductions (MAE reductions from 8 kcal/mol to 5.5 kcal/mol in the largest cases), but283

for sizes between 75k and 100k, the models show average improvements of less than 1 kcal/mol.284

Extrapolating the power law scaling evident in these curves, we estimate that increasing training285

data from order 100k to 1m samples would only further reduce errors by ∼ 0.1 kcal/mol for the286

best EGAT and Chemprop architectures. The minimal errors associated with training data size287

are consistent with the interpretation that the models are approaching the prediction accuracy288

limit associated with the irreducible error of this task.289

Only looking at the mean performance obscures the number of outliers predicted by all the290

models. The presence of outliers are already evidenced by the significantly lower median absolute291

errors—between 2-3 kcal/mol for all EGAT and chemprop models—compared with the MAEs292

(Fig S1A). To illustrate some individual outliers, a parity plot is presented that shows the per293

sample accuracy of the G→ BEP model on the testing set (Fig. 3B). The median absolute294

deviation (MAD = median (|Xi −median (Xi) |)) has been used as a robust estimator for the295

width of the error distribution that is minimally affected by outliers. Assuming normal statistics296

the corresponding estimate for the standard deviation in the testing errors for this model is 3.40297

kcal/mol. The estimated standard deviation in prediction errors is similar when calculated for the298

underlying reaction classes (Fig. S4A), reactions with distinct molecularity (Fig. S4B), and across299

model architectures. The interested reader can also find violin plots of the MAEs of different300

populations of the testing set reactions differentiated by reaction type (Fig S5c) and molecularity301

(Fig S5D) in the SI. As an estimate of the number of outliers, there are a total of 796 testing302

samples (out of 12,139 total, or ∼ 7%) with absolute errors greater than 10.2 kcal/mol (3x the303

standard deviation as estimated from the median absolute deviation). Based on the testing set304

size and assuming normal statistics only ∼ 14 samples (i.e., ∼0.1% of the testing split) would be305

expected with errors this large. An analogous calculation using the absolute percent errors rather306

than the absolute errors produces a large number of percentage based outliers that is driven mainly307
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by low barrier reactions and not necessarily unphysical predictions (Fig. S6), and these are not308

further analyzed here.309

3.2 Sources of Error310

Although the EGAT architectures achieve mean accuracies on RGD1 comparable to the best G2EA311

models previously published, we consider it useful spend some time elaborating the obstacles to312

further accuracy improvements (Fig. 4). First we analyzed the conservation of poorly predicted313

outliers across the different architectures by histogramming testing samples by their error percentile314

for each EGAT model and calculating the overlapping samples in each bin (Fig. 4A). This analysis315

reveals that the architectures tended to perform poorly on the same samples, whereas the other316

bins show overlaps that are more consistent with chance (the expected overlap is ∼ 1% for this317

number of bins and models).318

It is possible that the outliers represent unusually hard samples for all models, but the more319

likely scenario is that the outliers are cases affected by incomplete conformational sampling or320

with unintended transition states (i.e., the known sources of irreducible error in RGD1). To test321

this hypothesis, we took the 100 lowest error testing samples and 100 highest error testing samples322

based on the G→ BEP model performance and re-investigated their transition states. For these 200323

reactions from the RGD1 testing set, transition state searches were re-performed using 10 rather324

than 3 reaction conformers (i.e., the RGD1 curation protocol) and DFT-level IRC calculations325

were performed on the RGD1 TSs.326

The additional conformational sampling was done to estimate the error associated with incom-327

plete sampling by calculating the average reduction in Ea for the top 100 and bottom 100 samples328

(Fig. 4B). For example, if the additional conformations merely rediscovered the same TS or higher329

energy TSs, then the reduction would be zero, but if they led to the discovery of lower barrier TSs,330

then the reduction would be positive. This experiment revealed that incomplete conformational331
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sampling disproportionately affects the poorly predicted samples, with the most and least accurate332

populations showing mean Ea reductions of ∼2.5 kcal/mol and ∼6.5 kcal/mol, respectively. The333

reaction with the largest Ea reduction of ∼30 kcal/mol occurs in the poorly predicted samples334

versus a maximum reduction of ∼13 kcal/mol in the top 100 predictions (See Fig. S6 for other335

relevant analyses). For the bottom 100 predictions that were intended after the IRC calculation336

(i.e., the 27 reactions where unintended TSs are not a confounding factor as revealed by the anal-337

ysis in the next paragraph) the G→BEP model underestimates Ea by 21.8 kcal/mol on average338

compared with a negligible mean signed error on the whole dataset (Fig. S1A), meaning that the339

model recognizes these reactions as being conformationally undersampled. The Ea reduction of340

∼2.5 kcal/mol observed in the best predictions can be considered a lower bound on the irreducible341

error of RGD1, assuming no other factors contribute to the error and that unintended reactions342

can be perfectly filtered. Thus while conformational sampling errors significantly contribute to the343

irreducible error for G2Ea prediction on RGD1, alone they cannot explain the majority of outliers344

that comprise the worst predictions.345

IRC calculations on the top 100 and bottom 100 samples were performed to investigate the346

prevalence of unintended reactions in the two populations (Fig. 4C). Recall that IRC calculations347

are expensive at the DFT level and so RGD1 was curated using a machine learning model to filter348

intended and unintended TSs based on IRC calculations performed at the GFN2-xTB level.41349

Despite the high accuracy of this model, presumably some unintended reactions remain in the350

dataset. This experiment revealed that unintended reactions are disproportionately represented in351

the bottom 100 predictions (73%) compared with the best predictions (1%). This suggests that352

a majority of the outliers in Fig. 3C are in fact unintended reactions. This result motivated us353

to perform a larger IRC study on the 1000 worst predicted samples from the training split, which354

returned a similarly high proportion (63.8%) of unintended reactions (Figs. S8). Based on these355

tests, unintended reactions likely comprise only a few percent of RGD1, but they are the cause of356
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most poorly predicted outliers. Recalculating the MAE without the three sigma outliers results in357

an improvement of ∼ 1− 2 kcal/mol across the models, which can be taken as an estimate of the358

irreducible error associated with imperfect filtering of unintended reactions from RGD1.359

Figure 4: Investigating the origin of outlier behavior in G2Ea models. (A) Comparison of the
fraction of testing set reactions that are consistently predicted accurately and inaccurately by
each EGAT model. The rank of each reaction was determined by accuracy, binned by performance
pentile, then the membership in each pentile was compared across models (percentage in common).
(B) The mean Ea reduction after expanding the conformational sampling for the 100 best and
100 worst predicted testing set reactions by the G→BEP model. Two examples showing newly
discovered TSs with lower barriers (revised) are shown. (C) The intended rates determined by
IRC calculation for the RGD1 TSs of the 100 best and 100 worst predicted testing set reactions
by the G→BEP model. Two illustrative examples are shown where the TS connected a different
product (top) and different reactant (bottom) after the IRC calculation (revised). In the latter
case, Ea is also incorrect because of the misidentified reactant.

3.2.1 Model Transferability360

Graph-based neural-network models have become notorious in many contexts for overfitting and361

poor out-of-distribution performance.44,56,57 Although the models trained on RGD1 show excellent362

testing performance on unseen reactions, this is a large dataset and reactions typically involve a363

small number of bond changes and conserved mechanisms. This means that even if the testing364

set involves unseen reactions in terms of reactants or products, it is not expected to necessarily365
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Figure 5: Transferability case-studies for G→ Ea models. (A) Mean performance of models trained
on subsets of the RGD1 dataset indicated by the x-axis label. These models were tested on the
RGD1 testing set reactions with the same reaction type as in training (within distribution) and
reactions types excluded from training (out-of-distribution). (B) Learning curves for EGAT and
Chemprop G→ Ea models trained on small reaction (3-7 heavy atoms) and evaluated on both small
and large (8-10 heavy atoms) reactions from the validation split.(C) Learning curves for EGAT
and Chemprop G→ Ea models trained on b2f2 data and evaluated on both b2f2 and non-b2f2
reactions from the validation split. (D) Learning curves for EGAT and Chemprop G→ Ea models
trained on R2P2 data and evaluated on both R2P2 and non-R2P2 reactions from the validation
split.
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present novel reactivity (e.g., in terms of new types of bonds being broken and formed) that is not366

seen elsewhere in the training data.367

To interrogate these architectures with a more rigorous test of out-of-distribution performance,368

several case studies were performed where the EGAT and Chemprop architectures were trained369

on subsets of the training data split that excluded one or more classes of reactions (Fig. 5).370

Three factors were used to classify different subpopulations within RGD1—the number of bonds371

broken and formed in the reaction (bnfn), the molecularity (number of species) of the reactant372

and product (RnPn), and the size of the reactant (more than seven heavy atoms was considered373

large). The manner in which RGD1 was generated resulted in reactions involving breaking two374

bonds and forming two bonds (b2f2) being the most abundant class of reactions and b3f3 reactions375

being the second most abundant with 22,538 and 68,615 reactions in the training dataset, respec-376

tively. In terms of molecularity, R1P1 (i.e., unimolecular) and R2P2 (i.e., bimolecular reactant377

and bimolecular product) reactions are the most abundant with 38,240 and 16,817 reactions in the378

training dataset, respectively. Similarly, the heavy atom cutoff was selected to make the small and379

large subpopulations approximately evenly matched with 40,018 and 57,746 training set reactions,380

respectively. In these case studies, the models were trained on one subpopulation of the training381

split but tested on the original testing split. The performance on the class of reactions included in382

training is referred to as “within distribution” and the class of reactions excluded from training is383

referred to as “out-of-distribution” in the discussed comparisons. All performance is reported for384

the testing set of reactions unless indicated otherwise.385

The gap between the within distribution and out-of-distribution performance is large in all of386

the cases studies (Fig. 5A). The accuracy drop for within distribution performance is small in387

most cases and generally mirrors the reduced amount of training data available. In contrast, the388

accuracy drop for the out-of-distribution reaction classes is much larger than can be explained from389

reduced training data and reflects the qualitative failure of these architectures to predict Ea for390
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reactions that differ from the training distribution in either the number and kind of bonds changes,391

molecularity, or size. We had hypothesized that the models would extrapolate better across some392

of these classes than others. This was incorrect—the transferability to unseen reaction populations393

is consistently poor, with accuracy often worse than the näıve mean-predicting model. We had also394

hypothesized that the multitask or transfer learning architectures might show better transferability,395

but this also wasn’t the case (see Fig. S8 for the combined results with all architectures). All the396

EGAT architectures perform poorly in the out-of-distribution prediction tasks with only a marginal397

benefit from the architectures with access to ∆Hr. With the exception of large reactants, Chemprop398

generally shows significantly lower errors than EGAT in out-of-distribution tasks. But neither399

architecture achieves out-of-distribution performance that could be relied on for applications.400

The learning curves for these case studies also illustrate the limited transferability of the learned401

reaction representation to out-of-distribution prediction (Figs. 5B-D). These learning curves show402

the performance of the G→ Ea EGAT and Chemprop architectures on the validation split as they403

are trained. A normalized x-axis is used because the Chemprop and EGAT architectures train404

over differing numbers of epochs. The within distribution validation curves look typical, with405

an asymptotic approach to a saturation value that is near the testing set performance shown in406

Figure 5A. However, the out-of-distribution samples in the validation split show remarkably little407

reduction in error throughout the training. In some of the cases, a marginal initial reduction408

occurs that can be interpreted as the models learning generic reaction fingerprint features relevant409

to all reactions, but these curves still plateau at much larger values. Additional case studies were410

performed where models that were pretrained on one reaction class were then retrained on an411

excluded reaction class (Fig. S9). In all cases, these models show catastrophic forgetfullness after412

a single training epoch in predicting validation reactions from their original training class.413

These case studies highlight the extremely limited transferability of these models to classes414

of reactions that are nevertheless expected to share many essential mechanistic features with the415
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training reactions. For example, many reaction mechanisms are expected to be conserved regardless416

of molecularity. Similarly, many small and large molecules should exhibit comparable activation417

energies for reactions with conserved mechanisms. The lack of transferability in these cases studies418

speaks to a gap in the current architectures. Based on the class-based reaction modeling of experts,419

this gap should be addressable, but it will require better regularization or additional architectural420

developments to promote mechanistic transferability.421

4 Conclusions422

This study has revisited the chemical graph to activation energy (G2Ea) prediction problem using423

an edge-featured graph attention (EGAT) architecture. This was motivated by the recent devel-424

opment of the relatively large (∼ 176k) RGD1 organic chemistry reaction dataset, which enabled425

benchmarking across a broad swathe of reaction types and interrogation of out-of-distribution per-426

formance using case-studies with partial training on subsets of RGD1. Another motivation was to427

contribute an additional open-source architecture for other research groups to experiment with on428

their own. To the credit of the Chemprop developers, they have opened up their code for adapta-429

tion and comparison. Expanding the pool of publicly available models is critical to resolve where430

fundamental obstacles exist. The summary observations from these experiments are that it is431

relatively straightforward for G2Ea models to approach the irreducible error of RGD1—estimated432

to be ∼ 4 kcal/mol—but that out-of-distribution performance is often worse than näıve models.433

Sources of irreducible error for the G2Ea prediction task warrant more detailed consideration434

moving forward. Incomplete conformational sampling results in the curation of TSs that are not435

the lowest barrier possible, and thus out-of-distribution for training and prediction. Likewise,436

unintended TSs (i.e., true saddle points that nonetheless correspond to reactions that are different437

from the labeled reactants and products) are commonly produced by TS search algorithms. Due to438
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the incorrect input features, unintended samples are intrinsically unpredictable by G2Ea models.439

Both sources of irreducible error were observed in the RGD1 dataset and are expected to be found in440

any other computational dataset of conformationally complex reactants without explicit protocols441

for mitigation. Although these errors are “irreducible” from the perspective of performance in442

the G2Ea task for a given dataset, they are reducible from the perspective of curating better443

datasets. For example, there are many possibilities for developing better filters for unintended444

transition states—from more complex models to using more informative featurizations for the445

unintended/intended classification task—but they have yet to be implemented. We estimated that446

the majority of prediction outliers in the current study were in fact unintended reactions and that447

perfect filtering would reduce the irreducible error for the G2Ea task by ∼ 1−2 kcal/mol with the448

remaining ∼ 2− 3 kcal/mol being accounted for by incomplete conformational sampling.449

The discussion of errors also bears on the relative advantage of formulating Ea prediction as450

a G2Ea task. For example, unintended transition states and biased conformational sampling are451

not intrinsic problems for some three-dimensional formulations of Ea prediction. For example, a452

model with a three dimensional reactant featurization could plausibly learn the contribution to453

Ea associated with a particular conformer and thus reduce that source of error. Or consider an454

Ea model that performs Ea estimation identically to quantum chemical approaches but instead455

uses ML atomic potentials.75 Because such a model is formulated to predict reactive potential456

energy surfaces, it can learn from both intended and unintended TSs and all reactant and product457

conformations. This formulation may sound much more expensive than directly predicting Ea458

from a pair of chemical graphs, but the advent of GPU-compatible routines for performing TS459

searches on ML-potentials may render such cost differences moot. These differing formulations of460

the Ea prediction problem can also be expected to affect model tranferability. Better benchmarks461

will ultimately be required to resolve the accuracy vs cost Pareto front of different Ea prediction462

formulations being gestured toward by this discussion.463
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Within the context of G2Ea models, these results also suggest several pathways for improve-464

ment. First, the fact that the overall accuracy of all models uniformly approached the irreducible465

error of RGD1 shows that these models have spare complexity to learn broader classes of reactions.466

RGD1 only contains closed-shell neutral reactants containing CHON elements, but extensions to467

ionic, radical, and other elements are expected to be successful. Second, the current featurization468

does not directly consider the reaction conditions (e.g., solvent) or the availability of a catalyst.469

It is plausible that a condition fingerprint could be catenated to the reaction fingerprint to pre-470

dict how Ea would be modulated by environment, but to our knowledge the requisite data for471

a convincing attempt at this does not yet exist. Lastly, our current experiments found marginal472

advantage from using complementary information sources like ∆Hr during training and prediction473

in the large data limit. More advantages might become apparent for datasets possessing a broader474

range of reaction mechanisms, datasets with lower irreducible error for the G2Ea task, or by using475

auxiliary information sources beyond ∆Hr. These and adjacent opportunities suggest that the476

field is far from determining the ultimate performance of G2Ea models.477
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