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 83 
Feature-Based Molecular Networking (FBMN) is a popular analysis approach for LC-84 

MS/MS-based non-targeted metabolomics data. While processing LC-MS/MS data through 85 

FBMN is fairly streamlined, downstream data handling and statistical interrogation is often 86 

a key bottleneck. Especially, users new to statistical analysis struggle to effectively handle 87 

and analyze complex data matrices. In this protocol, we provide a comprehensive guide 88 

for the statistical analysis of FBMN results. We explain the data structure and principles of 89 

data clean-up and normalization, as well as uni- and multivariate statistical analysis of 90 

FBMN results. We provide explanations and code in two scripting languages (R and 91 

Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to 92 

statistical analysis. Additionally, the protocol is accompanied by a web application with a 93 

graphical user interface (https://fbmn-statsguide.gnps2.org/), to lower the barrier of entry 94 

for new users. Together, the protocol, code, and web app provide a complete guide and 95 

toolbox for FBMN data integration, clean-up, and advanced statistical analysis, enabling 96 

new users to uncover molecular insights from their non-targeted metabolomics data. Our 97 

protocol is tailored for the seamless analysis of FBMN results from Global Natural 98 

Products Social Molecular Networking (GNPS and GNPS2) and can be adapted to other MS 99 

feature detection, annotation, and networking tools.  100 

 101 

1. Introduction 102 

Metabolomics aims to characterize and quantify the detectable spectrum of small molecules in 103 

order to catalog and understand the metabolic dynamics within biological systems1,2. Phenotypes 104 

or environmental factors that distinguish samples within a given set are often reflected in the 105 

chemical profiles of such small molecules across samples. Therefore, the characterization of 106 

chemical distinctions and gradients between samples provides crucial information for describing 107 

and understanding molecular mechanisms3,4. Metabolomics studies usually employ targeted or 108 

non-targeted approaches2. Targeted metabolomics is typically hypothesis-driven and aims to 109 

quantify known metabolites, often using internal standards and experimental methodology 110 

optimized for the study. Non-targeted metabolomics, on the other hand, aims to detect a 111 

maximum number of metabolites in order to comprehensively characterize the chemical profiles 112 

within a given sample set.  113 
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To uncover molecular insights from non-targeted liquid chromatography tandem mass 114 

spectrometry (LC-MS/MS) data, several software tools are available that assist with mining and 115 

annotating metabolites, including feature detection and annotation tools5. Feature-Based 116 

Molecular Networking (FBMN) is a popular analysis platform that integrates various feature-117 

detection tools with molecular networking for metabolite annotation and annotation propagation6 118 

in the GNPS cloud ecosystem7. FBMN is routinely applied many biological disciplines, including 119 

clinical studies8,9, plant10–12 and environmental science13–16, as well as microbiome17–19 and the 120 

functional analysis of natural products20–22. While platforms such as GNPS have improved the 121 

way that we identify and characterize metabolites, the subsequent step — statistical analysis — 122 

remains a challenge for many researchers. While resources like MetaboAnalyst23,24 provide 123 

powerful solutions for the statistical analysis of metabolomics data, the complex multi-layer 124 

information from FBMN results and other downstream annotation tools (e.g., SIRIUS) require 125 

typically multiple matrix operations, data clean-up, normalization, before uni- and multivariate 126 

statistical analyses. Most tools and analysis approaches that can be used to archive this are 127 

typically custom scripts or different software tools that are scattered across different platforms. 128 

This makes it especially difficult for users new to the field to effectively manage and analyze their 129 

data. Moreover, while there are several tools available for individual clean-up and analysis steps 130 

(see alternative approaches section), there is a lack of a comprehensive, user-friendly guidance 131 

that covers the entire spectrum of data preparation and statistical analysis of FBMN results. 132 

In this protocol, we provide a detailed guide that starts with FBMN results, offering an end-to-end 133 

pipeline from feature detection, spectrum annotation, subsequent data clean-up and statistical 134 

analysis steps. This step-by-step guide is complemented with ready-made code for the popular 135 

statistical scripting and platforms R and Python, the QIIME2 toolkit (https://github.com/Functional-136 

Metabolomics-Lab/FBMN-STATS), as well as a web application designed to simplify the process 137 

(https://fbmn-statsguide.gnps2.org/). The protocol provides thereby a seamless analysis guide for 138 

FBMN results from the GNPS (https://gnps.ucsd.edu), and GNPS2 (https://gnps2.org) web 139 

platforms, which can also be adapted to other MS feature detection and annotation tools. 140 

Feature-based Molecular Networking from LC-MS/MS Data 141 

Liquid chromatography-mass spectrometry (LC-MS) is one of the most prominent metabolomics 142 

techniques, with applications in numerous research fields25–28. Specifically, LC coupled with 143 

tandem mass spectrometry (LC-MS/MS) has been widely used because it provides a broad 144 

coverage of chemical space allowing for the simultaneous semi-quantitative detection and 145 

qualitative annotation of many metabolites over a wide dynamic range14,29–32. In addition to 146 

providing the molecular mass, retention time, and isotopic pattern of a metabolite, MS/MS 147 

provides structural information about the detected species. This is achieved through the 148 

fragmentation of precursor ions into product ions and the measurement of their mass-to-charge 149 

ratios (m/z) and abundances. This is usually done through Data-Dependent Acquisition (DDA), 150 

where ions that are observed in MS1 survey scans are iteratively selected for further 151 

fragmentation in subsequent MS/MS scans (See Figure 1.1). DDA operates by selecting the “top 152 

N” peaks in each duty cycle, where “N” is a user-defined number. These peaks are chosen based 153 

on their intensity and other user defined criteria through an automated process15. The resulting 154 

MS/MS spectra of product ions can be used in several ways to determine a candidate structure: 155 
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1) via spectral matching against spectral libraries of experimental reference spectra or in silico 156 

generated spectra33,34; 2) via machine learning-based structural predictions using experimental 157 

MS/MS-generated molecular fingerprints against structural databases35,36; 3) and via de novo 158 

structure prediction using molecular structure fingerprint prediction combined with neural 159 

networks37. 160 

Non-targeted LC-MS/MS metabolomics is a powerful and versatile research approach that 161 

enables high-throughput analysis and simultaneous detection of many small molecules, making 162 

it an excellent method for gaining insights into biological systems (For more information on 163 

Experimental Design and LC-MS/MS Data Acquisition, refer to Box 1). However, mining the vast 164 

amount of data created by non-targeted metabolomics experiments remains a challenging task 165 

despite a range of available resources that guide in the qualitative and quantitative aspects on 166 

non-targeted metabolomics. Qualitative data exploration has been democratized by platforms 167 

such as GNPS38, by providing MS reference libraries, data analysis workflows, and compute 168 

resources for the community. Molecular networking (MN) is GNPS’ core concept and is based on 169 

the comparison of all MS/MS spectra within a dataset by modification-aware similarity metrics, 170 

which network features by their similar fragmentation patterns that are often reflective of structural 171 

similarity. FBMN6 and Ion Identity Molecular Networking (IIMN)39 add feature detection, improving 172 

the (semi) quantitative quality within MN results. FBMN builds upon the classical MN by 173 

harnessing both MS1 information, such as isotope patterns and retention time, and ion mobility 174 

separation when used. FBMN can distinguish isomers with similar MS/MS spectra, which might 175 

remain obscured in classical MN, through chromatographic or ion mobility separation.  176 

IIMN enhances MS/MS-based spectral networks by adding connectivity based on the MS1 feature 177 

shape correlation. It efficiently tackles the issue of unconnected ion adducts in Molecular 178 

Networking by connecting ions from the same molecules into groups called ion identity networks 179 

(IIN). This helps remove redundancy in MS-based metabolomics. 180 

 181 

Box 1 - Experimental Design and LC-MS/MS Data Acquisition 182 

To obtain high-quality and representative LC-MS/MS data, proper planning of the sampling and 

mass spectrometry analysis is essential. While this protocol article focuses on data analysis, 

we stress the importance of addressing the following topics prior to collecting any samples. It is 

crucial for researchers new to these experiments to seek guidance from a statistician and 

analytical chemists to guarantee optimal experimental design, instrument performance (e.g., 

system suitability tests), and analysis pipeline. Before proceeding with further processing and 

statistical analysis, raw LC-MS/MS data should be inspected by the user40–42. For raw data 

processing, we recommend the MZmine protocol43. Below, we provide a short checklist for 

guidance: 

 

● Experimental design and power calculation are crucial when determining the suitable 

number of samples and replicates. In non-targeted metabolomics experiments, it is often 

challenging to predict certain values, like the feature coefficient of variation and the 

expected effect size, which are crucial for estimating the required sample size and the 

power of the study. To navigate this, reviewing previous studies with similar biological 

systems and research questions can provide an approximate estimation of these values. 
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As a general rule of thumb, when the effect size is smaller, one might need more 

samples or replicates. 

● Replicates (technical and biological) to measure instrument and biological variance.  

● System and Process Blanks to identify and correct for contamination that may be 

introduced during the sample collection, preparation, or measurement process. Some 

common blank samples include44:  

● Solvent blank: Consists of only the solvent used to dissolve the sample. It is 

used to identify the contaminants present in the solvent. Also, adding this blank 

periodically in an analytical run reduces carryover. Blanks should be added into 

the same well plates or vials to cover similar contaminations. 

● Extraction blank: It is prepared by adding a known volume of solvent to a blank 

matrix such as water and extracting it the same way as a sample. This extracted 

blank is measured along the real sample to find the contaminants introduced 

during the extraction process. 

● Control samples, e.g., negative and positive controls. Depending on the experimental 

design, control samples are essential and should be included in the same number as 

the treatment samples.  

● Quality Control (QC) samples are needed to measure instrument performance. These 

can be in the form of pooled QC (for example, a combination of aliquots from each 

sample) or standard mixtures (such as a combination of reference standard chemical 

compounds or isotopically labeled compounds that can also serve as internal 

standards). These mixtures should span a broad chemical spectrum and cover a wide 

retention time range. 

● Randomization of sample injection order. It is suggested to randomize the injection 

order throughout the samples. However, we recommend injecting blanks at the start of 

the queue to prevent carry-over, which could lead to the removal of actual features from 

the samples during the blank removal step. Depending on the experimental design, it 

might also be useful to select certain sample types with the injection order, e.g., KO 

(knockout) vs. WT (wild type) mutant strains or low vs. high biomass samples, to avoid 

carryover between them. 

● Internal Standards (IS) can be added to every sample to track instrument performance, 

and if desired, quantify predefined metabolites. If no internal standards are available, 

“housekeeping features” such as ubiquitous contaminants or metabolites can be used 

to control for mass and retention time drift. 

 183 
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 184 
Figure 1: Flowchart of LC-MS/MS-based metabolomics experiment. 1. Data-dependent 185 

acquisition of MS/MS spectra. 2. Centroiding and file conversion. 3. Feature detection. 4. Feature 186 

annotation, network propagation and clustering. 5. Data clean-up, statistical analysis, and 187 

visualization (blank removal, imputation, normalization and scaling, followed by data visualization 188 

and statistical analysis.) 189 

Feature-based Molecular Networking Workflow 190 

As highlighted in Figure 1, non/targeted LC-MS/MS analysis workflows typically consist of data 191 

acquisition, centroiding and file conversion, feature detection, and feature annotation, including 192 

spectrum/library matching, in silico spectrum annotation and annotation propagation and 193 

clustering approaches, such as spectral networking. From there, the resulting feature tables 194 

contain all metabolites / small molecules features detected, including quantitative information 195 

(e.g., peak area) in each sample measured. This resulting feature-sample matrix is then further 196 

processed by blank removal, imputation, normalization and scaling and finally data visualization 197 

and statistical analysis.  198 

 199 

1. File Conversion 200 

 201 

Raw data acquisition in MS instruments entails first generating spectra in profile mode, also called 202 

continuous mode. In high-resolution instruments, each chemical entity is represented by signals 203 

of m/z ratios within a 5-20 ppm window, depending on the instrument’s accuracy. The resulting 204 

peak profile typically approximates a Gaussian shape and is continuous. To reduce data 205 

complexity for downstream analysis, the data is simplified such that each peak in m/z dimension 206 

is represented by a single peak in the mass spectrum. This process is called centroiding or 207 

sometimes confusingly referred to as peak-picking, not to be confused with peak-picking in the 208 

chromatographic dimension termed “feature detection” below. Centroiding can either be 209 
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performed on-the-fly during acquisition by the vendor software or during file conversion using 210 

tools like Proteowizard’s msConvert45 or ThermoRawFileParser46 when converting from vendor-211 

specific formats into more accessible, community-driven formats such as mzML. When using the 212 

“vendor” option in msConvert, the centroiding algorithm provided by the instrument’s vendor is 213 

used. These instrument-specific algorithms are typically more accurate than the algorithm 214 

otherwise available in msConvert and are thus highly recommended (See Figure 1.2).  215 

 216 

2. Feature Detection 217 

 218 

The process of converting raw data into a table of putative metabolic features, along with their 219 

relative abundances per sample, involves a pre-processing workflow that uses a series of 220 

algorithms. The resulting table as shown in Table 1 is referred to as a ‘feature quantification 221 

table’. Open-source tools such as the R package XCMS47 (often used with the package 222 

CAMERA48 for feature grouping), MZmine 349, MS-DIAL50, or OpenMS51, in addition to vendor 223 

specific tools can be utilized for this purpose.  224 

For the present protocol, we decided to focus on MZmine 3. Firstly, it provides an interactive and 225 

user-friendly graphical user interface (GUI) that can assist researchers without programming 226 

skills. Secondly, the direct interfacing of MZmine 3 with the downstream annotation tools is 227 

enabled by harmonized data exchange formats. Finally, the software offers a wizard for the 228 

simplified generation of data-processing workflows, which reduces the number of parameters to 229 

set and optimize for new users and experts. The process in MZmine 3 starts with importing 230 

(centroided) mzML data (described in ‘File Conversion’) followed by the assembly of ‘mass lists’ 231 

- i.e., lists of m/z values that exceed a user-defined intensity threshold. The workflow then 232 

progresses through three main stages: feature detection, feature alignment, and feature 233 

refinement (See Figure 1.3). For advanced optimization and fine-tuning, multiple tools such as 234 

NeatMS52, MetaClean53, and mzRAPP54 exist to assess feature quality. 235 

 236 

1. The feature detection phase is initiated by chromatogram building through the construction 237 

of extracted ion chromatograms (EICs) by linking MS1 signals in consecutive scans based 238 

on a maximum scan-to-scan mass deviation. This results in a list of features, each 239 

characterized by a retention time (RT) and m/z value. Optional smoothing in the RT 240 

dimension can be applied in the case of noisy data. The next step, ‘Feature Resolving’, 241 

distinguishes between overlapping and co-eluting chromatographic peaks and is used to 242 

link MS/MS spectra to their respective MS1 features. To remove redundant features 243 

originating from isotopologues of the same parent ion, the 13C isotope filter can be 244 

utilized. The ‘Isotope Pattern Finder’ identifies isotope signals of selected chemical 245 

elements in each feature’s mass list. The steps described above are carried out for the 246 

feature list of each data file (sample) individually.  247 

2. Next, in the feature alignment step, the individual feature lists created from multiple data 248 

files are merged by matching features across all samples based on their RT and m/z 249 

values. The peak alignment parameters are determined by the user and may differ 250 

depending on the particular instrument used55. 251 

3. Lastly, the feature refinement phase can include a gap-filling procedure that accounts for 252 

missing features in certain samples (e.g., signal below peak detection thresholds defined 253 
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in step 1). This procedure distinguishes between genuine absences and artifacts from the 254 

feature-detection process. It locates signals in the original mzML (centroided) data by re-255 

evaluating their presence in individual samples for all the features in the merged feature 256 

list and then replaces missing values with newly detected ones based on the user-defined 257 

parameters such as m/z tolerance and RT tolerance. These tolerances set the window 258 

within which the algorithm finds the new feature. 259 

Furthermore, the merged feature list can be filtered by removing duplicate features, 260 

features without a linked MS/MS spectrum, or features occurring outside a specified 261 

retention time range (e.g., during re-equilibration phases). The final step involves 262 

exporting the feature list as a feature quantification table (.csv). This table includes RT, 263 

m/z, and relative abundance per sample for each feature. Additionally, a text file (.mgf) is 264 

exported, describing the MS/MS and/or MS1 spectra linked to each feature. These output 265 

files provide appropriate inputs for statistical analyses and data analysis in tools such as 266 

GNPS and SIRIUS56. 267 

 268 

Table 1. Example Feature Quantification Table. The feature quantification table can be easily 269 

converted to a table in a text format (example of a table of features). 270 

 m/z RT (min) Adduct Charge Sample 1 Sample 2 … Sample N 

Feature 1  97.1082  4.6  [M+H]+  +1  2.08e07  9.47e06 … 3.27e08 

Feature 2 518.3032 2.0  [M+H]+2  +2  1.88e07  5.56e05 … 2.11e06 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Feature K  83.1017  1.6  [M+Na]+  +1  4.77e04 8.13e03 …  5.17e09 

 271 

 272 

3. Feature Annotation, Spectral Networking and Annotation Propagation 273 

 274 

The Metabolomics Standard Initiative (MSI) outlines four levels of metabolite identification through 275 

mass spectrometry to guide researchers in differentiating the level of identification rigor for the 276 

reported metabolites57. Level 1 annotations regard fully characterized compounds. To ensure 277 

accurate annotation confidence at this level, it is necessary to have at least two independent 278 

orthogonal data dimensions that match those of a pure compound analyzed in the same way 279 

(e.g., precursor m/z, RT, MS/MS fragmentation pattern). There should be no contradictions in any 280 

of the available data dimensions.  281 

Level 2 confidence is assigned when data are matched against public or commercial data 282 

libraries, such as MS/MS spectral matching on GNPS. Level 3 refers to compounds whose 283 

chemical class can be putatively inferred through physicochemical features or data similarity with 284 

known compounds (e.g., by spectral similarity (networking)), or using structural prediction tools 285 
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such as CSI:FingerID or CANOPUS35,37. Finally, level 4 refers to unknown features that can be 286 

consistently detected (e.g., defined m/z value, RT and MS/MS spectrum), but could not be 287 

annotated through previous levels. 288 

Feature annotation is essential in mass spectrometry-based metabolomics studies, especially to 289 

understand the biological significance of the detected features. Feature annotation entails several 290 

approaches, including database searches, spectral matching, and in silico annotation strategies. 291 

In silico annotation tools, such as SIRIUS, MS2Query, Network Annotation Propagation (NAP), 292 

Dereplicator, and Dereplicator+, predict metabolite identities based on spectral similarities56 and 293 

can only lead to MSI levels 2, 3 or 4. 294 

Another innovative method that combines feature annotation with visualization is molecular 295 

networking (MN), as shown in Figure 1.4. MN elucidates the structural relationships between 296 

metabolites, highlighting potential biological pathways and processes. The utility of MN spans 297 

across various fields, such as natural products, agriculture and clinical microbiology58–60. Using 298 

the MS-Cluster algorithm on the GNPS (https://gnps.ucsd.edu), and GNPS2 (https://gnps2.org) 299 

web platforms, MN creates a molecular network by comparing spectral similarities between each 300 

MS/MS spectra pair. With the same algorithm, GNPS allows the dereplication of MS/MS spectra 301 

by comparing them against comprehensive spectral databases, enabling feature annotations of 302 

varying reliability7. The .mzML or .mzXML spectra files can be analyzed on GNPS using the 303 

classical MN workflow38.  304 

For more precise quantitative insights, FBMN has emerged as a significant advancement by 305 

incorporating MS1 peak intensities, isotope patterns, retention times and ion mobility separation. 306 

Consequently, FBMN distinguishes between isomers with near-identical fragmentation spectra, 307 

but different retention times6. Unlike the classical MN, which required users to separately execute 308 

molecular networking and MS1 analysis, FBMN conveniently accepts the output of feature 309 

detection and alignment tools such as MZmine49,61 (see ‘Feature Detection’ above), MS-DIAL50, 310 

and XCMS47, and is available on the GNPS web platform. This compatibility with other tools 311 

makes FBMN seamlessly integrated into the overall analysis pipeline.  312 

 313 

4. Data Visualization and Statistical Analysis  314 

The feature quantification table (see section ‘Feature Detection’ and Table 1), contains a list of 315 

features, such as m/z and RT, as well as their relative abundances per sample. This table 316 

represents the basis dataframe for statistical analyses, which can help reveal distribution patterns 317 

between sample types and determine which features are responsible for distinguishing between 318 

them. The challenge lies in prioritizing the important features in a large dataset, considering 319 

chemical and biological relevance, as well as statistical significance. An unsupervised approach 320 

for initial exploration and visualization of the data is through dimensionality reduction techniques, 321 

such as Principal Coordinates Analysis (PCoA). Ideally, such an approach will provide a 2- or 3-322 

dimensional plot, where similar samples are grouped together, apart from dissimilar samples.  323 

Another unsupervised statistical approach is the use of hierarchical clustering to group samples 324 

with similar relative abundance profiles of features. The results of such analysis are often 325 

visualized in combination with a heatmap. This approach displays the features within each sample 326 

colored according to their relative abundance, and groups them according to their similarity. A 327 
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dendrogram is drawn beside the heatmap to illustrate the hierarchical relationship between the 328 

samples and features. Compound class ontologies such as ClassyFire62 or NPC63 categorize 329 

compounds based on shared structural features or biosynthetic origins and serve as high-level 330 

annotations of the data. CANOPUS64 predicts these compound classes from tandem mass 331 

spectrometry data without searching in structure databases. Analyzing the distribution and variety 332 

of compound classes, along with their up- and down-regulation, can yield biological insights that 333 

may not be attainable when solely considering m/z and retention time values. 334 

Aim of the Protocol 335 

The goal of this protocol is to provide an integrated pathway for downstream data clean-up and 336 

statistical analysis of FBMN results derived from non-targeted LC-MS/MS data (see Figure 1.5). 337 

Integrating FBMN results with statistical analyses has poses several challenges, often 338 

necessitating users to reformat, upload, and process the feature table with different external tools, 339 

in order to ultimately manually combine the outcomes. Our approach addresses this gap by 340 

offering a detailed guide and comprehensive solution to directly process and analysis the data 341 

after FBMN in one pipeline, shown in Figure 2. This pipeline is provided in popular scripting 342 

languages, R and Python, in conjunction with the well-known QIIME2 framework. It is available in 343 

the form of Jupyter notebooks for local use and Google Colab notebooks for cloud-based 344 

applications. Additionally, we have developed a web application with a graphical user interface 345 

(GUI), which can be accessed at https://fbmn-statsguide.gnps2.org/. The main manuscript 346 

focuses on the concepts and step-to-step guide for the R workflow, while the Supplementary 347 

Information (SI) contains step-to-step guides for the Python, QIIME2, and Webapp workflows. 348 

Though most steps are consistent across the workflows, any differences are addressed and 349 

complemented with alternative solutions in the SI. This protocol is made for both newcomers and 350 

experienced researchers in the metabolomics field: 351 

● For Beginners: It introduces essential tools, resources, and workflows. The guidelines 352 

and code provided make it easier to understand common data processing and analysis 353 

steps, facilitating navigation through the complexities of the field. The provided tools utilize 354 

common programming languages (R, Python), the QIIME2 platform, and a GUI, allowing 355 

users with diverse computational backgrounds to perform data analyses.  356 

● For Experts: It accelerates data analysis, ensuring faster interpretation of FBMN results. 357 

 358 

As inputs, the protocol requires a feature table and its corresponding metadata table. Throughout 359 

its execution, users receive: 360 

● Intermediate tables after each data cleanup step, aiding in comparison with the original 361 

feature table. Tabular outputs for clustering results from Hierarchical Cluster Analysis 362 

(HCA), list of statistically significant features as determined by ANOVA or Kruskal-Wallis 363 

tests, and Random Forest outputs indicating feature importance. Significant features refer 364 

to those that differ notably in at least one group when comparing multiple groups. Such 365 

features can be further investigated to determine if they really cause the differences we 366 

observed between groups or samples. 367 

● Visual outputs, such as PCoA score plots, heatmaps, volcano plots for significance tests, 368 

and box plots, showcasing group differences for significant features. 369 
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This protocol helps with mapping the results of some of the statistical approaches (e.g., clustering, 370 

significant features) back to the FBMN network view. This is facilitated by importing these output 371 

feature tables, with feature IDs and the relevant information, into CytoScape in order to examine 372 

the molecular network. Moreover, as all our resources are publicly available on GitHub, users can 373 

actively raise issues or provide suggestions on GitHub. 374 

 375 

 376 
Figure 2: Overview of the Data Analysis Pipeline: Integrating four core segments, the flowchart starts 377 

with sample collection and LC-MS/MS data acquisition, transitions to raw data conversion into mzML 378 

format, and results in generating a feature quantification table under “Raw Data Preparation”. This is 379 

followed by the “Data Cleanup” phase, emphasizing feature quantification table refinement, blank removal, 380 

imputation, and normalization strategies like Total-Ion-Current (TIC), Probabilistic Quotient Normalization 381 

(PQN) and scaling. Subsequently, the “Multivariate Statistics” segment showcases techniques such as 382 

PCoA plots, and heatmaps for effective data portrayal. In addition, the users are introduced to robust 383 

techniques including Random Forest classification. In the “Univariate Statistics” segment, tests such as 384 

ANOVA and Kruskal-Wallis test are discussed. 385 
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Limitations and Challenges 386 

Our protocol for FBMN is aimed to offer advanced statistical analysis solutions for broad range of 387 

users. We thus offer the notebooks and code in different scripting languages (R, Python, and 388 

QIIME2) and platforms (Jupyter and Colab) as well as a web app to suit the specific needs and 389 

preferences within the metabolomic community. 390 

This broad range of choices, while useful, comes with its own set of challenges. For instance, in 391 

the R Google Colab notebook, package installation can be time-consuming. Also, the inclusion of 392 

readline commands, although beneficial for customization, can appear cryptic to beginners. On 393 

the other hand, installing packages in the Python Google Colab notebook is relatively faster. 394 

There is one vital point to note regarding the ‘scikit-bio’ package’s incompatibility with Windows. 395 

Thus, Windows OS users are advised to either use the Google Colab version or consider the 396 

Windows Subsystem for Linux (WSL) for local operations. 397 

Furthermore, while Google Colab stands as a user-friendly platform, it is not devoid of limitations. 398 

One of the main concerns is that runtime automatically disconnects if the user leaves the Colab 399 

session inactive for 90 minutes or after 12 continuous hours of usage. This leads to the loss of 400 

the data and files they were working on from the Cloud session. Additionally, users must be aware 401 

of the 77 GB disk space limitation and ensure timely downloading of their results. 402 

Both the R and Python notebooks comprise over 70 steps, with a significant portion dedicated to 403 

data organization. While these notebooks function smoothly with smaller datasets when run on 404 

the Cloud, their performance can lag with larger datasets (e.g., those with over 100 samples and 405 

more than 2,000 features), especially given the constraints of Google Colab. In such scenarios, 406 

local execution is advisable. For local execution, we have provided guidance on using the 407 

Anaconda Navigator, a user-friendly GUI platform, to set up Jupyter notebooks. However, MacOS 408 

users might encounter installation challenges. As an alternative, MacOS users can opt for the ‘pip 409 

install’ method. While numerous online resources can help with this, we have chosen not to delve 410 

into the details here. The Streamlit WebApp for the protocol, although user-friendly, has its own 411 

set of challenges. Notably, there’s a data restriction of 200 MB, and larger datasets might 412 

inadvertently slow down the app or even lead to server crashes. 413 

Lastly, the QIIME2 notebook is broadly used and applicable for both the microbiome and 414 

metabolomics communities. Our additional Jupyter notebook lets users import data directly from 415 

a GNPS job link. However, this notebook cannot be accessed in the cloud. Users need to either 416 

install QIIME2 and GNPS packages on their computer or use Docker. This might be difficult for 417 

some, but it is a good option for those familiar with QIIME265. In all cases, users should always 418 

consider the size of their data, their computer’s power, and their own skill level while using the 419 

protocol.  420 

Alternative Open-Source Data Analysis Workflows and Protocols 421 

There have been many efforts in the community to provide and teach statistics solution for non-422 

targeted metabolomics data analysis, and multiple, scripts, web apps and software tools are 423 

available for data clean-up, statistical analysis and visualization. While we believe that such a 424 

streamlined solution for FBMN results, as described in our protocol, has not yet been provided, 425 

we would like to point out the many other tools, workflows and applications that are available. 426 

 427 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Table 2: Overview of alternative statistics tools and scripting solutions for statistical 428 

analysis of non-targeted metabolomics data. 429 
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GUI 

           

MetaboAnalyst Web App (GUI) Open Source Y Y Y Y Y N N www.metaboanalyst.ca/ 23,24 

Workflows 
           

Galaxy-M Workflow Open Source Y Y Y Y Y N N github.com/Viant-
Metabolomics/Galaxy-M 

66 

Workflow4Metabolomics Workflow Open Source Y Y Y Y Y N N github.com/workflow4met
abolomics 

67 

UmetaFlow Workflow Open Source Y Y Y Y Y N N github.com/biosustain/sna
kemake_UmetaFlow 

68 

Chemometrics Tutorials Workflow / Tutorial Open Source N N Y Y Y N Y github.com/Gscorreia89/c
hemometrics-tutorials 

 

QIIME2 metabolomics plugin Language Open Source N N N Y Y N N library.QIIME2.org/plugins
/q2-metabolomics/10/ 

65 

R Libraries 
           

mixOmics Package Open Source N N Y Y Y Y Y mixomics.qfab.org 69 

MetaboanalystR Package Open Source Y Y Y Y Y Y Y www.metaboanalyst.ca/d
ocs/RTutorial.xhtml 

70 

omu Package Open Source N N Y Y Y Y Y cran.r-
project.org/web/packages
/omu/vignettes/Omu_vign
ette.html 

71 

metabolomicsR Package Open Source N N Y Y Y Y Y cran.r-
project.org/web/packages
/metabolomicsR/index.ht
ml 

72 

MAIT Package Open Source N N Y Y Y Y Y www.bioconductor.org/pa
ckages/release/bioc/html/
MAIT.html 

73 

ropls Package Open Source N N Y Y Y Y Y bioconductor.org/package
s/release/bioc/html/ropls.h
tml 

 

MSStats Package Open Source N Y Y Y Y Y Y github.com/Vitek-
Lab/MSstats 

74 

Python Libraries 
           

TidyMS Package Open Source Y Y Y N N Y Y github.com/griquelme/tidy
ms 

75 

 430 

We summarized those that, in our opinion, are the most commonly used software tools in Table 431 

2. This table provides an overview of their functions, purpose, tool type, and when applicable, 432 

references to related protocols and guidelines. We also indicated where in the data processing 433 

pipeline these tools have application by indicating yes (“Y”) or no (“N”) in columns related to raw 434 

data processing (generation of feature quantification table, see section ‘Feature Detection’), 435 

data clean-up steps (involving quality control, missing value imputation, normalization, scaling, 436 

and transformation), and multivariate and univariate analyses.  437 
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We do note that this table is by no means exhaustive. All of these options are workflow dependent 438 

and vary based on factors such as the structure of the acquired feature quantification table and 439 

the chosen data analysis techniques76, and typically require specific file and table formats. 440 

Expertise Needed to Implement the Protocol 441 

We aimed to make this protocol accessible to a broad range of researchers, from absolute 442 

beginners to experts. As we provide different options of executing the code (Web App, Colab and 443 

Jupyter notebooks), the protocol should be useful for users both new to metabolomics data  444 

analysis, who want to perform a fixed set of processing and statistical analysis, as well as users 445 

that require customizable options and need to analyze large datasets. To guide readers through 446 

the different options and help to choose which option is most suitable, we generated a decision 447 

tree displayed in Figure 3. At a minimum, we recommend to have some general background in 448 

statistics and a basic understanding of LC-MS/MS data structure, as well as knowledge about the 449 

biological system and the experimental design of the dataset which should be analyzed.  450 

 451 

 452 
 453 

Figure 3: Decision tree to guide choosing which notebook/app to use. 454 
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2. Materials 455 

Software Used 456 

● Google Colab (Optional, cloud) 457 

● Local installation of Jupyter Notebook (Optional) 458 

● Streamlit Web App (Optional) 459 

● QIIME2 (Optional) 460 

Note: The pipeline can be accessed through Google Colab (which requires no local software 461 

installation), a Web App with Graphical User Interface (GUI), or through a local installation of 462 

Jupyter Notebook, which may be preferred for larger datasets. A decision tree for which method 463 

to choose is provided in Figure 3.  As a default for beginners, we recommend using the Colab 464 

Notebook with R code. In addition to the R code, Python and QIIME2 versions are also available 465 

in our GitHub Repository (https://github.com/Functional-Metabolomics-Lab/FBMN-466 

STATS/tree/main/data). Additional information regarding files other than R code available are 467 

provided in our supplementary information. A Web App version of the protocol (https://fbmn-468 

statsguide.gnps2.org/) is available for those who prefer a more visual interface.  469 

Required Files: 470 

● Feature quantification table (.csv) 471 

● Metadata (.txt) 472 

 473 

The feature quantification table (.csv), a characteristic product of LC-MS/MS metabolomics 474 

studies, encompasses all mass spectral features (integrated peak areas) and their relative 475 

intensities across diverse samples. As mentioned earlier, we used MZmine 3 to obtain the feature 476 

quantification table in .csv file format.  477 

The metadata is a .txt file that can be created in a word editor or spreadsheet programs such as 478 

excel or google sheets. The metadata table needs to be created by the user, providing additional 479 

context for the measured samples, such as sample type, species, tissue type, and collection time 480 

point. For the datasets to be fully considered for public meta-analysis, we suggest using a 481 

standardized metadata format with controlled vocabulary. We recommend adhering to 482 

standardized metadata practices and protocols, and for guidance users can refer to the ReDU 483 

metadata template (https://mwang87.github.io/ReDU-MS2-Documentation/HowtoContribute/). 484 

The metadata format in this protocol should be compatible with GNPS workflows (https://ccms-485 

ucsd.github.io/GNPSDocumentation/metadata/). The first column in the metadata, labeled 486 

‘filename’, should match the exact filenames as reported in the feature quantification table. 487 

Following this, one should include additional columns to the metadata that begin with 488 

‘ATTRIBUTE_’ (e.g., ATTRIBUTE_groups, ATTRIBUTE_timepoint).  489 

In our example metadata, columns like ATTRIBUTE_Replicate, ATTRIBUTE_Sample_Type, 490 

ATTRIBUTE_Batch, ATTRIBUTE_Month, and ATTRIBUTE_Year all contain group-based 491 

information. This type of grouping will assist in selecting different categories for statistical analysis 492 

throughout this guide. You can also include columns with continuous numerical data, such as 493 
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ATTRIBUTE_Injection_order or ATTRIBUTE_timepoint. To ensure statistical power, it is essential 494 

to use replicates (we suggest at least three) for each sample type within the experimental design. 495 

See Table 3 for an illustration of the metadata structure.  496 

 497 

Table 3: Sample metadata layout. 498 

The first column, ‘filename’, lists the filenames along with their specific extensions (preferably 499 

‘mzML’ or the older ‘mzXML’), exactly matching the column names in the feature quantification 500 

table. Two example “ATTRIBUTE_” columns are also included: “ATTRIBUTE_groups”, which 501 

showcases sample categorical data (i.e., different sample types such as Control, Sample, and 502 

Blanks), and “ATTRIBUTE_timepoint”, which is an example for numerical data.  503 

filename ATTRIBUTE_groups ATTRIBUTE_timepoint 

control_rep1.mzML Control 1 

⁞ ⁞ ⁞ 

Sample_type1_rep1.mzML Sample_type1 4 

Sample_type1_rep2.mzML Sample_type1 4 

⁞ ⁞ ⁞ 

blank.mzML Blank NA 

Additional Input Files 504 

Besides the feature quantification table and metadata, the R and Python notebooks can also 505 

integrate molecular annotation files (either in .txt or .tsv format). These include SIRIUS, 506 

CANOPUS, and GNPS annotations, which enrich our understanding of each feature during 507 

analysis. While the inclusion of SIRIUS and CANOPUS files is optional, they can provide valuable 508 

insights. 509 

GNPS annotations can be obtained from the Feature-Based Molecular Networking (FBMN) 510 

analysis. The process requires MS/MS fragmentation patterns in the “.mgf” format, a feature 511 

quantification table, both obtained with e.g., MZmine 3 (see section ‘Feature Detection’), and a 512 

metadata file. The .mgf file carries spectral information about specific MS/MS scans designated 513 

for each feature and feature IDs match with feature IDs in the feature quantification table. All of 514 

these files need to be uploaded to the GNPS platform. 515 

The metabolite annotation requires a user-defined mass tolerance. Subsequently, MS/MS 516 

patterns are matched against the GNPS database using a modified cosine similarity77, resulting 517 

in a molecular network that allows for the identification of compound names for all library hit 518 

features. The output of the FBMN job associated with the example data of this protocol is publicly 519 

available 520 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e and 521 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e
https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


18 

can be downloaded using the ‘Download Cytoscape Data’ option. The FBMN job’s .graphml file, 522 

found under the folder “gnps_molecular_network_graphml”, can be used to visualize the 523 

molecular network in Cytoscape software. The respective annotated files are located in the 524 

“DB_result” and “DB_analog_result” sub-folders (assuming an analog search is performed), 525 

with the former offering level 2 and the latter providing level 3 (molecular class) annotations. The 526 

analog search identifies structurally related molecules within the molecular network by applying a 527 

score threshold, such as a minimum cosine score that MS/MS spectra must achieve to be 528 

considered an annotation during spectral matching with MS/MS spectral libraries. An upper limit 529 

can be established for the mass shift between the library and potential analogs (e.g., 100 Da), 530 

thus expanding the scope of annotation.  531 

SIRIUS56 can predict molecular formulas, as well as structures through structure database 532 

matching using CSI:FingerID35,78. Furthermore, the integrated CANOPUS64 module provides 533 

ClassyFire based chemical class predictions. As for GNPS, the required input is a .mgf file 534 

associated with the MZmine feature quantification table with matching feature IDs across both 535 

files. However the .mgf file exported for SIRIUS through MZmine 3 differs from the .mgf exported 536 

for GNPS in that it contains isotopic MS1 patterns for accurate molecular formula prediction. 537 

All example input files to follow this protocol can be retrieved from the Functional Metabolomics 538 

Lab GitHub Repository (https://github.com/Functional-Metabolomics-Lab/FBMN-539 

STATS/tree/main/data). Furthermore, users have the convenience of directly uploading all input 540 

files by simply entering the task ID from their FBMN job on GNPS.  541 

Example Dataset 542 

The example dataset is part of a previously published study14, aimed to elucidate the effects of 543 

urbanization on organic matter chemotypes in coastal environments after a major rainfall event. 544 

Seawater samples were collected from 30 locations over seven areas along the San Diego, 545 

California coastline: Torrey Pines, SIO La Jolla Shores (Scripps Institution of Oceanography at 546 

La Jolla Shores), La Jolla Cove, La Jolla Reefs, Pacific Beach, Mission Beach, Mission Bay, 547 

capturing both pre- (Dec 2017) and post-rainfall (Jan 2018) conditions. In our analysis, we 548 

included supplementary data from October 2018, collected from the same sites (no-rain period), 549 

for our pipeline evaluation. The dataset consisted of 180 samples from the three sample times 550 

(Dec 2017, Jan 2018, Oct 2018) and 2 PPL process blanks at each of the sample times. The 551 

datasets can be found in the MassIVE repository: MSV000082312 and MSV000085786 552 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=8a8139d9248b43e0b0fda17495387756 553 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c8411b76f30a4f4ca5d3e42ec13998dc 554 

Note: Seawater samples collected during October 2018 were not available in the original article 555 

yet. The .mzML files were preprocessed using MZmine 3 (https://mzmine.github.io/) and the 556 

feature-based molecular networking workflow in GNPS 557 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e).  558 
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3. Procedure 559 

This protocol primarily focuses on the R workflow, given its broad adoption in metabolomics data 560 

analysis and the extensive libraries it offers for this purpose. However, recognizing the diversity 561 

of our audience and the growing popularity of other platforms, we’ve also developed workflows in 562 

Python and QIIME2 as well as a web application. Please refer to the SI document for the 563 

Python/QIIME2 notebook or web app workflow. In the following sections, instead of step-by-step 564 

instructions, we highlight the key concepts to avoid repetition from the notebook. Code blocks are 565 

included to illustrate the main algorithms and functions.  566 

▲CRITICAL: We recommend initially executing the notebook using the provided example 567 

dataset. Once familiar, proceed with your own data. This approach ensures a smooth transition 568 

from learning to applying the workflow. 569 

General Instructions for Navigating the Notebook: 570 

● Text in Red: These sections indicate critical information or cells that require user input 571 

within the notebook. They serve as instructions for adapting the notebook to different 572 

datasets without the need to modify the code. Further details are provided within the 573 

notebook. 574 

● User Prompt Guidance: When you encounter code cells with red highlights, simply 575 

execute them without changing their contents. For instance, you may come across lines 576 

such as 577 

Directory <- normalizePath(readline("Enter the folder path in the pop-up 578 

box: "),"/",mustWork=FALSE) 579 

To provide input, a pop-up box will appear in the output section. Make sure to enter your 580 

answers in the pop-up box instead of entering directly within the code. After entering your 581 

input, remember to press ‘Enter’ to proceed to the next step.  582 

Using these prompt boxes ensures that user input is seamlessly integrated into the 583 

following operations. The position of these prompt boxes might differ depending on your 584 

system as they could appear directly below the active cell, at the notebook’s top, or even 585 

towards the upper section of your screen. 586 

● Text in Green: This indicates that the following cell in the notebook contains function 587 

definitions and will not display any visible outputs. Even though the underlying code in 588 

these cells may seem complex, its purpose is to make repetitive tasks more efficient. 589 

Readers who come across these green-highlighted cells do not need to understand the 590 

complexities of the code. 591 

● Using the ‘#’ Operator: Lines in the code cells that start with ‘#’ are comments explaining 592 

the code’s function or purpose. These comments are “commented out” and will not be 593 

executed. To run a commented-out code, remove the ‘#’ symbol and run the cell again. 594 

 595 

3.1. Preliminary Setup for the Notebook 596 

We recommend beginners to use Google Colab for the R notebook due to its hassle-free setup 597 

as it requires no installations, making it accessible for those unfamiliar with the setup process. 598 

However, for regular analysis, local execution in Jupyter on a contemporary desktop computer 599 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


20 

(E.g., Intel i7, 16 core, 64 GB RAM) is typically faster and more efficient. The reported processing 600 

times here are based on our example data set on the Colab platform. The durations other than 601 

for package installation are estimated from a beginner’s viewpoint, reflecting the time typically 602 

required for someone new to complete the analysis. To easily install and run Jupyter Notebook in 603 

R, consider using Anaconda Navigator, following the instructions provided in the accompanying 604 

document (https://github.com/Functional-Metabolomics-Lab/FBMN-605 

STATS/blob/main/Anaconda_Rkernel_installation_JupyterNotebook_JupyterLab.pdf). 606 

 607 

▲CRITICAL: To ensure proper execution and chronological order, please run the notebook cell-608 

by-cell instead of running multiple cells simultaneously. The numbers assigned to each cell will 609 

help you navigate and determine if the cells have been executed correctly and in chronological 610 

order. 611 

3.1.1. Package Installation ⬤ Timing 15 mins 612 

Step 1: Package Installation 613 

● The notebook utilizes R version 4.1.3 (2022-03-10) 614 

● Begin by installing and loading the necessary R packages using the p_load() function 615 

from the ‘pacman’ (v0.5.1) package79. This function checks if a package is installed, if not, 616 

it installs the package from CRAN or other repositories in the pacman repository list and 617 

loads the package. It is a more efficient alternative to using install.packages() and  618 

library() functions individually for each package. 619 

● Required Packages: The following R packages are essential for this protocol: 620 

○ Data Cleanup: tidyverse80 (v2.0.0), IRdisplay81 (v1.1), KODAMA82 (v2.4) 621 

○ Multivariate Statistics: factoextra83 (v1.0.7), vegan84 (v2.6-4), ComplexHeatmap85 622 

(v2.10.0), dendextend86 (v1.17.1), NbClust87 (v3.0.1), rfPermute88 (v2.5.1). 623 

○ Univariate Statistics: FSA89 (v0.9.4), matrixStats90 (v0.63.0). 624 

○ Visualization and Plotting: ggsci91 (v3.0.0), cowplot92 (v1.1.1), svglite93 (v2.1.1). 625 

 626 

● Packages are installed just before their respective sections to reduce installation time. 627 

However, please note that the packages installed initially in one section can be used for 628 

the later sections as well. For example, tidyverse (v2.0.0) can be used throughout the 629 

notebook, not just for data cleanup. 630 

 631 

Step 2: Set Working Directory 632 

(User Input Required) 633 

 634 

● Set a folder as the working directory. This is where you access input files and save output 635 

files. Make sure to include all necessary input files in this folder. 636 
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● In Google Colab, click on the three dots in the upper left corner to see the notebook 637 

contents. Click on the folder icon and create a new folder by right-clicking in the empty 638 

space and selecting ‘new folder’. 639 

● When you run the following cell in the notebook to set a working directory, a pop-up box 640 

will display as shown in Figure 4. Insert the path of the folder containing your input files 641 

and press ‘Enter’. 642 

● (For Local Environment) If you’re running the notebook in your local environment, you 643 

can directly specify the local path of your folder to set it as your working directory. For 644 

example, if your folder is located at D:\User\Project\Test_Data, simply input this path when 645 

prompted and press ‘Enter’. 646 

 647 
Figure 4: Screenshot of the code cell from R Google Colab Notebook to set the working directory. 648 

The image displays the code cell targeting the ‘/content/test_data’ directory. This user-created directory 649 

holds the input files for the data analysis. Note the stop symbol with the surrounding loading circle, indicating 650 

the cell awaits user input. To proceed to the next cell, provide the input (e.g., /content/test_data) and press 651 

enter. 652 

3.1.2. Data Import 653 

This section guides users through the process of importing necessary data files for the Notebook. 654 

Various methods are outlined, catering to different data sourcing preferences. 655 

 656 

Step 3: Uploading Files to Google Colab 657 

(User Input Required) 658 

 659 

Right-click on the folder you created in the Google Colab workspace and select ‘upload’ to transfer 660 

the required files from your local machine to the cloud session. If you do not want to use files from 661 

your local machine, you can skip this step and proceed directly to step 4.2 (‘Loading Files from 662 

URL’) or 4.3 (‘Loading Files from GNPS’). 663 

Step 4: Select a Data Loading Method (Choose One Option from Steps 4.1 to 4.3)  664 

The user can choose from the following options provided in steps 4.1 to 4.3 to import their data.  665 

 666 

Step 4.1: Loading Files from the folder 667 

(User Input Required) 668 

 669 

 670 
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671 
Figure 5: Screenshots illustrating loading input files from a folder: a) Table showing all the files in the 672 

working folder, where the first column, labeled “INDEX”, denotes the serial or index number of the files. 673 

b) Shows the user input interface. Upon executing the code cell, the user is prompted to enter the index 674 

numbers for the feature table and metadata. In this example, “5” and “2” are entered, referencing the files 675 

indicated in (a). 676 

 677 

In this step, you will begin by viewing a table displaying a list of files in your working folder (e.g., 678 

uploaded in the previous step) as shown in Figure 5a. Each file will have an index number 679 

associated with it. Your task will be to import three tables by specifying the index number 680 

associated to each: the feature quantification table (ft), the metadata table (md), and optionally, 681 

annotation tables (an). For an example, see Figure 5b. To guide you through this process, there 682 

are three code blocks that require user input.  683 

 684 

1. Feature Quantification Table and Metadata Import: The first code block will prompt you 685 

to enter the index numbers associated with the feature quantification table and metadata, 686 

separated by commas. Simply input the corresponding index number assigned to each of 687 

these files. 688 

2. Annotation Tables Import: The second code block will request the index numbers 689 

associated with the annotation tables. Specifically, you will be asked to enter the index 690 

numbers of the GNPS library annotation file and the analog annotation files. If you have 691 

not performed an analog search for FBMN, only provide the index number of the GNPS 692 

library annotation file. 693 

3. SIRIUS Annotation File Import (Optional): The third code block requests you to input 694 

the index number of a SIRIUS annotation. This file will be used to merge all annotations 695 

(e.g., GNPS library, analog hits, SIRIUS) into a single master table for easier data 696 

exploration later on. It is worth noting that this protocol does not specifically focus on 697 

SIRIUS annotations for analysis. The inclusion of SIRIUS annotations is solely for the 698 

convenience of consolidating all annotations in one place for the user. 699 

 700 

By following these prompts, one can successfully load the essential tables required for the 701 

subsequent analysis. Make sure to carefully input the correct index numbers. 702 
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Step 4.2: Loading Files from URL 703 

(User Input Required) 704 

 705 

● We also provide an example of retrieving data from a URL (for example, the feature 706 

quantification table can be obtained from https://raw.githubusercontent.com/Functional-707 

Metabolomics-Lab/FBMN-STATS/main/data/SD_BeachSurvey_GapFilled_quant.csv) 708 

● We access the feature quantification table, metadata, and analog result files directly from 709 

our Functional Metabolomics GitHub page. 710 

● If you are using your own dataset (or the test dataset) in Google Colab, you can get the 711 

file URL by uploading the input files to the Colab workspace, right-clicking on the file, 712 

selecting “Copy path”, and then replacing the URL in the relevant cell. 713 

 714 

Step 4.3: Loading Files from GNPS 715 

(User Input Required) 716 

 717 

● In this step, you can load files directly from the repositories MassIVE or GNPS. If you have 718 

performed FBMN on your feature quantification table, you can access the required files 719 

by providing the task ID. 720 

● To locate the task ID of your FBMN job within your GNPS account, navigate to the ‘Jobs’ 721 

section. Here, the ‘unique ID’ for each job is listed in the ‘Description’ column. 722 

● When you run the relevant cell in the notebook, you will be prompted to enter the task ID 723 

within the notebook. Given the task ID, the notebook will retrieve the necessary files for 724 

further analysis. 725 

 726 

▲CRITICAL: Make sure your metadata has the necessary attribute columns to describe the data 727 

(at least one, e.g., ATTRIBUTE_SampleType). If your FBMN metadata is insufficient, you might 728 

need to load additional metadata from a local folder for downstream statistical analysis, adding 729 

an additional step in the workflow. 730 

 731 

Step 5: Exploring the Imported Files 732 

 733 

Use the head() and dim() functions to get an initial view of your imported data files.  734 

● The head(ft) function displays the first six rows of the feature table by default, giving 735 

you a quick look at your data’s structure.  736 

● The dim(ft) function reveals the dimensions of your feature quantification table, i.e., the 737 

number of rows and columns. 738 

 739 

▲CRITICAL: If you encounter an error while executing certain code cells, it is good practice to 740 

verify the correctness of your data tables using the head() and dim() functions. 741 

 742 

We also provide a special summary function InsideLevels(md) to explore the metadata, which 743 

returns a summary table with columns for INDEX, ATTRIBUTES, LEVELS, COUNT, and 744 

ATTRIBUTE_CLASS.  745 
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 746 

1. INDEX: Row number in the summary table 747 

2. ATTRIBUTES: Column name of the attribute, e.g., ATTRIBUTE_Sample_Type 748 

3. LEVELS: Unique groups within the attribute column, e.g., Blanks, Sample 749 

4. COUNT: Number of files for each category, e.g., 6, 180 indicating 6 files for “Blank” sample 750 

type and 180 for “Sample” sample type. 751 

5. ATTRIBUTE_CLASS: Data type of the attribute. Useful for spotting cases where a 752 

numeric attribute like ATTRIBUTE_minutes is classified as ‘character’. 753 

 754 

3.1.3. Merging Annotations with Feature Quantification Table 755 

This section involves integrating various annotations, such as SIRIUS and GNPS annotations, 756 

into our feature quantification table. This process is vital as it helps identify the metabolites 757 

corresponding to the features in our feature quantification table, aiding in the interpretation of our 758 

metabolomics data. 759 

 760 

Step 6: Identifying Appropriate Columns for Merging 761 

Depending on the type of annotation to be merged, the feature quantification table’s unique ‘row 762 

ID’ column is matched with the corresponding column in the annotation file: 763 

 764 

● GNPS Annotations: The ‘row ID’ is matched with the ‘#Scan#’ column in the GNPS 765 

annotation file. The ‘Compound_Name’ column contains the annotation information. 766 

● GNPS Analog Annotations: Similar to GNPS annotations, the ‘row ID’ is matched with 767 

the ‘#Scan#’ column in the GNPS analog annotation file. The ‘Compound_Name’ column 768 

contains the annotation information. 769 

● SIRIUS Summary Files: The ‘row ID’ is matched with the ‘id’ column in the SIRIUS 770 

summary file. A typical feature ID in the ‘id’ column might look like this: 771 

“3_ProjectName_Mzmine 3_SIRIUS_1_16”, where the last string (16) represents the row 772 

ID. 773 

 774 

Step 7: Ensuring Data Compatibility 775 

Before merging, we ensure that the classes (or data type) of the columns meant to be merged 776 

are the same. Then, we can combine feature and annotation data based on the appropriate 777 

matching columns. Any mismatch, such as one column being of character type while the other 778 

one is numeric, can cause merge errors, even if the values within the columns are identical. 779 

 780 

Step 8: Merging Annotations 781 

● Rename the column names of analog annotation dataframe `an_analog` with an 782 

‘Analog_’ prefix and merge the modified `an_analog` dataframe with `an_gnps` based 783 

on #Scan#. 784 

● For each unique ‘#Scan#’, consolidate multiple compound names into a single row. If both 785 

the GNPS compound names (actual and library hits) for a particular ‘#Scan#’ are identical, 786 
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keep one; otherwise, combine them using a “;” separator. The output is 787 

`an_final_single`. 788 

● Merge `an_final_single` with the feature quantification table (`ft`) using ‘#Scan#’ 789 

and ‘row ID’ as matching columns respectively. Keep all rows from the feature 790 

quantification table. 791 

 792 

Additional steps: 793 

 794 

Incorporating Additional Annotations (optional) 795 

● If SIRIUS annotations are available, follow these additional steps: Extract ‘row ID’ from the 796 

‘id’ column in the SIRIUS dataframe, rename the columns with a ‘SIRIUS_’ prefix, and 797 

merge the modified SIRIUS dataframe with `an_final` data frame based on ‘row ID’.  798 

● For simplicity, we have shown here how to merge SIRIUS summary files. This process 799 

can be similarly adapted for CANOPUS summary files. 800 

 801 

Exporting the Merged Annotations 802 

● Finally, write the merged annotation table to a CSV file for further data exploration and 803 

downstream analyses. 804 

 805 

3.1.4. Ensuring Metadata and Feature Quantification Table 806 

Compatibility for Downstream Analysis  807 

This section streamlines the metadata and feature quantification tables, ensuring they align 808 

perfectly for subsequent steps in the protocol and remove discrepancies between them. By 809 

following the outlined steps, we achieve harmonized data structures. A final verification confirms 810 

that all files in the feature table are mirrored in the metadata, and vice versa. Upon successful 811 

validation, the tables are set for the next section of analysis. If there is a mismatch, often due to 812 

naming inconsistencies or missing files, the user needs to rectify these issues before moving 813 

forward. As a user, you are not required to modify any of the code within this section. Simply 814 

execute each cell in turn. 815 

 816 

Step 9: Creating Backup Files 817 

The feature quantification table (`ft`) and metadata (`md`) files are stored under different names 818 

(`new_ft`, `new_md`) to preserve the original versions. 819 

 820 

Step 10: Cleaning up the Feature Quantification Table 821 

● Clean the feature quantification table by removing ‘peak area’ extensions from the column 822 

names, a default format included in MZmine-derived feature quantification tables.   823 

● Check and remove any columns containing only NA values present in the feature and 824 

metadata tables. 825 

● Check and remove any rows and columns containing only empty strings in the metadata 826 

table 827 

 828 
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Step 11: Updating the Row Names of the Feature Quantification Table 829 

● In this step, we reformat the row names to consolidate essential information about each 830 

feature. By doing this, we can retain only the numeric data in the feature quantification 831 

table and remove all other columns.  832 

● The row names are constructed by concatenating the Feature ID, m/z, RT, and GNPS 833 

annotations into a single string, in the following format: 834 

`XFeatureID_m/z_RT_GNPS_annotations`.  835 

● An example row name is `X92649_226.951_14.813_NA;TRYPTOPHAN`. Here, “NA” 836 

indicates that there was no direct library hit for this feature. However, the analog 837 

annotation suggests it could be tryptophan. 838 

● In the R environment, a dataframe’s row names must be characters or strings. Thus, we 839 

add the ‘X’ character prefix to the numeric Feature ID to ensure compatibility. 840 

 841 

Step 12: Selecting Relevant Columns 842 

(User input - Optional)  843 

● Retain only ‘.mzML’ (or ‘.mzXML’) file-relevant columns and remove extraneous 844 

information, such as additional columns added due to IIMN. Here, the features are 845 

represented as rows in the feature quantification table.  846 

● Only when the file extensions ‘.mzML’ or ‘.mzXML’ are not available, the user is prompted 847 

to enter their respective file extension. 848 

● This step ensures that the feature quantification table contains only the intensity values of 849 

the features, which is crucial for subsequent calculations. The modified row names provide 850 

basic feature information, and for a more detailed understanding, you can refer back to 851 

the original feature quantification table. 852 

 853 

Step 13: Verifying File Consistency 854 

The metadata and feature quantification tables are arranged in the same order of ‘.mzML’ (or 855 

‘.mzXML’) file names. We then verify consistency between the feature and metadata tables by 856 

using the `identical(new_md$filename, colnames(new_ft))` command.  857 

● If the result is TRUE, proceed to data cleanup.  858 

● If FALSE, there might be missing files or discrepancies in file naming. Check the 859 

corresponding column names in the feature quantification table for potential errors like 860 

spelling mistakes or case-sensitive issues, and re-upload the correct files. Re-run all the 861 

above steps once corrected. 862 

 863 

3.2. Data Cleaning: ⬤ Timing 20-30 mins 864 

Following the LC-MS/MS data pre-processing with MZmine, we perform the post-processing of 865 

the data (also known as data pretreatment or data clean-up) as the first crucial step in our 866 

workflow. While the ‘preliminary setup for the notebook’ section prepares the feature and 867 

metadata tables for analysis, actual modifications to the data commence from this section. 868 

 869 

 870 

 871 
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Step 14: Transposing the Feature Quantification Table 872 

● As a first step, we transpose the feature quantification table. The result is a table (`ft_t`) 873 

where the row names represent the sample names, and the column names consist of 874 

concatenated feature information. 875 

● Then, we merge this transposed feature quantification table (`ft_t`) with the metadata 876 

(`new_md`), using the sample names as the common link. This merged table, referred to 877 

as `ft_merged`, consolidates all necessary information in a single structure. 878 

● The `ft_merged` table can also be exported to a CSV file for future use, such as batch 879 

correction or other specialized analyses. 880 

 881 

3.2.1. Batch Correction (Optional) 882 

Batch effects are systematic differences in sample measurements when samples are run as 883 

multiple batches or groups. In most cases, when the sample sizes exceed the measurement 884 

assay, it is often necessary to measure the samples in multiple batches. This might lead to varying 885 

mass spectra among the samples within a batch and among different batches94. Several factors 886 

could contribute to these batch effects such as variability in instrument conditions, RT shifts, and 887 

gradual contamination of LC columns when measuring multiple samples over a long period. 888 

These are often unavoidable issues, hence it is common to treat these effects post-sample 889 

measurement95. 890 

To correct these unwanted variations, we first need to identify their presence, remove or adjust 891 

the variations for further statistical analysis and assess the performance of our method96. The 892 

most common method for visualizing or identifying the presence of batch effects is through a 893 

simple Principal Component Analysis (PCA), guided PCA97 or Principal Coordinates Analysis 894 

(PCoA). In the PCA/PCoA scores plot, it is generally expected that all the QCs cluster together 895 

indicating little analytical variation in the data. When the inter-batch variation gets higher, the inter-896 

QC distances in the PCA/PCoA plot will also increase98. To visually assess this using the 897 

notebook, follow these steps: 898 

1. Execute Step 25 to install necessary packages for multivariate analysis. 899 

2. Run Step 32 and Step 33 to visualize the PCoA using the custom-made `plotPCoA()` 900 

function. Detailed usage instructions are provided in the respective steps.  901 

Assuming your sample type information (description of which samples are pooled QCs, blanks, 902 

samples etc.) is located in the ‘ATTRIBUTE_Sample_Type’ column of the metadata, the function 903 

can be invoked as follows: 904 

plotPCoA( 

    ft = ft_t,  

    md = new_md, 

    distmetric = "euclidean",  

    category_permanova = "ATTRIBUTE_Sample_Type", 

    pcoa_category_type = 'categorical', 

    category_pcoa_colors = "ATTRIBUTE_Sample_Type") 
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We have deferred this visualization to a later section, after data cleanup. As we delve deeper into 905 

multivariate analyses after data cleanup, this approach avoids redundancy and ensures users 906 

can maximize the utility of this protocol. 907 

Another method is to use Analysis of variance (ANOVA) by comparing the QC mean of different 908 

batches for statistically significant differences99. Once the presence of a notable batch effect is 909 

confirmed, multiple approaches can be used to correct the effects, including  910 

 911 

● Normalization methods such as Metabodrift100, ComBat101 912 

● Transformation method: waveICA102 (wavelet transformation coupled to ICA) 913 

● Regression-based approaches such as linear least-square (LS) method103, QC-based 914 

robust LOESS correction40, QC-support vector regression104 (QC-SVR) 915 

● ML-based methods such as random forest‐based QC‐RFSC correction105, deep learning 916 

model: NormAE (Normalization Autoencoder) algorithm106, Regularized Adversarial 917 

Learning Preserving Similarity107 (RALPS). 918 

Each method has its strengths and limitations. When there are no QCs included in the study, 919 

normalization can be used instead to attempt to reduce most of the unwanted variations108, at the 920 

risk of removing true biological variation. For the sake of simplicity and to cater primarily to 921 

beginners, this protocol does not elaborate on batch correction. However, for those interested in 922 

exploring batch correction in depth, we have prepared a supplementary R notebook available on 923 

our GitHub repository (https://github.com/Functional-Metabolomics-Lab/FBMN-924 

STATS/blob/main/R/Additional_Notebooks/Batch_Correction.ipynb).  In this notebook, we 925 

execute inter-batch correction similar to the method described by Qin Liu et al94. The procedure 926 

involves calculating the mean of each feature across all batches, then calculating the batch-927 

specific feature mean, and subsequently adjusting feature intensities within each batch relative to 928 

the batch-specific and overall means. For intra-batch adjustments, the notebook illustrates the 929 

QC-based LOESS correction method, with a prerequisite that each batch should start and end 930 

with a pooled QC injection. 931 

3.2.2. Blank Removal 932 

To prioritize or identify metabolites from our samples, we need to remove contaminants, i.e., 933 

features found in the blanks, before proceeding with statistical analysis109. While blank removal 934 

can be executed during pre-processing with MZmine 3, which might result in the absence of blank 935 

features and samples in both the feature table and metadata, conducting it during post-processing 936 

offers more flexibility. If you have performed blank removal during pre-processing, simply skip 937 

steps 16-18. Instead, designate the previous variables as the resulting blank-removed table and 938 

the metadata for samples, ensuring a seamless continuation of the workflow: `blk_rem <- 939 

ft_t` and `md_Samples <- new_md`. For a graphical overview on blank removal, see Figure 940 

6, and for more insights, refer to Box 2. 941 

 942 

 943 

 944 
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Step 15: Examining Metadata Attributes 945 

Run InsideLevels(new_md) to identify unique groups within each metadata attribute. This 946 

helps to find the attribute column containing sample type information (e.g., ‘Blanks’, ‘Samples’). 947 

 948 

Step 16: Separating Blank and Sample Files  949 

(User Input Required) 950 

 951 

In this step, the data is split into two groups: ‘blank’ and ‘sample’ files. It’s important to note that 952 

‘samples’ here include all mzML (or mzXML) files except blanks, including control samples, as 953 

they might be influenced by blank features. 954 

 955 

● Identify the Attribute Column: The user will first be prompted to enter the index number 956 

of the attribute containing information about samples and blanks. Here, it is 957 

‘ATTRIBUTE_Sample_Type’. 958 

● Display Unique Groups: The unique groups within the chosen attribute column will be 959 

displayed. For example, in our dataset, it will show Blank and Sample. However, your 960 

dataset might include various groups, such as Blank, Samples, Control, etc. 961 

● Select the Blank group: Next, the user will be prompted to enter the index number 962 

corresponding to the blank group. If there are multiple groups representing blanks (e.g., 963 

Blank, PPL_Blank), their index numbers should be entered, separated by commas. 964 

● Select the Sample group: Similarly, the user will be asked to enter the index number(s) 965 

for the sample level. If the dataset includes multiple groups for samples (e.g., Sample, 966 

Control), the corresponding index numbers should be entered, separated by commas. 967 

● Subset the Data: Using the information provided, the metadata (`new_md`) will be 968 

subsetted into `md_Blank` and `md_Samples`. The corresponding feature 969 

quantification tables will be obtained and named `Blank` and `Samples`, respectively. 970 

Step 17: Define Cutoff for Blank Feature Removal 971 

(User Input Required) 972 

 973 

In this step, the user will need to set a cutoff value within the range of 0 to 1, with a recommended 974 

range of 0.1 to 0.3. This value will determine which features are considered to be artifacts of the 975 

blank and thus removed from the dataset. The next step will explain how the features exceeding 976 

this cutoff are identified and eliminated. 977 

 978 

Step 18: Perform Blank Removal 979 

Calculate the blank’s contribution to each feature and eliminate those exceeding the user-defined 980 

cutoff. This is achieved by: 981 

● Compute the mean value for each feature within the dataframes (`Blank`) and 982 

(`Samples`). This step calculates two mean values for each feature, one for blanks and 983 
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one for samples. These averages are stored in a new dataframe called `Avg_ft` under 984 

the columns ‘Avg_blank’ and ‘Avg_samples’. 985 

● Compute the ratio of the average blank contribution to the average sample contribution 986 

for each feature. 987 

● Generate a binary mask where entries corresponding to ratios above the user-defined 988 

cutoff are marked as 1 (TRUE), and all others are set to 0 (FALSE). This mask helps in 989 

identifying which features are significantly present in blanks as compared to samples. 990 

● Retain only the features associated with 0s in the binary mask. Features with a ratio 991 

exceeding the cutoff (marked as 1) are considered artifacts from the blanks and are thus 992 

removed. Conversely, if the feature intensity is significantly higher in samples than in 993 

blanks, it is deemed a true feature from the samples and is retained (marked as 0). 994 

● The final table, free from blank artifacts, is named `blk_rem`, and its corresponding 995 

metadata is `md_Samples`. 996 

The final output is the `blk_rem` table, which excludes background or noise features. 997 

Information on the total number of features, the number of background/noise features, and the 998 

number of features after noise exclusion is also displayed. Steps 16-18 are displayed in Box 2. 999 

 1000 

▲CRITICAL: Lowering the cutoff to 0.1 demands a greater contribution from the sample (90%) 1001 

and limits the blank’s contribution to 10%. Raising the cutoff leads to fewer background features 1002 

being identified and more analyte features being observed. Conversely, lowering the cutoff is 1003 

more stringent and removes more features. 1004 

 1005 

Box 2 - Blank Removal 1006 

Some existing methods to achieve blank removal are: creating a molecular network using the 

online platform, the global natural product social molecular networking (GNPS), and visualizing 

the network in Cytoscape to manually remove the blank and media nodes. But this is a tedious 

process7; there is also Lawson et al.’s msPurity R package with a function called “SubtractMZ” 

to perform blank removal110. Data-adaptive filtering methods have also been suggested to 

remove features from blanks and low abundant features from samples with undetected 

values111.  

Another popular feature filtering method is based on the Coefficient of Variance (CV). Also 

referred to as relative standard deviation (RSD) is a measure of statistical dispersion, calculated 

as the ratio of the standard deviation to the mean112. When pooled QC samples are integrated 

throughout a study, CV can be used to assess the stability of each feature. As a general rule of 

thumb, features exhibiting a CV greater than 30% are typically excluded, though the threshold 

is more stringent (at 20%) for FDA studies. However, it’s essential to approach CV filtering with 

caution. Schiffman et al. have highlighted the potential limitations of this method, pointing out 

that CV primarily evaluates variability across technical replicates without giving weight to 

biologically meaningful variability across different subjects113. Consequently, while CV filtering 
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might be apt for studies focusing on homogenous samples like plasma or Escherichia coli cells, 

it might not be the best fit for diverse sample sets such as environmental or fecal samples. The 

dispersion ratio or D-ratio, introduced by Broadhurst et al., offers an alternative to a simple CV 

cut-off by comparing both technical and biological variance. It is calculated by dividing technical 

variance by the total variance, which includes both technical and biological variances. 

Therefore, for any feature, a 0% D-ratio signifies that the variance is entirely biological, whereas 

a 100% D-ratio denotes complete technical noise, without any biological information. So, when 

assessing D-ratios for metabolites, it is better to retain the ones with D-ratios closer to zero114. 

 
Figure 6: Blank Removal Process: Featuring a graphical representation of the blank removal followed 

by screenshots of the corresponding R code executed for the procedure. 
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 1007 

3.2.3. Imputation 1008 

 1009 

Many feature extraction software programs, such as MZmine 3, often generate tables with missing 1010 

values denoted as “NA”, “NaN” or 0. This means that for several m/z and RT traces in a given 1011 

sample, there may not be a peak detected and therefore no value is available76. However, many 1012 

statistical approaches, such as Principal Component Analysis (PCA), require numerical values 1013 

for each observation. Hence, these features with missing values need to be removed or imputed. 1014 

In this section, we handle the zero values in our blank-removed feature quantification table. Refer 1015 

to Figure 7 for a graphical overview on imputation and for more information, see Box 3. 1016 

 1017 

Step 19: Analyzing the frequency distribution of relative intensities 1018 

We first examine the distribution frequency of the relative intensities in our feature quantification 1019 

table by creating a histogram. This reveals any notable gaps in the range of values, such as a 1020 

large number of zeros or a lack of values within a particular range. In our example, we observed 1021 

many zeros and no values in the range of 0 to 100. The smallest non-zero value in our table was 1022 

between 100 and 1000. 1023 

 1024 

Step 20: Replacing zeros with random values 1025 

We replace all zero values in the dataset with the randomly generated number between 1 and the 1026 

smallest non-zero value in our blank-removed table. This process, known as imputation, fills in 1027 

the gaps in our data with plausible values, which can improve subsequent analyses. 1028 

▲CRITICAL: Imputation is not advised if one plans to execute a PCoA using the Jaccard distance 1029 

since Jaccard transforms data into binary (0 and 1). Without zeros, it results in a table full of ones. 1030 

 1031 

Box 3 - Imputation strategies 1032 

The appropriate imputation strategy depends on the nature of the missing values: 

1. Below the Limit of Detection (LOD): If a value is missing because the corresponding 

molecule was below the analytical method’s LOD, consider replacing missing values with a low 

value, ensuring it does not artificially lower the variance115. Our imputation method corresponds 

to this scenario. 

2. Sample Processing or Feature Extraction Artifacts: If missing values arise from analysis 

anomalies (like ion suppression effects or specific retention time shifts) or sample processing 

artifacts, consider substituting missing values with those similar to values detected in other 

samples. Here, machine learning methods like k-nearest neighbor (KNN) or random forest (RF) 

can be useful. KNN fills in multiple missing values by identifying the k nearest data points to a 

given point116.  
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Figure 7: Imputation Steps: Visual representation of the imputation algorithm complemented by 

screenshots of associated R code snippets. 

 1033 

3.2.4. Normalization 1034 

Sample normalization aims to eliminate systematic bias via adjusting variations across 1035 

samples117. In our pipeline, we show two normalization methods: Total Ion current (TIC) 1036 

normalization and Probabilistic Quotient Normalization (PQN), implemented using the KODAMA 1037 

library in our R Notebook. Therefore, we begin this section by installing the KODAMA package. 1038 
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We recommend that users run both normalization methods and scaling methods (steps 21 to 23), 1039 

but they can choose either method for further analysis in step 24. Additional information about 1040 

normalization, including various methods, and guidelines for selecting the most suitable method 1041 

for a given dataset, is provided in the accompanying Box 4. For a graphical view on the provided 1042 

normalization methods, see Figure 8. 1043 

Step 21: Total Ion Current (TIC) Normalization 1044 

 1045 

In TIC normalization, also known as total sum normalization, every feature within a sample is 1046 

normalized relative to the  area of the TIC chromatogram118. This involves dividing each feature 1047 

by the sum of peak areas of all features within a sample. The normalization function from the 1048 

KODAMA package performs row-wise sum operations, and we have the samples arranged in 1049 

rows and features in columns. 1050 

 1051 

Step 22: Probabilistic Quotient Normalization (PQN) 1052 

PQN is another method performed on the imputed table, resulting in a PQN-normalized table with 1053 

features in columns and samples in rows. 1054 

 1055 

PQN is based on the comparison of a ‘test’ spectrum (the individual sample to be normalized) 1056 

with a ‘reference’ or ‘control’ spectrum. The steps involved in PQN are as follows119: 1057 

● Normalization of Test Spectrum: The test spectrum is first normalized, typically using a 1058 

sum normalization technique like TIC.  1059 

● Selection of Control Spectrum: The control spectrum acts as a standard for comparison. 1060 

It could be a pre-determined standard obtained from a database or calculated as the mean 1061 

or median spectrum from all samples or quality control (QC) samples.  1062 

● Calculation of Quotients: For each sample, quotients are calculated between the 1063 

features in the test spectrum and the corresponding features in the control spectrum. This 1064 

step results in a median quotient spectrum for each sample. 1065 

● Normalization by Median Quotient Spectrum: Each test spectrum is then normalized 1066 

by dividing it by its corresponding median quotient spectrum. This process scales the test 1067 

spectrum values relative to the control spectrum, ensuring an equal basis for comparison 1068 

across all samples. 1069 

 1070 

Box 4 - Normalization 1071 

Normalization of metabolomics data can rely on either chemical or mathematical strategies. 

The chemical method, using internal standards and quality controls, is popular in targeted 

analysis as it effectively balances metabolite concentrations across sample sets and batches. 

However, for non-targeted metabolomics, mathematical approaches are more popular117,120. 

There are several mathematical normalization methods, each with its strengths and limitations. 

The selection of a normalization method depends on the specific conditions and requirements 

of your dataset: 

1. Unit Normalization121 and TIC Normalization:  

Simple and computationally efficient methods useful for large datasets. They equalize 
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the total sum of signal intensities across each sample. They assume that the abundance 

of most features does not change significantly across different samples or experimental 

conditions and their effectiveness decreases with large global changes in metabolite 

levels (e.g., due to differences in metabolite level such as healthy versus diseased, 

sample preparation, or instrument sensitivity). TIC normalization might over-correct 

disease samples with lower intensity reducing the differences between healthy and 

conditions. 

2. PQN119: Recommended when significant size effects are present or when internal 

normalization disrupts relative peak information117. Among several LC/MS-based 

normalization methods, including Contrast Normalization, Cubic Splines, Cyclic Loess, 

PQN has been identified as the best performer in reducing sample-to-sample 

variations120. 

3. Common Components and Specific Weights Analysis122 (CCSWA): A viable 

alternative when QC and sample data differ. 

 

 
Figure 8: Normalization Techniques: Graphical representation of Total-ion-current (TIC) and 

Probabilistic Quotient normalization (PQN) methods, accompanied by corresponding R code snippets. 

3.2.5. Scaling 1072 

Scaling methods in metabolomics aim to adjust the range of peak abundances between 1073 

features117. This is done by normalizing the intensities of each feature by a scaling factor, 1074 

effectively adjusting for fold differences between features123. Additional information on scaling 1075 
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factors can be found in Box 5 along with the graphical representation of scaling shown in Figure 1076 

9. 1077 

 1078 

Step 23: Center-Scaling 1079 

We apply center-scaling to the imputed data. This allows for a consistent spread of the data, 1080 

accounting for differences in offset between high and low-abundant features.  1081 

 1082 

In R, the scale function offers different options for centering and scaling data: 1083 

● When center = TRUE, centering is achieved by subtracting the column means (excluding 1084 

NAs) of the data from their respective columns (each column referring to a feature). 1085 

Centering ensures that the fluctuations in the data are centered around zero instead of 1086 

the mean of the metabolite concentrations123. 1087 

● If center = TRUE and scale = TRUE: then scaling is performed by dividing the centered 1088 

columns by their standard deviations. 1089 

● If center = FALSE and scale = TRUE: scaling is done by dividing each column by its root 1090 

mean square. 1091 

● If scale = FALSE, no scaling is performed. 1092 

 1093 

▲CRITICAL: Since scaling introduces negative values, trying a PCoA with the Bray-Curtis 1094 

difference on scaled data will trigger an error. 1095 

 1096 

Box 5 - Scaling 1097 

Scaling methods can be categorized into two subclasses based on the scaling factor used123.  

1. Using data dispersion methods, such as standard deviation (SD), for scaling: 

Examples: Autoscaling124 and Pareto scaling125. Autoscaling ensures equal variance 

(such as SD=1) for each variable, while Pareto scaling uses the square root of SD as 

the scaling factor.  

2. Using size measures, such as the mean, for scaling: 

Examples: Level scaling and Poisson scaling. Level scaling converts metabolite 

concentration changes relative to the mean concentration, while Poisson scaling scales 

each feature by the square root of the mean123,126. 
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Figure 9: Scaling methods: Graphical representation of scaling methods, both centered and non-

centered, accompanied by corresponding R code snippet. 

 1098 

Step 24: Choosing data for further analysis 1099 

(User Input Required) 1100 

 1101 

Upon executing this step, an overview table is generated, offering a list of the dataframes 1102 

produced during each phase of data processing along with its respective metadata tables. This 1103 

includes stages like the initial raw data (Raw Data), post-blank removal data (Blank Removed 1104 

Data), post-imputation data (Imputed Data), and various normalization stages (TIC Normalized, 1105 

PQN Normalized, Scaled Data).  1106 

To proceed, users must select their dataset of interest by entering the corresponding index 1107 

number. The chosen dataset will be stored under the `cleaned_data` variable and the 1108 

corresponding metadata will be taken under the `metadata` variable. These dataframes will be 1109 

used in subsequent univariate and multivariate analytical steps. This allows the user to: 1110 

● Explore Multiple Datasets: Easily switch between datasets to examine the effects of 1111 

different processing steps. 1112 

● Tailor Analyses to Dataset Characteristics: 1113 

○ TIC normalized data is apt for some univariate statistical tests, especially when 1114 

analyzing the relative abundance of specific features or metabolites across 1115 

samples without the comparison being skewed by samples that just have overall 1116 

higher or lower intensities. Also, when using normalized data for multivariate 1117 

techniques like PCA, it is important to ensure that a few dominant features do not 1118 

skew the overall results. 1119 
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○ Using scaled data in multivariate techniques like PCA prevents high variance 1120 

features from dominating. Additionally, machine learning techniques relying on 1121 

distance measures, like k-means or k-nearest neighbors, benefit from scaled data 1122 

to ensure uniform feature influence. 1123 

However, it is important to note: 1124 

● Imputation is not advised if one plans to execute a PCoA using the Jaccard distance since 1125 

Jaccard transforms data into binary (0 and 1). Without zeros, it results in a table full of 1126 

ones. 1127 

● Since scaling introduces negative values, trying a PCoA with the Bray-Curtis difference 1128 

on scaled data will trigger an error. 1129 

 1130 

For the purpose of this tutorial, we will use the `scaled_data` as our `cleaned_data` and the 1131 

respective ̀ metadata` variable is ̀ md_Samples`. However, users are encouraged to experiment 1132 

with different datasets. 1133 

3.3. Multivariate Statistics: ⬤ Timing 50-60 mins 1134 

After data cleanup, we will use multivariate statistical analyses to allow for a deeper exploration 1135 

of samples. The techniques showcased in our workflow are: 1136 

● PCA and PCoA: Principal Component Analysis (PCA) and Principal Coordinate Analysis 1137 

(PCoA) are fundamental methods for discerning trends in your data. Coupled with 1138 

Permutational Multivariate ANOVA (PERMANOVA), these techniques enable a 1139 

comprehensive exploration of sample similarity by calculating correlations or distance 1140 

matrices.  1141 

● Hierarchical Clustering Analysis (HCA) and Heatmap: This combination is ideal for 1142 

hypothesis generation by providing an initial data overview. HCA builds a dendrogram 1143 

representing the dataset, where individual samples are clustered based on similarity. A 1144 

heatmap arranged according to the sample or feature similarities defined in the 1145 

dendrogram creates a clear visual depiction of sample clusters. 1146 

● Supervised Classification Techniques: We use RF as a key supervised classification 1147 

technique in this protocol. For advanced users interested in further exploration, additional 1148 

instructions on XGBoost and hyperparameter tuning are provided in a separate Jupyter 1149 

Notebook. The link to this additional notebook can be found in the main notebook and the 1150 

file is available in our GitHub Repository. Additionally, we would like to point to Partial 1151 

Least Squares - Discriminant Analysis (PLS-DA), another supervised multivariate 1152 

technique that is frequently used in metabolomics studies simply due to the availability of 1153 

the model in several software packages and ease of use with default settings. It handles 1154 

collinear and noisy data well and offers comprehensive results such as classification 1155 

prediction accuracy, scores and loadings plots. Yet, its prediction accuracy may lag behind 1156 

methods like RF, especially with datasets handling fewer features. Therefore, PLS-DA 1157 

might not be suitable for those who want to significantly reduce the feature numbers and 1158 

then use the model on them127. While we do not dismiss the utility of PLS-DA, we suggest 1159 
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considering alternative models. For a comprehensive comparison of different machine 1160 

learning-based classification tools, we recommend the study of Mendez et al. in which 1161 

they evaluate eight machine learning algorithms across ten clinical metabolomics datasets 1162 

for binary classification128. 1163 

Step 25: Installing Packages for Multivariate Analyses ⬤ Timing 5-10 mins 1164 

To start our multivariate analysis, we first install and load the necessary R packages for this 1165 

section: “BiocManager”, “ComplexHeatmap”, ggsci”,”dendextend”,”NbClust” and “cowplot”. 1166 

3.3.1. PCoA with PERMANOVA 1167 

 1168 

PCoA: Principal coordinates analysis  1169 

PCoA is a popular ordination technique used alongside PCA to visualize sample similarities by 1170 

calculating distance matrices between samples. PCoA groups samples based on their 1171 

dissimilarity or distances whereas PCA focusses on their correlation or covariance129. The 1172 

process begins by computing a dissimilarity matrix to capture the sample differences. This matrix 1173 

is then transformed using multidimensional scaling (MDS) to produce a new set of points called 1174 

Principal Coordinates (PCos) in a lower-dimensional space. The distance between samples in 1175 

these coordinates reflects the original sample differences130. It is important to mention that MDS 1176 

can be categorized into metric MDS (as in PCoA) and non-metric MDS 129. In this protocol, we 1177 

focus solely on metric MDS and more information can be found in Box 6. For graphical illustration 1178 

of PCoA, see Figure 10. 1179 

Step 26: Prepare Data 1180 

Make sure that the metadata (`metadata`) and the feature quantification table 1181 

(`cleaned_data`) are in the same order. Also, verify that the sample names (row names) in 1182 

both data tables are identical and in the same order using identical() function. It should 1183 

return TRUE. 1184 

 1185 

Step 27: Calculate Pairwise Distances and Perform PCoA 1186 

● Calculate pairwise Euclidean distances across all samples in the feature quantification 1187 

table using the vegdist() function from the ‘vegan’ package84. Store the resulting 1188 

distance or dissimilarity matrix as ‘distm’. 1189 

● Apply the cmdscale() function from the base R ‘stats’ package to perform MDS on the 1190 

distance matrix ‘distm’, considering 10 PCos (k=10). 1191 

 1192 

▲CRITICAL: The vegdist() function offers various methods such as “manhattan”, “euclidean”, 1193 

“canberra”, “bray”, “jaccard”, “gower”, “binomial”, “chisq” for distance calculation. Using euclidean 1194 

distance for PCoA is equivalent to performing PCA. However, using vegdist(“euclidean”) 1195 

and cmdscale() cannot provide loadings information. For a comprehensive PCA with both 1196 

loadings and scores, use the prcomp() function such as `pca_result <- 1197 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


40 

prcomp(cleaned_data, center = FALSE, scale. = FALSE)`. Since our ̀ cleaned_data` 1198 

we use is already centered and scaled, we can set these parameters to FALSE. For loadings and 1199 

PC scores, you can access `pca_result$rotation` and `pca_result$x` respectively. 1200 

 1201 

Step 28: Analyze PCoA Results 1202 

Examine the list generated by the cmdscale() function, which includes the following elements:  1203 

● ‘points’ (PcoA$points) represents the data matrix with the given PCos 1204 

● ‘eig’ (PcoA$eig) indicates the eigenvalues computed for the PCos, which describe the 1205 

variance explained by each PCo. 1206 

 1207 

Step 29: Plot PCoA Scores 1208 

(User Input Required) 1209 

 1210 

Using the `ggplot2` library, create a PCoA Scores Plot. Here, the samples are color-coded 1211 

based on the ‘ATTRIBUTE_Month’ attribute. To view the sample distribution of different 1212 

attributes, simply adjust the line: interested_attribute_pcoa = 'ATTRIBUTE_Month'.  1213 

Importantly, the aspect ratio of the plot’s axes is maintained to ensure accurate representation, 1214 

in line with recommendations by Nguyen and Holmes131.  1215 

 1216 

Box 6 - Principal Coordinate Analysis (PCoA) 1217 

PCoA offers an advantage over PCA by allowing various distance metrics beyond the Euclidean 

distance. This flexibility provides different insights into the data pattern based on the chosen 

dissimilarity measure. For example, when working with categorical data and sparse matrices 

containing numerous zeros, distance metrics such as Hamming distance and Jaccard distance 

outperform the Euclidean distance130,132,133. Akin to phylogenetic distance measures such as 

UniFrac distance134 used in the microbial ecology field, chemical distance matrices are 

emerging that make use of cosine MS/MS similarity between features135 or chemical similarity 

derived from CSI:FingerID136.  

While PCoA effectively reveals chemical trends among samples by working with different 

distance matrices, it cannot provide direct information about the relationship between features 

and principal coordinates, unlike PCA which offers ‘loadings’ information137. To discern 

associated features in such contexts, it is recommended to complement PCoA with other 

methods like a Heatmap overview, Random Forest analysis or any of the univariate techniques 

discussed in this protocol. 

In addition, to assess the impact of a specific feature on the dispersion of samples along a 

particular PCoA axis, an indirect analysis can be performed. This involves correlating or 

regressing the PCoA values of the samples with the corresponding sample scores of the 

variable of interest138. For instance, in our case, to evaluate the influence of Feature 1 on PCo1, 

we can create a scatter plot by plotting the original values of Feature 1 (sample scores) for all 

samples against the PCo1 values for all samples. The points on the plot can be colored based 

on the sampling period. By examining any trends or correlations in the plot, we can observe 

how the diversity of samples changed during the sampling period. 
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Figure 10: Principal Coordinate Analysis Overview: The diagram illustrates the process of 

transforming feature quantification tables into score plots by calculating distance matrices, and plotting 

principal coordinates. The associated code demonstrates multidimensional scaling using Euclidean 

distance. Notably, using Euclidean with PCoA is the same as performing PCA; however, the users can 

adjust to other metrics, like Canberra. 

 1218 

 1219 

PERMANOVA: Permutational multivariate ANOVA  1220 

 1221 

In multivariate analysis like PCA, it is crucial to measure confidence in observed relationships or 1222 

separation between objects. This is often achieved via statistical significance tests, which provide 1223 

a p-value as a measure of the confidence level. For ordination techniques that do not assume a 1224 

specific data distribution, parametric statistical testing is not applicable139. In such cases, 1225 

resampling methods such as bootstrap, jackknife140, and permutation tests141 are used to assess 1226 

the statistical confidence of the results. These methods generate multiple samples or 1227 

permutations from original data to estimate variability and assess the significance of observed 1228 

relationships139. 1229 

Alternatively, non-parametric methods such as PERMANOVA (Permutational Multivariate 1230 

Analysis of Variance) can be used142. PERMANOVA allows for multivariate ANOVA and tests for 1231 
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differences between object classes. It enables any dissimilarity metric and calculates a test 1232 

statistic by comparing the dissimilarities between objects within and between classes. Here, the 1233 

p-values are determined through permutation139. 1234 

Step 30: Testing for Homoscedasticity 1235 

(User Input Required) 1236 

Before performing PERMANOVA, it is important to validate the homogeneity of group 1237 

dispersions, often termed as ‘Homoscedasticity’. This test ensures that each group exhibits 1238 

approximately equal variability. Violation of this assumption might inflate the risk of Type I errors 1239 

(false positives).  1240 

If the group dispersions are homogenous, you can proceed with PERMANOVA with greater 1241 

confidence. However, disparate dispersions require a more cautious interpretation of 1242 

PERMANOVA results, given their higher susceptibility to Type I errors. In such cases, exploring 1243 

alternative distance measures, data transformations, or delving into potential biological reasons 1244 

for the dispersion differences might offer a more comprehensive analysis. To know more about 1245 

multivariate dispersions, see Box 7. For a visual representation of assessing multivariate 1246 

dispersion and conducting the PERMANOVA analysis in R, refer to Figure 11. 1247 

 1248 

Procedure to Evaluate Homoscedasticity: 1249 

● As a first step, the user needs to specify the attribute group for assessing group 1250 

dispersions. Since we are looking for group dispersions, it is important to select a 1251 

categorical metadata column (for example, ‘ATTRIBUTE_Month’) and avoid choosing 1252 

continuous attributes, such as ‘ATTRIBUTE_Injection_order’. 1253 

● Similar to Step 27, we compute a distance matrix (‘distm’) using the feature quantification 1254 

table and the selected attribute. For simplicity, we use the Euclidean distance in this 1255 

instance. 1256 

● Using the betadisper() function from the vegan package, we evaluate group 1257 

dispersion against the chosen attribute group. 1258 

● The dispersion model is then visualized to offer a clearer perspective. 1259 

● Lastly, an ANOVA is executed on the dispersion model. A significant p-value (P < 0.05) 1260 

indicates a violation of the PERMANOVA’s foundational assumptions. Conversely, a 1261 

non-significant result suggests that PERMANOVA is a suitable choice for the given 1262 

attribute. 1263 

● The resulting p-value for ‘ATTRIBUTE_Month’ is significant, indicating the presence of 1264 

group dispersions among different months. This violates the PERMANOVA assumption. 1265 

When PERMANOVA is performed for this attribute, the PERMANOVA results require a 1266 

more cautious interpretation.  1267 

 1268 

Step 31: Conduct PERMANOVA Test 1269 

● Use the adonis2() function from the ̀ vegan` package84 to conduct a PERMANOVA test. 1270 

The `adonis2` function allows for the analysis and partitioning of sums of squares using 1271 

dissimilarity measures. 1272 
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● Apply the `adonis2` function on the dissimilarity matrix (‘distm’) and the previously chosen 1273 

metadata column ‘ATTRIBUTE_Month’. This helps in investigating if there are significant 1274 

differences among the samples collected during three different months. 1275 

● Interpret the resulting p-value. In our case, we obtained a p-value of 0.001, indicating a 1276 

significant difference between the samples. 1277 

 1278 

Box 7 - Dispersion Analysis 1279 

In the case of balanced sample sizes across groups, PERMANOVA identifies differences in 

group centroids, thus reflecting shifts in the multivariate distribution of sample units within the 

chosen resemblance space. Hence, the type of dissimilarity measure you choose is crucial. For 

example, unlike Euclidean distance, measures like Jaccard or Bray-Curtis highlight the 

similarity in species composition and do not focus on the central tendency such as the mean-

variance relationship. On the other hand, PERMDISP is specifically tailored to detect variations 

in multivariate dispersions. Therefore, when analyzing your data, use PERMANOVA to 

understand group centroid shifts and PERMDISP to evaluate dispersion differences143. 

a) 

 

b) 

 

Figure 11: Multivariate Dispersion and PERMANOVA Analysis: a) Code snippet for testing 

multivariate dispersions within the ‘group’, specifically referencing the ‘ATTRIBUTE_Month’ column (Dec, 

Jan, Oct) from the metadata. b) Code snippet for executing PERMANOVA to analyze variations between 

the aforementioned groups. 
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Step 32: Define a Function for Streamlined Analysis 1280 

To facilitate quicker analysis and avoid rewriting from step 27 to step 31 for testing different 1281 

parameters, we defined a function, plotPCoA(). This function performs a principal coordinates 1282 

analysis (PCoA) using a chosen distance metric, calculates a PERMANOVA, and plots the results 1283 

in a 2-D graph. Additionally, it assesses group dispersion prior to the PERMANOVA calculation 1284 

and displays the significance result in the resulting plot as well. 1285 

 1286 

The function has the following parameters: 1287 

- `ft` refers to the desired feature quantification table. 1288 

- `md` refers to the respective metadata. 1289 

- `distmetric` is the distance metric of choice. 1290 

- `category_permanova` is the desired metadata group for PERMANOVA calculation. 1291 

- `pcoa_category_type` indicates whether the group type is categorical or continuous. 1292 

- `category_pcoa_colors` specifies the metadata attribute for coloring the samples. 1293 

- `cols` are the desired colors for the groups. 1294 

- `title` is the title of the plot. 1295 

 1296 

Additionally, we have created another simple custom function save_as_svg(), to store plots in 1297 

SVG format utilizing the `svglite` function. This custom function can be used as 1298 

`save_as_svg(filename, desired_plot, plot_width, plot_height, 1299 

plot_background)`. Throughout the notebook, you will observe this function being employed 1300 

post each plot creation to save the visualizations.  1301 

 1302 

Step 33: Applying plotPCoA() function on different dataframes 1303 

(User Input Required) 1304 

In this step, the user can specify the variables as mentioned in the previous step. Here is an 1305 

example of how to use the plotPCoA() function: 1306 

plotPCoA( 

    ft = cleaned_data,  

    md = metadata, 

    distmetric = "euclidean",  

    category_permanova = "ATTRIBUTE_Month", 

    pcoa_category_type = 'categorical', 

    category_pcoa_colors = "ATTRIBUTE_Month", 

    cols = c('orange','darkgreen','red','blue','black'), 

    title = 'Principal coordinates plot') 

Step 34: Get PCoA plots after each data cleanup step 1307 

(User Input Required) 1308 

 1309 

In this step, the user can specify parameters such as the distance metric, attribute for 1310 

PERMANOVA calculation, attribute to color the PCoA scores, the category of the chosen attribute, 1311 
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similar to the previous plotPCoA step. These inputs will be taken to produce an overview of PCoA 1312 

plots for all steps of data cleanup. 1313 

3.3.2. Hierarchical Cluster Analysis 1314 

Clustering, such as Hierarchical Cluster Analysis (HCA), is an unsupervised classification method 1315 

commonly used in metabolomics to determine the similarity between samples based on their 1316 

chromatograms or other characteristics. Unlike PCA, which focuses on capturing the maximum 1317 

variance between samples, clustering aims to group samples with “similar” profiles. The results 1318 

are often visualized as dendrograms130 as shown in Figure 12.  1319 

 1320 
Figure 12: Dendrogram Generation and Analysis: The figure illustrates a dendrogram, as a result of 1321 

applying HCA to a feature quantification table (e.g., ‘cleaned_data’). From this data, a proximity matrix (or 1322 

the distance matrix) is calculated (see steps 27 and 30), which subsequently guides the dendrogram 1323 

creation. Accompanying the illustration is the related code for the cluster generation and dendrogram 1324 

visualization. The distance matrix ‘distm’ is calculated via Euclidean distance in step 30, though alternative 1325 

metrics can be chosen by the user. The resultant dendrogram is displayed, initially partitioning samples into 1326 

two primary clusters: a smaller cluster from a subset of samples (corresponding to samples from January 1327 

in our example data) and a larger subsequent cluster. Distinct sub-clusters within these main clusters are 1328 

also discernible. 1329 
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Step 35: Setting the Plot Size 1330 

First, we need to define the size of the output plot, as dendrograms are typically larger in size. 1331 

Adjust the plot size accordingly to ensure a clear and comprehensible visualization. 1332 

Step 36: Executing HCA 1333 

Next, we use the hclust() function from the ‘stats’ package to perform HCA. The function is 1334 

applied to the distance matrix ‘distm’, calculated based on the feature quantification table 1335 

(‘cleaned_data’) using a specified distance metric (e.g., Euclidean, Canberra). The ‘method’ 1336 

argument in hclust() denotes the linkage method used for measuring the distance between 1337 

clusters (e.g., complete, single, average). We use the default ‘complete’ method, which calculates 1338 

the maximum distance between clusters before combining them. Once HCA is completed, a 1339 

dendrogram is generated. This dendrogram shows split or merge distances as ‘height’ along the 1340 

y-axis, providing a visual representation of the cluster formation. 1341 

 1342 

 1343 

Step 37: Cutting the Dendrogram 1344 

(User Input - Optional) 1345 

Similar to k-means clustering, which seeks to establish k clusters with minimum within-cluster 1346 

variation, we can cut the dendrogram into a specified number of clusters using the cutree() 1347 

function. However, we need to initialize the clustering with random k clusters. For our sample 1348 

dataset, we define ̀ k=4` with the cutree() function, to create four clusters. The user can change 1349 

the number of clusters.  1350 

Step 38: Coloring the Dendrogram 1351 

Finally, we can extract the cluster allocation information and color the dendrogram according to 1352 

the clusters. For our data, the dendrogram suggests two main splits, resulting in four distinct 1353 

clusters. 1354 

Step 39: Determining the Optimal Number of Clusters 1355 

Here, we use heuristic methods similar to those applied in k-means clustering to determine the 1356 

optimal number of clusters. For this purpose, we use the Elbow approach and average silhouette 1357 

method using the fviz_nbclust() function from the ‘factoextra’ package. 1358 

 1359 

● The Elbow method calculates the total within-cluster sum of squares (WSS) for an 1360 

increasing number of clusters. WSS signifies the sum of distances between data points 1361 

and their corresponding centroids within each cluster. Lower WSS values indicate within-1362 

cluster variation. 1363 

● The resulting Elbow plot presents the WSS on the y-axis and the number of clusters on 1364 

the x-axis. Lower WSS values suggest minimum within-cluster variation and better 1365 

clustering. However, the ‘elbow’ point is considered as an indicator of the optimal number 1366 
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of clusters, as further cluster additions do not significantly improve the clustering or 1367 

decrease the WSS. For our example data, this method suggests 3 or 4 clusters. However, 1368 

defining the ‘elbow’ can be subjective. 1369 

● An alternate approach is the average silhouette method, which assesses clustering quality 1370 

by determining how well each data point fits within its assigned cluster. In our case, this 1371 

method proposes two primary clusters. 1372 

 1373 

Both the Elbow and Silhouette methods provide global insights without learning from the data, 1374 

given their unsupervised nature. But, there are more sophisticated techniques like the gap-1375 

statistic which refines the heuristic concepts behind the Elbow and Silhouette techniques and 1376 

uses a statistical procedure to estimate the optimal cluster count144. However, all these methods 1377 

serve as guidelines rather than definitive answers. In practice, users might choose cluster 1378 

numbers based on context, for example, in our case with seven sample areas, opting for seven 1379 

clusters can be insightful. Later, one can check whether these clusters correspond to known 1380 

sample groups. 1381 

3.3.3. Heatmaps 1382 

Heatmaps are generally used to visualize complex data or discern patterns across a high-1383 

dimensional dataset. They are commonly used in bioinformatics145, particularly in gene expression 1384 

analysis and visualizing genomic datasets, owing to their ability to effectively represent thousands 1385 

of data points146. This makes them equally suitable for mass spectrometry-based metabolomic 1386 

experiments. Heatmaps are efficient in pattern recognition due to their color-coded matrix 1387 

elements and adjacent dendrograms, which indicate functional relationships between variables 1388 

and samples147. For more information on heatmap, see Box 8. To see the resulting heatmap 1389 

generated by the R code in the Notebook, refer to Figure 13. In this section, we will show how to 1390 

incorporate hierarchical clustering into our heatmap.  1391 

 1392 

Step 40: Preparing Metadata for Heatmap 1393 

(User Input Required) 1394 

To start with, determine which metadata columns or attributes will be used to decorate the 1395 

heatmap. In our case, we specified the following attributes: ‘ATTRIBUTE_Year’, 1396 

‘ATTRIBUTE_Month’, and ‘ATTRIBUTE_Sample_Area’. The user can select any number of 1397 

attribute columns from their metadata as they see fit for the heatmap. A new dataframe is created 1398 

comprising the chosen metadata. 1399 

Step 41: Generating annotations for Heatmap 1400 

(User Input - Optional) 1401 

For distinct visualization, this step assigns unique colors to each category within chosen attributes 1402 

from the previous step. We have created a function generate_colors(), which utilizes a 1403 

predefined color-blind-friendly palette of 10 colors to assign colors to these unique groups. Users 1404 
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can modify these colors if desired. After assigning colors to the subset dataframe, we use this 1405 

information to decorate the heatmap with annotations from the HeatmapAnnotation() function 1406 

in the ‘ComplexHeatmap’ package. 1407 

Step 42: Creating the Heatmap 1408 

(User Input - Optional) 1409 

To create the heatmap, apply the Heatmap function from the ComplexHeatmap package on the 1410 

transposed `cleaned_data` (as previously chosen in step 24). This arranges the features in rows 1411 

and samples in columns.  1412 

● For the heatmap, the color intensity represents the feature intensities, with the intensity 1413 

scale ranging from 0 (blue) to 1 (dark red), and 0.5 represented as white. This color coding 1414 

allows for a visual comparison of feature intensity variations across samples. 1415 

● The clustering on the y-axis is based on Euclidean distance 1416 

(clustering_distance_rows = "euclidean", clustering_distance_columns = 1417 

"euclidean"). However, other distance measures such as Manhattan, Minkowski, 1418 

Canberra, or even Jaccard for binary data, can be chosen based on specific needs.  1419 

● The ‘complete’ linkage method is used for clustering (clustering_method_rows = 1420 

"complete",clustering_method_columns = "complete"). 1421 

 1422 

Step 43: Refining Data Clustering with k-means 1423 

Further refine data clustering by incorporating the built-in k-means function within the heatmap as 1424 

parameters for row and column clustering (row_km = 5, column_km = 4). To ensure robustness, 1425 

perform multiple repeats (row_km_repeats = 100, column_km_repeats = 100). 1426 

Step 44: Extracting Features from Each Cluster 1427 

With a higher number of features, it is difficult to interpret the clustering or labeling of features on 1428 

the heatmap. To address this, extract the features from each cluster into a separate dataframe. 1429 

This dataframe containing combined feature names (`XFeatureID_m/z_RT_GNPS_annotations) 1430 

and their respective cluster assignments can be saved as a CSV file for further interpretation. For 1431 

example, one could merge these cluster assignments with the feature quantification table for 1432 

import into Cytoscape along with the FBMN and use these cluster assignments for coloring slices 1433 

in node pie charts. 1434 

Box 8 - Heatmap 1435 

Although widely used, traditional cluster heatmaps also have limitations. Their data 

representation in two-dimensional format can be restrictive when processing complex 

multidimensional data. Furthermore, their static nature does not allow for data to be sorted along 

different axes, filtered, or focused on specific elements, making the representation of a vast 
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number of elements quite challenging. Regardless of these limitations, heatmaps are preferred 

in biological and biomedical data representation because their visual format simplifies data 

interpretation and comparison. To overcome these limitations, more advanced versions such 

as XCMS interactive heatmaps are available that offer a more versatile and dynamic data 

visualization experience147. 

 
Figure 13: Heatmap Visualization and Construction: This figure presents both the R code snippet 

used for heatmap creation and the resultant heatmap itself. To facilitate a comprehensive view, the 

heatmap is oriented horizontally. The feature quantification table used here is the scaled table and feature 

intensities are color-coded, ranging from blue (0) to red (1). Annotations at the heatmap’s top delineate 

clustering based on variables like year, month, and sample area. 

 1436 
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3.3.4. Supervised Classification: Random Forest 1437 

 1438 

Unsupervised analysis allows for the discovery of groups or trends in the data without prior 1439 

assumptions about any predetermined labels or categories, whereas supervised analysis involves 1440 

the use of labeled data to guide the analysis toward specific objectives such as biomarker 1441 

discovery, classification, and prediction. In supervised analysis, the algorithm is trained on labeled 1442 

data to predict the response variable (or dependent variable) based on the predictor variables (or 1443 

independent variables)148.  1444 

 1445 

Supervised learning is categorized into classification and regression problems based on the type 1446 

of response variable: classification for categorical or discrete variables (e.g., cancer vs non-1447 

cancer samples), and regression for continuous variables. Popular supervised models in 1448 

metabolomics include logistic regression, partial least square discriminant analysis (PLS-DA), 1449 

support vector machines (SVM), k-nearest neighbor (KNN), and random forest (RF). Here, we 1450 

focused on RF, which offers advantages such as the low risk of overfitting, ease of 1451 

implementation, interpretability, and minimal hyperparameter tuning requirements149. For a 1452 

detailed overview of random forest, consult Box 9.  1453 

 1454 

In our example provided in the notebook, we tried to classify surface seawater samples based on 1455 

their different sampling sites using random forest. Here, the feature quantification table without 1456 

metadata is the predictor variable, and the metadata group “Sampling Site” is the response 1457 

variable. Figure 14 provides a visualization of the Random Forest algorithm and its 1458 

implementation in R. 1459 

 1460 

Step 45: Prepare the data for Random Forest 1461 

● First, load the `rfPermute` package.  1462 

● Start by merging the feature quantification table (in our example, `Imp_s` is chosen as 1463 

the `cleaned_data` variable) and the corresponding metadata (`md_Samples`) into a 1464 

dataframe named `cleaned_data_with_md`. This step ensures that the samples are 1465 

correctly aligned with their corresponding attributes in the metadata, which is essential for 1466 

the subsequent analyses. 1467 

 1468 

Step 46: Select the Classification Attribute for Random Forest 1469 

(User Input Required) 1470 

Prepare the dataset used for Random Forest classification so it only contains feature intensity 1471 

information and attribute of interest for classification. Here, we are classifying the samples 1472 

according to different sample areas (‘ATTRIBUTE_Sample_Area’). So in this step, the user is 1473 

prompted to input the index number of the interested attribute to use for the classification.      1474 

 1475 

Step 47: Balance sample sizes 1476 

If the sample size varies among the groups, balance the size using the balancedSampsize() 1477 

function. 1478 

 1479 
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Step 48: Run Random Forest 1480 

Initiate the Random Forest analysis by setting the number of trees and permutations. In our case, 1481 

we used 500 trees (`ntree`) and 500 permutations (`num.rep`). Here, the primary parameters 1482 

for Random Forest include the feature quantification table (without the classification data), 1483 

predictor variable, balanced sample size (`sampsize`), and tree and repetition quantities 1484 

(`ntree` and `num.rep`). 1485 

With the rfpermute() function, there is no need for the conventional train-test split, such as the 1486 

70-30 or 80-20 ratio. This user-friendly package minimizes the need for parameter tuning. 1487 

Classification rates in Random Forest rely on out-of-bag (OOB) samples, which are not part of 1488 

the tree-building process. This eliminates the need to split the dataset into test and train portions, 1489 

maximizing the amount of information the model has to build a classifier. However, classes with 1490 

unequal sample sizes, will produce a model that will tend to perform better on the larger class. To 1491 

alleviate this bias, create a balanced model where the classes are represented by an equal 1492 

number of samples in each tree and sampling is done without replacement using the 1493 

balancedSampsize()function. 1494 

▲CRITICAL:  1495 

● Increasing the number of trees and permutations generally enhances the model’s 1496 

performance but also escalates computational costs. It is advised to start with a 1497 

reasonable number of trees (e.g., 500-1000) and `num.rep` (500-10000), then adjust 1498 

based on performance. 1499 

● When working with large data sets, R may run out of internal memory trying to perform the 1500 

random forest. To work around this, adding the “as.factor” in the predictor variable (y), 1501 

even if the class is already a factor, will alleviate the memory error.  1502 

 1503 

Step 49: Evaluate model performance 1504 

After getting the RF model, we need to evaluate the model’s performance using several metrics 1505 

such as model accuracy, the confusion matrix, trace plot, and check for potential overfitting by 1506 

comparing testing versus training accuracies. 1507 

● The confusion matrix is the most basic summary of a Random Forest. The matrix consists 1508 

of the ‘original class’ in rows and the ‘predicted class’ in columns. The diagonals represent 1509 

the number of samples correctly classified in each class. The matrix also has columns that 1510 

show the percent of samples that were correctly classified in a class, along with upper and 1511 

lower 95% confidence intervals.  1512 

● The trace plot shows the OOB (out-of-bag) changes as trees were added to the forest. 1513 

The model should have enough trees in it so the error rate is stable. If the error rate level 1514 

increases as the number of trees increases, it may be an indication of overfitting.  1515 

 1516 

Step 50: Interpreting RF Results 1517 

Beyond these, the RF results can be interpreted in various ways: 1518 

● One could plot the most impactful predictors in the model using violin plots. Here, we show 1519 

the top 9 predictors 1520 

● Compare class predictions versus the actual group in a proximity plot 1521 
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● Rank features by importance using the ‘Mean Decrease Accuracy’ metric. This metric 1522 

helps identify features whose removal significantly impacts the model’s accuracy, thus 1523 

marking their importance. If a feature’s removal does not affect accuracy, it may be 1524 

deemed less important. Features with a ‘MeanDecreaseAccuracy.pval’ < .05 are 1525 

considered significant, implying that their absence would affect the model’s performance 1526 

significantly. This ranked list can also be exported as a CSV file for further analysis. 1527 

 1528 

Box 9 - Random Forest 1529 

Random Forest (RF) is a powerful machine learning algorithm that operates by dividing data 

into fractions, building randomized tree predictors on each fraction, and aggregating these 

predictors together. Generally, RF uses out-of-bag (OOB) error as an estimate of the overall 

generalization error and obtains variable importance scores through permutation150. 

A unique feature of the RF algorithm is its use of OOB samples, which are the samples not 

used in the bootstrap sample for a particular tree. Each tree is trained on about two-thirds of 

the total dataset, with the remaining one-third serving as the OOB samples. The OOB error rate 

is a measure of prediction accuracy and helps to improve the performance of weak or unstable 

learners in the model151. 

In RF, variable importance scores are obtained by permuting the values of each variable ‘m’ 

within the OOB samples and the tree is used to make predictions on these permuted OOB 

samples. This essentially disrupts any relationship that variable ‘m’ might have with the target 

variable. The model then compares the prediction accuracy on the variable-m-permuted OOB 

samples to predict accuracy on the original (untouched) OOB samples. The average of the 

difference in accuracy (between permuted and original OOB) across all trees in the forest gives 

the raw importance score for variable “m”. This raw importance score is often an average value 

over all trees. To determine if this importance score of variable “m” is statistically significant, a 

z-score can be calculated by dividing the raw score by its standard error152.  

In RF, there are two common metrics of variable importance used to rank features based on 

their predictive power: Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG). MDA 

measures the decrease in model accuracy when a particular variable’s values are permuted. A 

large decrease indicates high variable importance; MDG measures how each variable 

contributes to the homogeneity of the nodes and leaves in the resulting RF. A higher MDG value 

indicates that splitting the dataset by this variable results in purer nodes. Here, Variable 

Importance Projection (VIP) could be obtained by normalizing MDA, so they sum to 100, making 

them more interpretable on a relative scale153.  

Some of the other important parameters to keep in mind to evaluate the performance of the RF 

model are: model accuracy, confusion matrix (a matrix showing true vs predicted class labels), 

trace plot, and check for overfitting by comparing testing vs training accuracy. However, 

supervised models may not be suitable for all data sets, especially those with few observations 

or unclear class distinctions. Confounding variables, related to both the predictor and response 

variable, can also make these models unsuitable. For instance, age and gender in a drug study 

can be confounding variables, leading to erroneous results if not controlled for. In such cases, 

using supervised models for analysis may not be appropriate.  
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Figure 14: Random Forest Algorithm Visualization and Execution: This figure shows an illustration 

of the Random Forest algorithm, followed by the code block used for model execution, employing 500 

trees and 500 permutations. Outputs of the rfpermute model, including a confusion matrix, are 

showcased. Additionally, the Out-of-Bag (OOB) error curve, a crucial model evaluation metric, is 

displayed. 

 1530 
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3.4. Univariate Statistics: ⬤ Timing 50-60 mins 1531 

While multivariate analyses offer a comprehensive overview of the data, univariate statistical 1532 

analyses allow us to focus on specific attributes. Primarily, univariate analysis in metabolomics 1533 

helps identify individual metabolites that significantly differ between experimental groups, 1534 

potentially serving as biomarkers for certain conditions or indicators of specific biological 1535 

processes. It can also reveal impacts on specific metabolic pathways if related metabolites 1536 

change significantly. However, it is worth noting that univariate analysis does not account for 1537 

metabolite correlations and interactions, hence, it’s best used in conjunction with multivariate 1538 

analysis for a holistic data interpretation. 1539 

For example, our test dataset consists of numerous features collected at seven diverse sample 1540 

sites. Here, univariate analyses can assess feature differences across these sites. In the case of 1541 

two site comparisons, the t-test can be used to examine significant feature differences (p value < 1542 

0.05). For a comparison involving more than two sample groups, we utilize ANOVA. Figure 15 1543 

provides a flowchart that guides the selection of appropriate statistical tests based on data 1544 

normality and homogeneity. In the event of significant differences, we represent these findings 1545 

through a bar graph that captures the distribution of a ‘significant’ feature across sample 1546 

conditions. Post-hoc tests are also introduced as supplementary tools to identify which groups’ 1547 

average values significantly differ.  1548 

 1549 
Figure 15: Flowchart detailing the selection of statistical tests for univariate analysis, based on data 1550 

normality and homogeneity. 1551 

 1552 

When conducting multiple univariate tests simultaneously, as is common in metabolomics, there 1553 

is an increased risk of false positives. To manage this, the False Discovery Rate (FDR) gauges 1554 

the expected false positives among significant results. While the classical Bonferroni correction 1555 

addresses false positives, it could increase the false negative rate. The following are some 1556 

advanced methods that focus on maximizing true discoveries without escalating the false positive 1557 

error rate154. 1558 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


55 

● Benjamini-Hochberg (BH): Commonly used in metabolomics for being less conservative 1559 

than Bonferroni. It ranks p-values and adjusts them, targeting the expected false positives 1560 

among all positives, rather than across all tests. It calculates FDR as Expected (False 1561 

Positive/ (False Positive+True Positive)). 1562 

● Benjamini-Yekutieli (BY): An iteration of BH that is suitable when tests have 1563 

dependencies. 1564 

● Storey’s q-value: This approach estimates the proportion of true null hypotheses (i.e., no 1565 

effect) among all hypotheses and then computes a q-value for each test, which is the FDR 1566 

analogue to the p-value155. 1567 

 1568 

In metabolomics, it is crucial to apply FDR correction methods to univariate results to ensure that 1569 

the identified significant metabolites are not just statistical artifacts but reflect genuine biological 1570 

differences. In all our univariate tests, we apply the BH metric to our p-values. 1571 

 1572 

Step 51: Install Packages for Univariate Analyses ⬤ Timing 5 mins 1573 

Start by installing the packages necessary for this section: FSA89 (v0.9.4), matrixStats90 (v0.63.0). 1574 

3.4.1. Test for Normality 1575 

Testing for normality is often one of the first steps in univariate analysis and is crucial in deciding 1576 

whether to use parametric or non-parametric tests. Parametric tests like t-test or ANOVA assume 1577 

data follows a normal distribution, characterized by a symmetric bell-shaped curve with two key 1578 

parameters: mean and standard deviation. Thus, before applying any statistical test, it is common 1579 

to evaluate for normality with tests such as the Shapiro-Wilk test or the Kolmogorov-Smirnov test. 1580 

Notably, Shapiro-Wilk is more suitable for small sample sizes (N < 50). Here, “normal” applies to 1581 

the entire population, and not just the sample data. The resulting ‘p value’ from these tests only 1582 

indicates the probability of the data to be sampled originating from a normal distribution. A 1583 

graphical representation of testing normality of features is shown in Figure 16. Normality 1584 

becomes less critical with large samples due to the Central Limit Theorem. In such cases, 1585 

parametric tests can still be applied regardless of the normality. When the data does not follow a 1586 

normal distribution, one can follow non-parametric tests, such as the Mann-Whitney U test or the 1587 

Kruskal-Wallis test156. In addition to this, to know more on normality assumptions, refer to Box 1588 

10. 1589 

In our pipeline, we conduct a normality test using two approaches: visual representations such as 1590 

histograms and quantile-quantile plots (Q-Q plots), and the Shapiro-Wilk statistical test.  1591 

 1592 

Step 52: Normality Testing for One Feature 1593 

To illustrate how to test for normality, pick one feature and generate a Q-Q plot using the 1594 

qqnorm() and qqline() functions. Then, perform a Shapiro-Wilk test using the 1595 

shapiro.test() function. Additionally, demonstrate how log-transforming the data can 1596 

improve normality. 1597 

 1598 

 1599 

 1600 
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Step 53: Normality Testing for All Features 1601 

Perform a Shapiro-Wilk test for each feature and record the resulting p-values. Correct these p-1602 

values for false discovery rate (FDR) using the Benjamini & Hochberg method. If the adjusted p-1603 

value (‘p_adj’) is less than 0.05, reject the null hypothesis and consider the data to be non-1604 

normal. Tally up the features that fall under normal and non-normal distributions. If the majority of 1605 

features are non-normal, consider using non-parametric tests for further analysis. 1606 

 1607 

Box 10 - Normality assumptions 1608 

Besides normality, it is essential to consider two other critical assumptions when deciding 

between parametric and non-parametric tests: homogeneity of variances (homoscedasticity) 

and independence. Homoscedasticity demands that within-group variances are equal. If 

unequal (heteroscedasticity), it increases the chance of falsely identifying a “significant” result. 

Homoscedasticity can be evaluated graphically via boxplots or statistically via Levene’s and 

Bartlett’s tests. Here, the null hypothesis (H0) for these tests states that the within-group 

variances are equal. If the p-value is less than 0.05, it indicates a difference in population 

variances. The final assumption, ‘independence’, stipulates that the occurrence of one event 

does not influence the probability of another. In a metabolomic context, this implies that 

knowledge of one sample value does not predict another’s. However, these assumptions, 

particularly normality, are seldom fully met in real-world metabolomics datasets157,158.  
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Figure 16: Assessing Normality of Features: This figure illustrates methods to assess normality for 

individual features. It showcases visual approaches like histograms and Q-Q plots, where deviations from 

normality can be visually assessed. The third segment delves into significance testing using the Shapiro-

Wilk test, emphasizing that a p-value greater than 0.05 suggests a normal distribution. 

 1609 

3.4.2. Parametric tests 1610 

3.4.2.1. ANOVA test 1611 

The analysis of variance (ANOVA) is the statistical procedure used to test if there exists a 1612 

significant difference in the means of a dependent variable between three or more groups. As 1613 

opposed to a pair-wise comparison where we compare the means in a variable (i.e., μ1=μ2), in 1614 

the ANOVA we compare the means of several groups159. For a deeper understanding of ANOVA, 1615 

please refer to Box 11. Furthermore, Figure 17 offers a visual explanation of the ANOVA 1616 
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algorithm, detailing both the R code and a resulting plot that contrasts the F-statistic with p-values, 1617 

highlighting significant features. 1618 

Step 54: Running ANOVA on one feature 1619 

(User Input Required) 1620 

Here the user is prompted to enter the index number of the attribute for performing ANOVA. In 1621 

the tutorial, we use ‘ATTRIBUTE_Sample_Area’. The resulting ANOVA statistics are shown in a 1622 

table format. 1623 

Step 55: Running ANOVA on all features 1624 

● For each metabolite feature, execute an ANOVA test within a for loop. The output for each 1625 

feature is stored in a dataframe named `anova_out`. The ‘for loop’ passes each feature 1626 

column as the first argument of the aov() function against the selected attribute from the 1627 

previous step (‘ATTRIBUTE_Sample_Area’). This is because we are examining how a 1628 

particular feature varies across different sample areas.  1629 

● Tidy up the ANOVA output for each feature into a table using the tidy() function from 1630 

the broom package.  1631 

● Out of the two rows in the ANOVA summary table, select only the first row of this table 1632 

(which contains the means, F-statistic, and p-value) and leave the second row consisting 1633 

of the residuals.  1634 

● Consolidate these rows into a single dataframe which contains the features, their 1635 

corresponding p-values, their BH-corrected p-values, and their significance status in 1636 

several columns. Features with a BH-corrected p-value (‘anova_out$p_BH’) less than 1637 

0.05 are considered significant. 1638 

Step 56: Subsetting Significant Features 1639 

Filter out the significant features for further examination. Display the count of significant and non-1640 

significant features. 1641 

Step 57: Visualize ANOVA Results 1642 

Sort the `anova_out` results by p-value and visualize the significant features using ggplot(). 1643 

This involves plotting log-transformed F-Statistic values on the x-axis against negative logarithm 1644 

of `p_BH` values on the y-axis. As F-Statistic and p-values can vary greatly, their log values offer 1645 

easier visualization. To prevent clutter, limit the display to the names of the top 6 significant 1646 

features. 1647 

Step 58: Visualize Top Significant Metabolites 1648 

Generate boxplots for the top 4 significant metabolites to observe how their intensity levels differ 1649 

across sampling sites. Extract these metabolites’ data from the `uni_data` dataframe, which 1650 
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contains both feature intensities and metadata, and plot their intensities based on the sampling 1651 

sites. In our example, the higher intensities of these features in the ‘Mission Bay’ sample area 1652 

primarily account for the observed differences between sampling sites. 1653 

Box 11 - ANOVA 1654 

If a pairwise test is used (e.g., a t-test), an increased probability of getting a false positive 

difference (Type I error) would be observed just by chance due to the effects of multiple 

comparisons160. Instead, in the ANOVA test we can perform a single test to see if the observed 

differences are due to randomness or due to the grouping of the samples (e.g., origin, location, 

type of soil, etc.). The F-statistic is calculated using the sum of squares and the degrees of 

freedom (see Figure 17) and compared to a standard F-distribution to determine whether the 

differences among group means are greater than would be expected by chance. Importantly, 

the alternative hypothesis (i.e., where a difference exists between the means) is unspecific. 

This means that the test does not tell us where the difference(s) lie (e.g., if the difference is µA 

≠ µB or µB ≠ µC), it only tells us whether there exists a difference among all the means. The first 

assumption of the ANOVA test is the normality of population distribution and the homogeneity 

in their variances157,161. Non-parametric tests should be used if these assumptions do not hold 

in the data of interest. 
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Figure 17: ANOVA Overview: The illustrative figure depicts the ANOVA process applied to a sample 

feature across groups A, B, and C using dummy data. Following this, the code block is used to test 

ANOVA on our dataset. This process involves selecting metadata for grouped information (e.g., sample 

areas), factorizing it for grouping, and then presenting the ANOVA outcome for one of the features in 

relation to various sample areas. A complementary volcano plot showcases the significance of features 

by mapping log(F-statistic of ANOVA) against negative logarithm of p-value. 

 1655 

3.4.2.2. Tukey’s Honestly Significant Difference (HSD) test 1656 

If the ANOVA test provides evidence that a difference indeed exists between the means of the 1657 

groups, the next step is to find between which groups the difference or differences exist. To do 1658 

this, we can conduct a Tukey HSD post hoc test used to compare multiple means in a single 1659 

analysis157. Refer to Box 12 for more information on Tukey’s test. Additionally, Figure 18 provides 1660 

a visual guide for applying the Tukey test, its implementation in R, and a resulting volcano plot 1661 

that highlights significant features from our pairwise comparison. 1662 

Step 59: Perform Tukey HSD for a Significant Feature 1663 

First, we select a feature identified as significant in the ANOVA result, using 1664 

`anova_sig_names` generated in step 56. From the ANOVA output, we subset the data for 1665 
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this significant feature and conduct a Tukey HSD test. The output is a comprehensive table 1666 

providing an assessment of every possible pairwise group difference as shown in the figure.  1667 

To conduct a Tukey HSD test for all features, consider specifying just a one-pair comparison to 1668 

maintain simplicity. For instance, based on the ANOVA results, the sampling site ‘Mission Bay’ 1669 

appeared to significantly differ from others for the top four metabolites, hence we can focus on 1670 

the results from comparisons between ‘Mission Bay’ and another specific sampling site in the 1671 

subsequent step. 1672 

 1673 

Box 12 - Tukey’s post hoc test 1674 

One of the goals of this test is to overcome the Type I error rate inflation of doing multiple 

comparisons157. The most used post hoc test for ANOVA is Tukey’s Honestly Significant 

Difference (HSD). To calculate the HSD between two means, a statistical distribution defined 

by Student (called the q distribution) is used which takes into account the number of means 

being compared162. 
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Figure 18: Overview of Tukey’s HSD Test: This figure starts with an illustration that showcases how 

ANOVA’s significance suggests that at least one group differs significantly from others, which then 

necessitates a further analysis through pairwise comparisons using Tukey’s HSD test. Alongside, we 

present the code block demonstrating the Tukey test applied to the first significant feature identified via 

ANOVA. Given the presence of 7 sample areas, the output presents p-values for all potential 21 pairwise 

comparisons. Having executed this for all ANOVA-significant features, we particularly highlighted 

comparisons between ‘Mission Bay’ and ‘La Jolla Reef’. The resulting significance is visualized via a 

volcano plot, where right-tailed features exhibit higher prevalence in ‘Mission Bay’, while left-tailed 

features dominate in ‘La Jolla Reef’. 

Step 60: Perform Tukey HSD for All Significant Features 1675 

(User Input Required) 1676 

Carry out a Tukey HSD test for all the significant features identified in the ANOVA. Then, filter the 1677 

results for the specific comparison such as ‘Mission Bay vs. La Jolla Reefs’. Here, users are 1678 

prompted to input the index number corresponding to their desired comparison from the ‘contrast’ 1679 

column displayed in the previous step’s output. As a result of the Tukey test of this pairwise 1680 

interaction, p-values are produced for each feature. After applying the BH correction method, 1681 

features with corrected p-values (output_tukey$p_BH < 0.05) are highlighted as significantly 1682 

different between the selected sites. 1683 
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Step 61: Count Significant Features 1684 

Determine how many features exhibit a significant difference between the chosen sites and how 1685 

many do not.  1686 

Step 62: Visualize Results with a Volcano Plot 1687 

Create a volcano plot with ‘-log(p_BH)’ on the y-axis and the group difference (‘estimate’) on 1688 

the x-axis. Display the names of the top findings on the plot to highlight the most significant 1689 

differences between the chosen sites. Additionally, visualize the top 2 significant metabolites as 1690 

boxplots from both extremes of the volcano plot (right and left tips) to clearly represent if the 1691 

significant metabolite is upregulated or downregulated among the chosen sites. 1692 

3.4.2.3. T-tests 1693 

Step 63: Select Attribute for T-Test Analysis 1694 

(User Input Required) 1695 

A t-test is suitable for comparisons involving just two groups. Therefore, users should specify the 1696 

attribute for the two distinct groups by providing the corresponding index number. For our 1697 

example, we explore the metabolome’s response to rainfall. Hence, we introduce an 1698 

‘ATTRIBUTE_rainfall’ column, designating ‘1’ for ‘Jan-2018’ (a high rainfall period) and ‘0’ for 1699 

the remaining months. 1700 

▲CRITICAL: This column addition caters to our dataset’s context. Users with pre-existing binary 1701 

attributes can skip this addition, while others may adjust this step to align with their data. 1702 

Step 64: Perform T-Test 1703 

Following the same steps as ANOVA (from steps 54 to 57), the t.test() function is used in 1704 

place of aov() in this case. The final output is a dataframe ‘ttest_output’ containing the 1705 

significance of each feature for the two conditions under investigation. 1706 

Step 65: Plot T-Test Results 1707 

Visualize the t-test results using a volcano plot, with the ‘estimate’ (difference in means of the 1708 

two conditions for each feature) on the x-axis and ‘-log(p_BH)’ on the y-axis. Additionally, 1709 

visualize the top 2 significant metabolites as boxplots from both extremes of the volcano plot (right 1710 

and left tips) to clearly represent if the significant metabolite is upregulated or downregulated for 1711 

the chosen attribute. 1712 

▲CRITICAL: Unlike ANOVA, post-hoc tests are not needed for t-tests as there are only two 1713 

conditions to compare. In ANOVA, when a feature is found to be significant, post-hoc tests help 1714 

determine which specific groups show significant differences. 1715 
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For all the above tests, the respective significance values can be saved as a CSV table, and the 1716 

plots can be saved in SVG, PDF, or PNG formats for further analysis or presentation.  1717 

3.4.3. Non-Parametric Tests 1718 

3.4.3.1. Kruskal-Wallis Test 1719 

The Kruskal-Wallis test is a non-parametric statistical test used to compare three or more 1720 

independent groups. It can be used when the assumptions of normality and equal variances are 1721 

not met for performing an ANOVA163. For more information on Kruskal-Wallis Test, refer to Box 1722 

13. Additionally, Figure 19 shows a visual explanation of the Kruskal-Wallis algorithm, 1723 

accompanied by the R-code used to test a feature across various groups and determine its 1724 

significance. 1725 

Step 66: Perform Kruskal-Wallis Test on one feature 1726 

(User Input Required) 1727 

Begin by specifying the attribute for the Kruskal-Wallis (KW) test by entering its index number. In 1728 

this tutorial, we opt for ‘ATTRIBUTE_Sample_Area’. Then, apply the KW test on a single feature 1729 

(the first feature in the `uni_data` dataframe) across different sample areas using the 1730 

kruskal.test() function. Note that the `uni_data` dataframe originates from the 1731 

`cleaned_data`, which we chose as the `Imp_s` scaled table (see Step 24). Summarize the 1732 

output into a one-row table using the tidy() function from the broom package as shown in the 1733 

figure. 1734 

The steps for the Kruskal-Wallis test (steps 66 to 68) are structured similarly to the ANOVA steps 1735 

(steps 54 to 57). 1736 

Step 67: Run Kruskal-Wallis Test for All Features 1737 

● Just like in ANOVA (step 55), perform the Kruskal-Wallis test for each metabolite across 1738 

different sample areas. Then, tidy up the output for each feature into a table using the 1739 

tidy() function.  1740 

● Combine these rows into a single dataframe containing features, their corresponding p-1741 

values, their BH-corrected p-values, and their significance status. Features with a BH-1742 

corrected p-value (kruskall_out$p_BH < 0.05) less than 0.05 are considered 1743 

significant. 1744 

Step 68: Filter Significant Features 1745 

Display the count of significant and non-significant features. Filter out the names of significant 1746 

features for further analysis. 1747 

Step 69: Visualize Kruskal-Wallis Results 1748 
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Similar to ANOVA results, we first sort the `kruskall_out` dataframe results by p-value and 1749 

visualize the significant features using ggplot(). This involves plotting log-transformed K-1750 

Statistic values on the x-axis against ‘-log(p_BH)’ on the y-axis. To prevent clutter, limit the 1751 

display to the names of the top 6 significant features. 1752 

Step 70: Visualize Top Significant Metabolites of Kruskal-Wallis Results 1753 

Generate boxplots for the top 4 significant metabolites to observe how their intensity levels differ 1754 

across sampling sites. Extract these metabolites’ data from the `uni_data` dataframe, which 1755 

contains both feature intensities and metadata, and plot their intensities based on the sampling 1756 

sites. 1757 

Step 71: Compare Results from ANOVA and Kruskal-Wallis 1758 

We also suggest comparing the significant outcomes from both ANOVA and Kruskal-Wallis tests. 1759 

Features yielding high scores in both tests indicate that the null hypothesis is rejected by both 1760 

ANOVA and Kruskal-Wallis. This suggests that these features show significant differences across 1761 

groups (in our case, across different sample areas). This comparison can help prioritize the 1762 

features for further analysis. 1763 

Box 13 - Kruskal-Wallis test 1764 

Although the Kruskal-Wallis test does not assume normality, it is expected that samples are 

random and independent and that the observations in each group come from populations with 

the same shape of distribution163. As an extension of the Mann–Whitney U test (which is used 

to compare only two groups), it compares the median ranks of the groups, which are calculated 

by combining the ranks of all the observations across all groups and then taking their 

average164. With this information, the K statistic can be calculated and compared to the chi-

square distribution to accept or reject the null hypothesis (Figure 19). If the null hypothesis is 

rejected, the alternative hypothesis states that at least one group has a different median from 

the others. 
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Figure 19: Kruskal-Wallis Test: The illustration provides a comprehensive view of the Kruskal-Wallis 

test algorithm. If the test results in rejecting the null hypothesis (with p < 0.05), it suggests that at least 

one group’s median deviates significantly from the others. To complement the illustration, the 

corresponding code snippet from the protocol is presented. Echoing the approach with ANOVA, here the 

Kruskal-Wallis test is executed on an individual feature in relation to the metadata column that groups 

information, with our primary interest being the “Sample area”. 

 1765 

3.4.3.2. Dunn’s Post Hoc Test 1766 

The Dunn statistical test is a non-parametric alternative to the Tukey HSD post hoc test to make 1767 

pairwise comparisons between multiple groups. The steps for Dunn’s post hoc test (steps 72 to 1768 

75) are structured similarly to the Tukey HSD steps (steps 59 to 62). Refer to Box 14 for more 1769 

information on Dunn’s post hoc test. Figure 20 shows a visual representation for applying the 1770 

Dunn test and its implementation in R. 1771 

Step 72: Perform Dunn Test for a Significant Feature 1772 

First, we select the first feature identified as significant in the KW test result, using 1773 

`kw_sig_names` generated in step 68. From the KW output, we subset the data for this 1774 

significant feature and conduct a Dunn test using dunnTest() function. The output is a 1775 

comprehensive table providing an assessment of every possible pairwise group difference as 1776 

shown in Figure 20.  1777 
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When conducting a Dunn test on all significant features, consider specifying just one pair 1778 

interaction to maintain simplicity. Similar to the Tukey HSD test, here we will focus on the results 1779 

from comparisons between ‘Mission Bay’ and ‘La Jolla Reefs’ in the subsequent step. 1780 

Step 73: Perform Dunn Test for All Significant Features 1781 

(User Input Required) 1782 

Carry out a Dunn test for all the significant features identified in the Kruskal-Wallis test with BH 1783 

correction for p-values. Then, filter the results for the specific interaction ‘Mission Bay vs La Jolla 1784 

Reefs’. To perform this, the user will be prompted to enter the index number corresponding to the 1785 

desired comparison. This index number can be referenced from the table produced in the 1786 

preceding step. Then, the Dunn Test result for those comparisons will be filtered for each feature 1787 

showing the corrected p-values. The significance is assigned based on the corrected p-values 1788 

(dunn_output$P.adj < 0.05) to identify the features that show a significant difference between 1789 

these two sites.  1790 

Step 74: Count Significant Features 1791 

Determine how many features exhibit a significant difference between the chosen sites and how 1792 

many do not.  1793 

Step 75: Visualize Results with a Volcano Plot 1794 

Create a volcano plot with ‘-log(p_BH)’ on the y-axis and the Z statistic on the x-axis. Display 1795 

the names of the top findings on the plot to highlight the most significant differences between the 1796 

chosen sites. Additionally, visualize the top 2 significant metabolites as boxplots from both 1797 

extremes of the volcano plot (right and left tips) to clearly represent if the significant metabolite is 1798 

upregulated or downregulated for the chosen sites. 1799 

For all the above tests, the respective significance values can be saved as a CSV table, and the 1800 

plots can be saved in SVG, PDF, or PNG formats for further analysis or presentation.  1801 

Box 14 - Dunn test 1802 

The Dunn statistical test is a non-parametric post-hoc test following Kruskal-Wallis test similar 

to the Tukey HSD post hoc test for ANOVA to make pairwise comparisons between multiple 

groups. Dunn’s z-test approximation of the exact rank-sum test statistics is calculated with the 

mean rankings from the preceding Kruskal–Wallis test based on the differences in mean ranks 

for each group and, then, the p-value is calculated using a modified version of the BH correction 

to account for the type I error rate increase due to multiple comparisons165 (Figure 20). 
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Figure 20: Dunn Test for Post Hoc Analysis: This figure illustrates the Dunn test, a post hoc analysis 

following the Kruskal-Wallis test. After identifying significant features from the Kruskal-Wallis test, the 

next step is to conduct pairwise comparisons between groups. The accompanying code block 

demonstrates the execution of the Dunn test on the first significant feature obtained from the Kruskal-

Wallis test, examining its relationship with various sample areas. The resulting display includes p-values 

for all potential 21 pairwise comparisons. 

4. Example Study 1803 

Data Refinement and Annotation Insights 1804 

 1805 

In the example data, we investigated the coastal environments along the San Diego coastline 1806 

from Torrey Pines State Beach to Mission Bay, USA, during different dry and wet seasons. Refer 1807 

to Figure 21A for a spatial map of the sampling locations. The presumption was that post-rain 1808 

samples, influenced by runoff, would show increased pollutant levels. From FBMN analysis, we 1809 

identified 5521 LC-MS/MS features, which decreased to 4384 after removing blanks. The library 1810 

search against the GNPS spectral library via the FBMN workflow resulted in 92 annotated features 1811 

out of the 4384 features, and an additional analog search putatively annotated 104 features. 1812 

Expanding on this, we included additional data from October 2018, collected from the same sites 1813 

(no-rain period). for our pipeline evaluation. The dataset contained 180 samples from seven 1814 

different sites at three different time points (Dec 2017, Jan 2018, Oct 2018) and 2 PPL process 1815 

blanks for each sample time. From this extended dataset, we identified 11217 features, with 260 1816 
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GNPS library matches and 1991 analog matches. When focusing solely on December and 1817 

January samples, the feature count surged to 10470, almost double the original count of 5521 1818 

features, and 240 GNPS library hits and 1624 analog hits.  1819 

To further expand our annotations, we used SIRIUS for in silico spectrum annotation on the 1820 

extended dataset. We utilized the mgf file obtained from MZmine 3 and extended our SIRIUS 1821 

analysis using tools like CANOPUS and CSI:FingerID. The SIRIUS result provided annotations 1822 

for 8255 features, with annotations or compound names available for 5001 features. All 5001 of 1823 

these features were further characterized by CSI:FingerID, which predicts molecular 1824 

substructures and scores them based on the likelihood that the substructure belongs to the 1825 

molecule. Leveraging the predictive capabilities of both SIRIUS and CSI:FingerID, we could infer 1826 

the most probable molecular formulas. SIRIUS formula identifications were generated for 8885 1827 

features, with 5411 of these having an explained intensity greater than 80%, marking them as 1828 

reliable formulas. For compound class predictions, CANOPUS provided annotations for 8583 1829 

features spanning various levels such as Kingdom, Superclass, Class, Subclass, and Level 5. On 1830 

the other hand, the Natural Product Classifier (NPC) was used to determine if a compound is a 1831 

natural product. These compound classes can be further explored in tools like Cytoscape for 1832 

network visualization based on compound classes, or sub-setting of feature for subsequent 1833 

statistics. 1834 

 1835 

Impact of Sequential Data Cleanup 1836 

 1837 

Contaminant features, especially those exceeding 30% peak area relative to the sample average, 1838 

were flagged and removed, leaving us with 9,092 features. Our dataset showed 32% missing 1839 

values out of 1,636,560 total entries, which were imputed between 1 and the lowest feature value 1840 

(892). Petras et al. found significant organic matter chemotype shifts between December 2017 1841 

and January 2018 samples, correlating with January’s heavy rainfall14. Our extended dataset 1842 

confirmed this, with a PCoA analysis revealing clear sample groupings by the sampling month as 1843 

shown in Figure 21B. Post-blank removal intensified these groupings. Prior to data cleanup, no 1844 

dispersion effect was apparent (p > 0.05), and PERMANOVA attributed 31% of the variance to 1845 

sampling months. After removing blanks, however, a dispersion effect emerged. This dispersion 1846 

effect and explained variance in PERMANOVA are likely due to the removal of background 1847 

features, thus reflecting the true water sample chemotypes for each month. Upon examining the 1848 

PCoA after imputation, individual clusters appeared closer together, though January samples 1849 

exhibited some dispersion. This spread within January samples became more pronounced after 1850 

normalization and scaling. 1851 

 1852 

Multivariate Analysis: Diving into Site-Specific Variations 1853 

 1854 

Using PERMANOVA on the scaled-imputed data, we identified a significant clustering by months, 1855 

attributing 34% of variance to the sampling time (P < 0.05, Adonis R2 = 0.34). Sample locations, 1856 

however, explained only 7% of the variance. Upon deeper exploration at the metabolic profiles 1857 

across these sampling locations, January’s variance was more prominent in Mission Bay, 1858 

especially post-rainfall, due to its nutrient-rich status, potentially from increased runoff through the 1859 

San Diego River. This distinction is evident in the PCoA plot in Figure 21B. Our data showed 1860 
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Mission Bay’s pre-rainfall samples were similar to other sites, but post-rain samples in January 1861 

diverged — a pattern absent in December 2017 and October 2018 samples. We could also 1862 

observe some clear patterns in the heatmap depicted in Figure 21C. Color transitions from blue 1863 

(0 intensity) to red (1 intensity) highlight feature intensity variations. Many features were found in 1864 

higher intensities in October samples compared to December and January samples. Mission Bay 1865 

samples from January (in red) and a subset from Torrey Pines (in blue) displayed increased 1866 

feature intensities. This aligns well with our initial hypothesis. Alongside this, we performed a 1867 

random forest classification considering sampling sites. 1868 

 1869 

 1870 
Figure 21: Anticipated results: A) Spatial map pinpointing sampling sites; B) Principal coordinate plots 1871 

delineating differences by sampling month and location; C) Heatmap displaying scaled feature intensities; 1872 

D) Top 20 annotated drivers for temporal changes identified via Random Forest, with structures of the top 1873 

5 metabolites shown; E) Volcano plot illustrating the Tukey test comparison between Mission Bay and La 1874 

Jolla Reefs samples, with features deemed significant in the ANOVA Sample area-based test used for this 1875 

post-hoc analysis; F) Box plots illustrating feature intensities across various sampling locations. The top 1876 

row presents the foremost 3 annotated significant outcomes post-Tukey test, accompanied by their 1877 

molecular structures. Conversely, the second row highlights the top 3 significant outputs as identified by 1878 

Random Forest; G) Molecular Networks of significant features (diphenylguanidine and polyethylene glycols, 1879 

highlight related molecules with similar spatial patterns as indicated through the pie charts on top of the 1880 

network nodes.  1881 
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Random Forest Exploration: Prioritizing Key Drivers 1882 

Utilizing a Random Forest model with 500 trees and 500 permutations, we attained a 68.3% 1883 

prediction accuracy for the samples. By location, accuracy ranged from 87.5% (Torrey Pines) to 1884 

16.7% (Pacific Beach). The confusion matrix in Table 4 provides insights into these results, 1885 

revealing that misclassifications were often between neighboring sites, likely due to the close 300-1886 

meter spacing between the sampling locations. Our model highlighted 438 significant features 1887 

(based on ‘Mean Decrease Accuracy p value’). Of these, seven matched GNPS libraries and 96 1888 

were analog hits. Examining the violin plot results of RF, top features, like those with library IDs 1889 

91372 and 90597 (both sharing the same analog name), were mainly concentrated in Mission 1890 

Bay and La Jolla Reefs. These concentrations began low at Torrey Pines, peaked at Cove and 1891 

Reef, and saw another spike in Mission Bay. Similar patterns emerged for features like theaflavin 1892 

digallatae (ID 91133). Some features, such as IDs 33200 and 53617, were notably elevated in 1893 

Mission Bay alone. Certain compounds from previously reported research, such as m/z 1894 

1129.3145 (analog name: benzyl-tetradecyl-dimethylammonium) specific to January samples, 1895 

were also detected in our study, but their significance was marginal (p = 0.08) and was 1896 

predominantly seen in Torrey Pines. Several compounds reported in the original study such as 1897 

irgarol, recognized for their pollution potential and unique spatial patterns, were also explored in 1898 

our dataset. Figure 21D visualizes the top 20 annotated drivers for site-specific changes as 1899 

identified via Random Forest, highlighting the structures of the top 5 metabolites. In summary, our 1900 

extended data set enhances the Random Forest analysis, offering a detailed understanding of 1901 

chemotype differences across coastal areas and reaffirming the conclusions of the original study. 1902 

 1903 

Table 4: Confusion Matrix of Random Forest Classification 1904 

The confusion matrix shows how many samples from each group were correctly predicted. Taking 1905 

the first row as an example: out of 36 samples from La Jolla Reefs, 25 were accurately identified. 1906 

The remaining samples were misclassified as follows: 1 as Mission Bay, 1 as Mission Beach, 5 1907 

as Pacific Beach, and 4 as SIO La Jolla Shores. The column labeled ‘pct.correct’ represents the 1908 

percentage of samples that were correctly classified for a given group. The columns ‘LCI 0.95’ 1909 

and ‘UCI 0.95’ denote the lower and upper bounds of the 95% confidence interval for each group, 1910 

respectively. The ‘overall’ row at the bottom indicates the model’s total prediction accuracy, which 1911 

stands at 68.3% for this dataset. 1912 

 1913 
 La Jolla 

Reefs 

La Jolla 

Cove 

Mission 

Bay 

Mission 

Beach 

Pacific 

Beach 

SIO La Jolla 

Shores 

Torrey 

Pines 

pct.correct LCI 0.95 UCI 0.95 

La Jolla Reefs 25 0 1 1 5 4 0 69.4 51.89 83.7 

La Jolla Cove 0 10 0 0 0 2 0 83.3 51.59 97.9 

Mission Bay 4 0 23 7 2 0 0 63.9 46.22 79.2 

Mission Beach 0 0 0 15 3 0 0 83.3 58.58 96.4 

Pacific Beach 6 0 1 3 2 0 0 16.7 2.09 48.4 

SIO La Jolla 

Shores 

2 0 0 1 0 6 9 33.3 13.34 59 

Torrey Pines 0 0 0 0 0 6 42 87.5 74.75 95.3 

Overall NA NA NA NA NA NA NA 68.3 61 75.1 

 1914 

 1915 
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Univariate Analysis Insights 1916 

 1917 

In our univariate analysis of 9092 features, both ANOVA and the Kruskal-Wallis test were utilized. 1918 

However, the Kruskal-Wallis test was considered more apt due to the non-parametric nature of 1919 

our dataset. The Kruskal-Wallis test highlighted 1258 significant features, including irgarol, an 1920 

antifouling agent used on boats. Conversely, ANOVA pinpointed 1554 significant features, with 1921 

many features having a pronounced abundance in Mission Bay compared to other sites. Notably, 1922 

one of the features corresponded to hexaethylene glycol from the NIST14 database and several 1923 

features matched to nanoethylene glycols, which fall under the PEGs (Polyethylene glycols) 1924 

category. Another notable find was an analog match to sporidesmolide 2, previously identified in 1925 

the base study.  1926 

Building on the ANOVA results, Tukey’s HSD test was used to highlight pairwise differences. 1927 

Given the pronounced abundance of many features in Mission Bay, we compared it with La Jolla 1928 

Reefs for further insights. The significant and non-significant features from this test are visualized 1929 

in the volcano plot in Figure 21E. Notably, compounds like 1,2-diphenylguanidine (used in metal 1930 

detection and rubber vulcanization) and nanoethylene glycol were significantly higher in Mission 1931 

Bay. In contrast, La Jolla Reefs had a higher presence of the natural product ‘pheophytin a’ at 1932 

various retention times (RT 11.312, 11.022). The top row in Figure 21F displays the intensities of 1933 

the top three annotated results from the Tukey test across the sampling locations using box plots, 1934 

each paired with its corresponding molecular structure. Interestingly, ‘pheophytin a’ was also more 1935 

abundant in La Jolla Reefs in subsequent Dunn Tests post-Kruskal-Wallis. Furthermore, irgarol 1936 

was consistently found to be more abundant in Mission Bay in both tests.  1937 

These findings align with and reinforce the initial observations, validating the robustness of our 1938 

analytical workflow.  1939 

 1940 

Integration of Molecular Networking Results 1941 

 1942 

After the statistical analysis of the FBMN results and prioritization of features that drive the 1943 

chemical differences between the sampling sites, we further investigate related compounds, 1944 

through the molecular networks. Figure 21G shows the networks of diphenylguanidine and 1945 

polyethylene glycols, indicating that many of the structurally related features of those compounds 1946 

show similar spatial distribution, with the highest abundance in Mission Bay, as indicated through 1947 

the pie charts on top of the network nodes. These results show nicely how the statistical 1948 

prioritization and further structure-based (in our case, based on MS/MS similarity) can work hand 1949 

in hand to structure the observed chemical space. Besides investigating the networks after the 1950 

statistical interrogation, one can also make use of the scores obtained from the different tests and 1951 

visualize those in the network. For example, the fold change and p-values from the univariate 1952 

analysis or mean decreased accuracies form the supervised multivariate analysis can be imported 1953 

as new attribute to the networks with tools such as Cytoscape to combine visual and statistical 1954 

prioritization directly in the network.  1955 
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5. Conclusion  1956 

In this protocol, we provide a comprehensive data clean-up and statistics pipeline for the analysis 1957 

of non-targeted metabolomics data. Our protocol spans from initial data conversion, blank 1958 

removal, imputation, and normalization/scaling to uni- and multivariate statistics and data 1959 

interpretation. While our outlined workflow is as detailed and structured as possible, which should 1960 

provide a comprehensive analysis solution for many biological questions, it is important to point 1961 

out that there is not a universal solution that fits every scenario. We emphasize the importance of 1962 

transparency in reporting details on every step of the metabolomics pipeline, such as providing 1963 

the specific normalization methods, explaining the distance metrics in multivariate analysis, or 1964 

specifying parameters like the number of trees in a Random Forest model. Furthermore, in 1965 

relation to our case study, the sharing of feature detection and annotation settings and batch files 1966 

further augments reproducibility. Together, with open data deposition, the above steps ensure 1967 

both transparency and reproducibility of metabolomics experiments.  1968 

We would also like to stress again that cataloging and identifying statistically significant 1969 

metabolites is just the beginning. To fully understand the relationships between metabolites and 1970 

the underlying biological processes, additional experiments and orthogonal verification are 1971 

typically required. Once the statistical results are studied, techniques such as pathway enrichment 1972 

analyses can illuminate the multifaceted relationships between metabolites and the biological 1973 

processes they are entwined with. When specific compounds are of particular interest, targeted 1974 

metabolomics stands as a powerful next step.  1975 

In summary, we anticipate that our Hitchhicker’s Guide to statistical analysis of FBMN results will 1976 

provide both a theoretical and practical resource for scientists working with non-targeted 1977 

metabolomics data. For novices in the field, the scripts, app and detailed step-to-step protocol 1978 

provide a starting point with a set of statistical analysis solutions for many biological questions, 1979 

whereas experts may accelerate parts of their statistical workflows.  1980 

6. References 1981 

1. Vailati-Riboni, M., Palombo, V. & Loor, J. J. What Are Omics Sciences? in Periparturient 1982 

Diseases of Dairy Cows: A Systems Biology Approach (ed. Ametaj, B. N.) 1–7 (Springer 1983 

International Publishing, 2017). doi:10.1007/978-3-319-43033-1_1. 1984 

2. Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. 1985 

Mol. Cell Biol. 13, 263–269 (2012). 1986 

3. Dayalan, S., Xia, J., Spicer, R. A., Salek, R. & Roessner, U. Metabolome Analysis. in 1987 

Encyclopedia of Bioinformatics and Computational Biology (eds. Ranganathan, S., Gribskov, 1988 

M., Nakai, K. & Schönbach, C.) 396–409 (Academic Press, 2019). doi:10.1016/B978-0-12-1989 

809633-8.20251-3. 1990 

4. Tolstikov, V., Moser, A. J., Sarangarajan, R., Narain, N. R. & Kiebish, M. A. Current Status of 1991 

Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. 1992 

Metabolites 10, 224 (2020). 1993 

5. de Jonge, N. F. et al. Good practices and recommendations for using and benchmarking 1994 

computational metabolomics metabolite annotation tools. Metabolomics 18, 103 (2022). 1995 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


74 

6. Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. 1996 

Nat. Methods 17, 905–908 (2020). 1997 

7. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural 1998 

Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). 1999 

8. Ottosson, F. et al. Effects of Long-Term Storage on the Biobanked Neonatal Dried Blood Spot 2000 

Metabolome. J. Am. Soc. Mass Spectrom. 34, 685–694 (2023). 2001 

9. Dantas Machado, A. C. et al. Portosystemic shunt placement reveals blood signatures for the 2002 

development of hepatic encephalopathy through mass spectrometry. Nat. Commun. 14, 5303 2003 

(2023). 2004 

10. Xie, H.-F. et al. Feature-based molecular networking analysis of the metabolites produced 2005 

by in vitro solid-state fermentation reveals pathways for the bioconversion of epigallocatechin 2006 

gallate. J. Agric. Food Chem. 68, 7995–8007 (2020). 2007 

11. Berlanga-Clavero, M. V. et al. Bacillus subtilis biofilm matrix components target seed oil 2008 

bodies to promote growth and anti-fungal resistance in melon. Nat. Microbiol. 7, 1001–1015 2009 

(2022). 2010 

12. Raheem, D. J., Tawfike, A. F., Abdelmohsen, U. R., Edrada-Ebel, R. & Fitzsimmons-2011 

Thoss, V. Application of metabolomics and molecular networking in investigating the chemical 2012 

profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci. Rep. 2013 

9, 2547 (2019). 2014 

13. Pendergraft, M. A. et al. Bacterial and Chemical Evidence of Coastal Water Pollution from 2015 

the Tijuana River in Sea Spray Aerosol. Environ. Sci. Technol. 57, 4071–4081 (2023). 2016 

14. Petras, D. et al. Non-targeted tandem mass spectrometry enables the visualization of 2017 

organic matter chemotype shifts in coastal seawater. Chemosphere 271, 129450 (2021). 2018 

15. Stincone, P. et al. Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-2019 

Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q 2020 

Exactive Platform. Anal. Chem. 95, 12673–12682 (2023). 2021 

16. Wegley Kelly, L. et al. Distinguishing the molecular diversity, nutrient content, and 2022 

energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc. 2023 

Natl. Acad. Sci. 119, e2110283119 (2022). 2024 

17. Mannochio-Russo, H. et al. Microbiomes and metabolomes of dominant coral reef primary 2025 

producers illustrate a potential role for immunolipids in marine symbioses. Commun. Biol. 6, 2026 

896 (2023). 2027 

18. Shaffer, J. P. et al. Standardized multi-omics of Earth’s microbiomes reveals microbial and 2028 

metabolite diversity. Nat. Microbiol. 7, 2128–2150 (2022). 2029 

19. Molina-Santiago, C. et al. Chemical interplay and complementary adaptative strategies 2030 

toggle bacterial antagonism and co-existence. Cell Rep. 36, (2021). 2031 

20. Reher, R. et al. Native metabolomics identifies the rivulariapeptolide family of protease 2032 

inhibitors. Nat. Commun. 13, 4619 (2022). 2033 

21. Aron, A. T. et al. Native mass spectrometry-based metabolomics identifies metal-binding 2034 

compounds. Nat. Chem. 14, 100–109 (2022). 2035 

22. Behnsen, J. et al. Siderophore-mediated zinc acquisition enhances enterobacterial 2036 

colonization of the inflamed gut. Nat. Commun. 12, 7016 (2021). 2037 

23. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional 2038 

insights. Nucleic Acids Res. 49, W388–W396 (2021). 2039 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


75 

24. Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics 2040 

integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 2041 

(2022). 2042 

25. Cajka, T. & Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass 2043 

Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 88, 524–545 (2016). 2044 

26. Alder, L., Greulich, K., Kempe, G. & Vieth, B. Residue analysis of 500 high priority 2045 

pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25, 838–865 (2006). 2046 

27. Díaz-Cruz, M. S., López de Alda, M. J., López, R. & Barceló, D. Determination of 2047 

estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and 2048 

LC/MS/MS). J. Mass Spectrom. 38, 917–923 (2003). 2049 

28. Michely, J. A., Helfer, A. G., Brandt, S. D., Meyer, M. R. & Maurer, H. H. Metabolism of 2050 

the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their 2051 

detectability in urine by GC–MS, LC–MSn, and LC–HR–MS–MS. Anal. Bioanal. Chem. 407, 2052 

7831–7842 (2015). 2053 

29. Di Masi, S. et al. HPLC-MS/MS method applied to an untargeted metabolomics approach 2054 

for the diagnosis of “olive quick decline syndrome”. Anal. Bioanal. Chem. 414, 465–473 (2022). 2055 

30. Reveglia, P. et al. Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In 2056 

Vitro Culture of Phaeoacremonium Species. J. Fungi 8, 55 (2022). 2057 

31. Baig, F., Pechlaner, R. & Mayr, M. Caveats of Untargeted Metabolomics for Biomarker 2058 

Discovery∗. J. Am. Coll. Cardiol. 68, 1294–1296 (2016). 2059 

32. Xiao, J. F., Zhou, B. & Ressom, H. W. Metabolite identification and quantitation in LC-2060 

MS/MS-based metabolomics. TrAC Trends Anal. Chem. 32, 1–14 (2012). 2061 

33. Blaženović, I. et al. Comprehensive comparison of in silico MS/MS fragmentation tools of 2062 

the CASMI contest: database boosting is needed to achieve 93% accuracy. J. 2063 

Cheminformatics 9, 32 (2017). 2064 

34. Blaženović, I., Kind, T., Ji, J. & Fiehn, O. Software Tools and Approaches for Compound 2065 

Identification of LC-MS/MS Data in Metabolomics. Metabolites 8, 31 (2018). 2066 

35. Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure 2067 

databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. 112, 12580–2068 

12585 (2015). 2069 

36. Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns 2070 

for metabolite identification†. Bioinformatics 25, 218–224 (2009). 2071 

37. Stravs, M. A., Dührkop, K., Böcker, S. & Zamboni, N. MSNovelist: de novo structure 2072 

generation from mass spectra. Nat. Methods 19, 865–870 (2022). 2073 

38. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry 2074 

data using GNPS. Nat. Protoc. 15, 1954–1991 (2020). 2075 

39. Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based 2076 

metabolomics in the GNPS environment. Nat. Commun. 12, 3832 (2021). 2077 

40. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma 2078 

using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. 2079 

Protoc. 6, 1060–1083 (2011). 2080 

41. Silva, A. M., Cordeiro-da-Silva, A. & Coombs, G. H. Metabolic Variation during 2081 

Development in Culture of Leishmania donovani Promastigotes. PLoS Negl. Trop. Dis. 5, 2082 

e1451 (2011). 2083 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


76 

42. Martínez-Sena, T. et al. Monitoring of system conditioning after blank injections in 2084 

untargeted UPLC-MS metabolomic analysis. Sci. Rep. 9, 9822 (2019). 2085 

43. Steffen Heuckeroth, Tito Damiani, Aleksandr Smirnov, Olena Mokshyna, Corinna Brungs, 2086 

Ansgar Korf4, Joshua David Smith, Paolo Stincone, Nicola Dreolin, Louis-Félix Nothias, Tuulia 2087 

Hyötyläinen, Matej Orešič, Uwe Karst, Pieter C. Dorrestein, Daniel Petras, Xiuxia Du, Justin 2088 

J.J. van der Hooft, Robin Schmid, Tomáš Pluskal. Mass spectrometry data processing in 2089 

MZmine 3: feature detection and annotation. Nat. Protoc. Under Review, (2023). 2090 

44. Raynie, D. The Vital Role of Blanks in Sample Preparation. LCGC N. Am. 36, 494–497 2091 

(2018). 2092 

45. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source 2093 

software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008). 2094 

46. Hulstaert, N. et al. ThermoRawFileParser: Modular, Scalable, and Cross-Platform RAW 2095 

File Conversion. J. Proteome Res. 19, 537–542 (2020). 2096 

47. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS:  Processing 2097 

Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, 2098 

and Identification. Anal. Chem. 78, 779–787 (2006). 2099 

48. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An 2100 

Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid 2101 

Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 84, 283–289 (2012). 2102 

49. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. 2103 

Nat. Biotechnol. 41, 447–449 (2023). 2104 

50. Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020). 2105 

51. Pfeuffer, J. et al. OpenMS – A platform for reproducible analysis of mass spectrometry 2106 

data. J. Biotechnol. 261, 142–148 (2017). 2107 

52. Gloaguen, Y., Kirwan, J. A. & Beule, D. Deep Learning-Assisted Peak Curation for Large-2108 

Scale LC-MS Metabolomics. Anal. Chem. 94, 4930–4937 (2022). 2109 

53. Chetnik, K., Petrick, L. & Pandey, G. MetaClean: a machine learning-based classifier for 2110 

reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics 2111 

16, 117 (2020). 2112 

54. El Abiead, Y., Milford, M., Salek, R. M. & Koellensperger, G. mzRAPP: a tool for reliability 2113 

assessment of data pre-processing in non-targeted metabolomics. Bioinformatics 37, 3678–2114 

3680 (2021). 2115 

55. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high 2116 

resolution LC/MS. BMC Bioinformatics 9, 504 (2008). 2117 

56. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite 2118 

structure information. Nat. Methods 16, 299–302 (2019). 2119 

57. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. 2120 

Metabolomics 3, 211–221 (2007). 2121 

58. Liu, L.-L. et al. Molecular networking-based for the target discovery of potent 2122 

antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. 2123 

asoensis. Org. Chem. Front. 7, 4008–4018 (2020). 2124 

59. Sedio, B. E., Boya P., C. A. & Rojas Echeverri, J. C. A protocol for high-throughput, 2125 

untargeted forest community metabolomics using mass spectrometry molecular networks. 2126 

Appl. Plant Sci. 6, e1033 (2018). 2127 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


77 

60. Quinn, R. A. et al. Molecular Networking As a Drug Discovery, Drug Metabolism, and 2128 

Precision Medicine Strategy. Trends Pharmacol. Sci. 38, 143–154 (2017). 2129 

61. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for 2130 

processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC 2131 

Bioinformatics 11, 395 (2010). 2132 

62. Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a 2133 

comprehensive, computable taxonomy. J. Cheminformatics 8, 61 (2016). 2134 

63. Kim, H. W. et al. NPClassifier: A Deep Neural Network-Based Structural Classification 2135 

Tool for Natural Products. J. Nat. Prod. 84, 2795–2807 (2021). 2136 

64. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution 2137 

fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2021). 2138 

65. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data 2139 

science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). 2140 

66. Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A. & Viant, M. R. Galaxy-M: a 2141 

Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass 2142 

spectrometry-based metabolomics data. GigaScience 5, 10 (2016). 2143 

67. Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for 2144 

computational metabolomics. Bioinformatics 31, 1493–1495 (2015). 2145 

68. Kontou, E. E. et al. UmetaFlow: an untargeted metabolomics workflow for high-throughput 2146 

data processing and analysis. J. Cheminformatics 15, 52 (2023). 2147 

69. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: An R package for ‘omics 2148 

feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017). 2149 

70. Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis 2150 

of metabolomics data. Bioinformatics 34, 4313–4314 (2018). 2151 

71. Tiffany, C. R. & Bäumler, A. J. omu, a Metabolomics count data analysis tool for intuitive 2152 

figures and convenient metadata collection. Microbiol. Resour. Announc. 8, 10.1128/mra. 2153 

00129-19 (2019). 2154 

72. Han, X. & Liang, L. metabolomicsR: a streamlined workflow to analyze metabolomic data 2155 

in R. Bioinforma. Adv. 2, vbac067 (2022). 2156 

73. Fernández-Albert, F., Llorach, R., Andrés-Lacueva, C. & Perera, A. An R package to 2157 

analyse LC/MS metabolomic data: MAIT (Metabolite Automatic Identification Toolkit). 2158 

Bioinformatics 30, 1937–1939 (2014). 2159 

74. Kohler, D. et al. MSstats Version 4.0: Statistical Analyses of Quantitative Mass 2160 

Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at 2161 

Scale. J. Proteome Res. 22, 1466–1482 (2023). 2162 

75. Riquelme, G., Zabalegui, N., Marchi, P., Jones, C. M. & Monge, M. E. A Python-Based 2163 

Pipeline for Preprocessing LC–MS Data for Untargeted Metabolomics Workflows. Metabolites 2164 

10, 416 (2020). 2165 

76. Di Guida, R. et al. Non-targeted UHPLC-MS metabolomic data processing methods: a 2166 

comparative investigation of normalisation, missing value imputation, transformation and 2167 

scaling. Metabolomics 12, 93 (2016). 2168 

77. Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. 2169 

Natl. Acad. Sci. 109, E1743–E1752 (2012). 2170 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


78 

78. Hoffmann, M. A. et al. Assigning confidence to structural annotations from mass spectra 2171 

with COSMIC. 2021.03.18.435634 Preprint at https://doi.org/10.1101/2021.03.18.435634 2172 

(2021). 2173 

79. Rinker, T. et al. pacman: Package Management Tool. (2019). 2174 

80. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). 2175 

81. Kluyver, T., Angerer, P. & Schulz, J. IRdisplay: ‘Jupyter’ Display Machinery. (2022). 2176 

82. Cacciatore, S., Luchinat, C. & Tenori, L. Knowledge discovery by accuracy maximization. 2177 

Proc. Natl. Acad. Sci. 111, 5117–5122 (2014). 2178 

83. Kassambara, A. & Mundt, F. Extract and Visualize the Results of Multivariate Data 2179 

Analyses [R package factoextra version 1.0.7]. in (2020). 2180 

84. Oksanen, J. et al. vegan: Community Ecology Package. (2022). 2181 

85. Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022). 2182 

86. Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of 2183 

hierarchical clustering. Bioinforma. Oxf. Engl. 31, 3718–3720 (2015). 2184 

87. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R Package for 2185 

Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 61, 1–36 (2014). 2186 

88. Archer, E. rfPermute: Estimate Permutation p-Values for Random Forest Importance 2187 

Metrics. (2023). 2188 

89. Ogle, D. H., Doll, J. C., Wheeler, A. P. & dunnTest()), A. D. (Provided base functionality 2189 

of. FSA: Simple Fisheries Stock Assessment Methods. (2023). 2190 

90. Bengtsson, H. et al. matrixStats: Functions that Apply to Rows and Columns of Matrices 2191 

(and to Vectors). (2023). 2192 

91. Xiao  [aut, N., cre, Cook, J., Jégousse, C. & Li, M. ggsci: Scientific Journal and Sci-Fi 2193 

Themed Color Palettes for ‘ggplot2’. (2023). 2194 

92. Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2020). 2195 

93. Wickham, H. et al. svglite: An ‘SVG’ Graphics Device. (2023). 2196 

94. Liu, Q. et al. Addressing the batch effect issue for LC/MS metabolomics data in data 2197 

preprocessing. Sci. Rep. 10, 13856 (2020). 2198 

95. Yue, Y., Bao, X., Jiang, J. & Li, J. Evaluation and correction of injection order effects in 2199 

LC-MS/MS based targeted metabolomics. J. Chromatogr. B 1212, 123513 (2022). 2200 

96. Livera, A. M. D. et al. Statistical Methods for Handling Unwanted Variation in 2201 

Metabolomics Data. Anal. Chem. 87, 3606–3615 (2015). 2202 

97. Reese, S. E. et al. A new statistic for identifying batch effects in high-throughput genomic 2203 

data that uses guided principal component analysis. Bioinformatics 29, 2877–2883 (2013). 2204 

98. Burton, L. et al. Instrumental and experimental effects in LC–MS-based metabolomics. J. 2205 

Chromatogr. B 871, 227–235 (2008). 2206 

99. Gregori, J. et al. Batch effects correction improves the sensitivity of significance tests in 2207 

spectral counting-based comparative discovery proteomics. J. Proteomics 75, 3938–3951 2208 

(2012). 2209 

100. Thonusin, C. et al. Evaluation of intensity drift correction strategies using MetaboDrift, a 2210 

normalization tool for multi-batch metabolomics data. J. Chromatogr. A 1523, 265–274 (2017). 2211 

101. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression 2212 

data using empirical Bayes methods. Biostatistics 8, 118–127 (2007). 2213 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


79 

102. Deng, K. et al. WaveICA: A novel algorithm to remove batch effects for large-scale 2214 

untargeted metabolomics data based on wavelet analysis. Anal. Chim. Acta 1061, 60–69 2215 

(2019). 2216 

103. Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. 2217 

Metabolomics 12, 88 (2016). 2218 

104. Kuligowski, J., Sánchez-Illana, Á., Sanjuán-Herráez, D., Vento, M. & Quintás, G. Intra-2219 

batch effect correction in liquid chromatography-mass spectrometry using quality control 2220 

samples and support vector regression (QC-SVRC). The Analyst 140, 7810–7817 (2015). 2221 

105. Luan, H., Ji, F., Chen, Y. & Cai, Z. statTarget: A streamlined tool for signal drift correction 2222 

and interpretations of quantitative mass spectrometry-based omics data. Anal. Chim. Acta 2223 

1036, 66–72 (2018). 2224 

106. Rong, Z. et al. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in 2225 

Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 92, 2226 

5082–5090 (2020). 2227 

107. Dmitrenko, A., Reid, M. & Zamboni, N. Regularized adversarial learning for normalization 2228 

of multi-batch untargeted metabolomics data. Bioinformatics 39, btad096 (2023). 2229 

108. Tokareva, A. O. et al. Normalization methods for reducing interbatch effect without quality 2230 

control samples in liquid chromatography-mass spectrometry-based studies. Anal. Bioanal. 2231 

Chem. 413, 3479–3486 (2021). 2232 

109. Cleary, J. L., Luu, G. T., Pierce, E. C., Dutton, R. J. & Sanchez, L. M. BLANKA: an 2233 

Algorithm for Blank Subtraction in Mass Spectrometry of Complex Biological Samples. J. Am. 2234 

Soc. Mass Spectrom. 30, 1426–1434 (2019). 2235 

110. Lawson, T. N. et al. msPurity: Automated Evaluation of Precursor Ion Purity for Mass 2236 

Spectrometry-Based Fragmentation in Metabolomics. Anal. Chem. 89, 2432–2439 (2017). 2237 

111. Schiffman, C. et al. Data-adaptive pipeline for filtering and normalizing metabolomics data. 2238 

387365 Preprint at https://doi.org/10.1101/387365 (2018). 2239 

112. Carobene, A., Braga, F., Roraas, T., Sandberg, S. & Bartlett, W. A. A systematic review 2240 

of data on biological variation for alanine aminotransferase, aspartate aminotransferase and γ-2241 

glutamyl transferase. Clin. Chem. Lab. Med. CCLM 51, 1997–2007 (2013). 2242 

113. Schiffman, C. et al. Filtering procedures for untargeted LC-MS metabolomics data. BMC 2243 

Bioinformatics 20, 334 (2019). 2244 

114. Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and 2245 

quality control samples in mass spectrometry assays applied in untargeted clinical 2246 

metabolomic studies. Metabolomics 14, 72 (2018). 2247 

115. Wei, R. et al. Missing Value Imputation Approach for Mass Spectrometry-based 2248 

Metabolomics Data. Sci. Rep. 8, 663 (2018). 2249 

116. Do, K. T. et al. Characterization of missing values in untargeted MS-based metabolomics 2250 

data and evaluation of missing data handling strategies. Metabolomics 14, 128 (2018). 2251 

117. Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for 2252 

targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends 2253 

Anal. Chem. 82, 425–442 (2016). 2254 

118. Wulff, J. E. & Mitchell, M. W. A Comparison of Various Normalization Methods for LC/MS 2255 

Metabolomics Data. Adv. Biosci. Biotechnol. 9, 339–351 (2018). 2256 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


80 

119. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic Quotient Normalization 2257 

as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H 2258 

NMR Metabonomics. Anal. Chem. 78, 4281–4290 (2006). 2259 

120. Li, B. et al. Performance Evaluation and Online Realization of Data-driven Normalization 2260 

Methods Used in LC/MS based Untargeted Metabolomics Analysis. Sci. Rep. 6, 38881 (2016). 2261 

121. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. & Selbig, J. Metabolite fingerprinting: 2262 

detecting biological features by independent component analysis. Bioinformatics 20, 2447–2263 

2454 (2004). 2264 

122. Qannari, E. M., Wakeling, I., Courcoux, P. & MacFie, H. J. H. Defining the underlying 2265 

sensory dimensions. Food Qual. Prefer. 11, 151–154 (2000). 2266 

123. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. 2267 

J. Centering, scaling, and transformations: improving the biological information content of 2268 

metabolomics data. BMC Genomics 7, 142 (2006). 2269 

124. Khalheim, O. M. Scaling of analytical data. Anal. Chim. Acta 177, 71–79 (1985). 2270 

125. Kasprzak, E. M. & Lewis, K. E. Pareto analysis in multiobjective optimization using the 2271 

collinearity theorem and scaling method. Struct. Multidiscip. Optim. 22, 208–218 (2001). 2272 

126. Keenan, M. R. & Kotula, P. G. Accounting for Poisson noise in the multivariate analysis of 2273 

ToF-SIMS spectrum images. Surf. Interface Anal. 36, 203–212 (2004). 2274 

127. Gromski, P. S. et al. A tutorial review: Metabolomics and partial least squares-discriminant 2275 

analysis – a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 879, 10–23 2276 

(2015). 2277 

128. Mendez, K. M., Reinke, S. N. & Broadhurst, D. I. A comparative evaluation of the 2278 

generalised predictive ability of eight machine learning algorithms across ten clinical 2279 

metabolomics data sets for binary classification. Metabolomics 15, 150 (2019). 2280 

129. GOWER, J. C. Some distance properties of latent root and vector methods used in 2281 

multivariate analysis. Biometrika 53, 325–338 (1966). 2282 

130. Xu, Y. et al. Application of Dissimilarity Indices, Principal Coordinates Analysis, and Rank 2283 

Tests to Peak Tables in Metabolomics of the Gas Chromatography/Mass Spectrometry of 2284 

Human Sweat. Anal. Chem. 79, 5633–5641 (2007). 2285 

131. Nguyen, L. H. & Holmes, S. Ten quick tips for effective dimensionality reduction. PLOS 2286 

Comput. Biol. 15, e1006907 (2019). 2287 

132. Jäggi, C., Wirth, T. & Baur, B. Genetic variability in subpopulations of the asp viper (Vipera 2288 

aspis) in the Swiss Jura mountains: implications for a conservation strategy. Biol. Conserv. 94, 2289 

69–77 (2000). 2290 

133. Pinheiro, H. P., de Souza Pinheiro, A. & Sen, P. K. Comparison of genomic sequences 2291 

using the Hamming distance. J. Stat. Plan. Inference 130, 325–339 (2005). 2292 

134. Lozupone, C. & Knight, R. UniFrac: a New Phylogenetic Method for Comparing Microbial 2293 

Communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005). 2294 

135. Brejnrod, A. et al. Implementations of the chemical structural and compositional similarity 2295 

metric in R and Python. 546150 Preprint at https://doi.org/10.1101/546150 (2019). 2296 

136. Tripathi, A. et al. Chemically informed analyses of metabolomics mass spectrometry data 2297 

with Qemistree. Nat. Chem. Biol. 17, 146–151 (2021). 2298 

137. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–2299 

160 (2007). 2300 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


81 

138. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut 2301 

microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011). 2302 

139. Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial 2303 

ecology. Mol. Ecol. 25, 1032–1057 (2016). 2304 

140. Efron, B. Bootstrap Methods: Another Look at the Jackknife. in Breakthroughs in Statistics: 2305 

Methodology and Distribution (eds. Kotz, S. & Johnson, N. L.) 569–593 (Springer, 1992). 2306 

doi:10.1007/978-1-4612-4380-9_41. 2307 

141. Desu, M. M. & Raghavarao, D. Nonparametric Statistical Methods For Complete and 2308 

Censored Data. (CRC Press, 2003). 2309 

142. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. 2310 

Austral Ecol. 26, 32–46 (2001). 2311 

143. Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face 2312 

of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83, 557–2313 

574 (2013). 2314 

144. Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via 2315 

the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 411–423 (2001). 2316 

145. Wilkinson, L. & Friendly, M. The History of the Cluster Heat Map. Am. Stat. 63, 179–184 2317 

(2009). 2318 

146. Wu, W. & Noble, W. S. Genomic data visualization on the Web. Bioinformatics 20, 1804–2319 

1805 (2004). 2320 

147. Benton, P. H. et al. An Interactive Cluster Heat Map to Visualize and Explore 2321 

Multidimensional Metabolomic Data. Metabolomics Off. J. Metabolomic Soc. 11, 1029–1034 2322 

(2015). 2323 

148. Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D. & Lu, L. J. Computational and 2324 

statistical analysis of metabolomics data. Metabolomics 11, 1492–1513 (2015). 2325 

149. Liebal, U. W., Phan, A. N. T., Sudhakar, M., Raman, K. & Blank, L. M. Machine Learning 2326 

Applications for Mass Spectrometry-Based Metabolomics. Metabolites 10, 243 (2020). 2327 

150. Breiman, L. (out-of-bag estimates). (1996). 2328 

151. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001). 2329 

152. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable 2330 

importance for random forests. BMC Bioinformatics 9, 307 (2008). 2331 

153. Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable 2332 

importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008). 2333 

154. Jafari, M. & Ansari-Pour, N. Why, When and How to Adjust Your P Values? Cell J. Yakhteh 2334 

20, 604–607 (2019). 2335 

155. Korthauer, K. et al. A practical guide to methods controlling false discoveries in 2336 

computational biology. Genome Biol. 20, 118 (2019). 2337 

156. Mishra, P. et al. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. 2338 

Anaesth. 22, 67–72 (2019). 2339 

157. Vinaixa, M. et al. A Guideline to Univariate Statistical Analysis for LC/MS-Based 2340 

Untargeted Metabolomics-Derived Data. Metabolites 2, 775–795 (2012). 2341 

158. Riffenburgh, R. H. & Gillen, D. L. Statistics in Medicine. (Academic Press, 2020). 2342 

159. Xia, Y. & Sun, J. Hypothesis Testing and Statistical Analysis of Microbiome. Genes Dis. 2343 

4, 138–148 (2017). 2344 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


82 

160. Sato, T. Type I and Type II Error in Multiple Comparisons. J. Psychol. 130, 293–302 2345 

(1996). 2346 

161. Bathke, A. The ANOVA F test can still be used in some balanced designs with unequal 2347 

variances and nonnormal data. J. Stat. Plan. Inference 126, 413–422 (2004). 2348 

162. Abdi, H. & Williams, L. Newman-Keuls Test and Tukey Test. Encycl. Res. Des. (2010). 2349 

163. Ostertagová, E., Ostertag, O. & Kováč, J. Methodology and Application of the Kruskal-2350 

Wallis Test. Appl. Mech. Mater. 611, 115–120 (2014). 2351 

164. Hecke, T. V. Power study of anova versus Kruskal-Wallis test. J. Stat. Manag. Syst. 15, 2352 

241–247 (2012). 2353 

165. Dinno, A. Nonparametric Pairwise Multiple Comparisons in Independent Groups using 2354 

Dunn’s Test. Stata J. Promot. Commun. Stat. Stata 15, 292–300 (2015). 2355 

 2356 

7. Data and Code Sharing 2357 

The FBMN results are available under the following URL: 2358 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e 2359 

Raw and processed that is available through the MassIVE repository (MSV000090156) and 2360 

Zenodo (https://zenodo.org/records/10051610). All code and software is available through GitHub 2361 

under the following link https://github.com/Functional-Metabolomics-Lab/FBMN-STATS. 2362 

8. Acknowledgment 2363 

We thank Libera Lo Presti for critical reading of the manuscript. We thank Greg Caporaso for 2364 

guidance on preparing the QIIME2 plugins. DP, CM, and HPL were supported by the Deutsche 2365 

Forschungsgemeinschaft (DFG) through the CMFI Cluster of Excellence (EXC 2124) and DP and 2366 

CM, were supported by the DFG through the Collaborative Research Center CellMap (TRR 261). 2367 

KD was supported by the DFG (BO 1910/23). PS was supported by the European Union’s Horizon 2368 

Europe research and innovation programme through a Marie Skłodowska-Curie fellowship No. 2369 

101108450 MeStaLeM. TP was supported by the Czech Science Foundation (GA CR) grant 21-2370 

11563M and by the European Union’s Horizon 2020 research and innovation programme under 2371 

Marie Skłodowska-Curie grant agreement No. 891397. TD was supported by the MSCA 2372 

Fellowships CZ (OP JAK) grant CZ.02.01.01/00/22_010/0002733. MW was supported by the 2373 

National Institutes of Health (NIH) with grants 1U24DK133658-01, NIH 1R03DE032437-01, and 2374 

UC Riverside startup funding. EEK was supported by grants of the Novo Nordisk Foundation 2375 

[NNF20CC0035580, NNF16OC0021746]. YW was supported by NIH 1R03DE032437-01. CB 2376 

was supported by the Czech Academy of Sciences (CAS PPLZ) L200552251. FO was supported 2377 

by FAPESP 2022/14603-8. JB was supported by Deutsches Zentrum für Infektionsforschung 2378 

(DZIF). EEK was supported by grants of the Novo Nordisk Foundation (NNF20CC0035580, 2379 

NNF16OC0021746). 2380 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=06bd49807caa4390961fb827606a8696
https://zenodo.org/records/10051610
https://github.com/Functional-Metabolomics-Lab/FBMN-STATS
https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/


83 

9. Author Contribution 2381 

AKPS, FO, FR, ME, and DP conceptualized the protocol. YE, SZ, JS, RS advised on the concept 2382 

and statistical test. AKPS, AW, FO, FR, MN, JB, EEK, JE, AP, CGM, SF, NC, YW, MD, JS, MW, 2383 

and ME wrote code. AW, and MW developed and deployed the web app. RS, ATA and DP 2384 

collected the water samples. DP extracted the samples and acquired the LC-MS/MS data. AKPS, 2385 

AW, FO, FR, MN, JB, JJK, EEK, JE, AP, CGM, SF, MRA, TP, NC, MP, CB, BC, AMCR, AC, Fd, 2386 

KD, YE, CG, LGG, MH, SH, SK, AK, MCMK, KM, SP, PWP, TS, KSL, PS, ST, GAV, BCW, SX, 2387 

MTY, SZ, Md, CB, HPL, CM, JJJvdH, TD, PCD, JS, RS, ATA, ME, and DP tested the protocol, 2388 

code and app. CB, JJJvdH, TP, MW, ATA, ME, and DP supervised students and researchers. 2389 

MW, AA, ME, and DP supervised the project. AKPS, MN, JB, JJK, EEK, AP, SF, TP, ATA and 2390 

DP wrote the manuscript and supplemental information. FO, FR, JE, CGM, MRA, NC, MP, KD, 2391 

YE, LGG, MH, SH, PS, GAV, SZ, JJJvdH, TD, TP, PCD, JS, RS, MW, and ME edited and provided 2392 

critical feedback on the first draft. All authors edited and approved the final draft. 2393 

10. Conflict of Interest 2394 

JJJvdH is currently a member of the Scientific Advisory Board of Naicons Srl., Milano, Italy, and 2395 

is consulting for Corteva Agriscience, Indianapolis, IN, USA. PCD is a scientific advisor and holds 2396 

equity to Cybele and a Co-founder, advisor and holds equity in Ometa, Arome and Enveda with 2397 

prior approval by UC-San Diego and consulted in 2023 for DSM animal health. MW is the founder 2398 

of Ometa Labs. 2399 

11. Additional information & Supplementary information 2400 

 2401 

Supplemental information, including a cheat-sheet, detailed methods for the LC-MS/MS data 2402 

acquisition and step-to-step guides for the Python and QIIME2 scripts as well as the web app 2403 

are available in the supplemental information.  2404 

https://doi.org/10.26434/chemrxiv-2023-wwbt0 ORCID: https://orcid.org/0000-0002-5629-8331 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-wwbt0
https://orcid.org/0000-0002-5629-8331
https://creativecommons.org/licenses/by-nc-nd/4.0/

