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Abstract2

A molecular understanding of thermoset fracture is crucial for enhancing performance and3

durability across applications. However, achieving accurate atomistic modeling of thermoset4

fracture remains computationally prohibitive due to the high cost associated with quantum me-5

chanical methods for describing bond breaking. In this work, we introduce an active learning6

(AL) framework for our recently developed machine-learning based adaptable bond topology7

(MLABT) model that uses datasets generated via density functional theory (DFT) calcula-8

tions that are both minimalistic and informative. Employing MLABT integrated with AL and9

DFT, we explore fracture behavior in highly crosslinked thermosets, assessing the variations10

in fracture behavior induced by system temperature, temperature fluctuations, strain rate, cool-11

ing rate, and degree of crosslinking. Notably, we discover that while fracture is minimally12

affected by temperature, it is strongly influenced by strain rate, suggesting the absence of the13

time-temperature superposition in thermoset plasticity. Furthermore, while the structural dis-14

parities introduced by different network annealing rates influence the elastic properties, they15
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are inconsequential for thermoset fracture. In contrast, network topology emerges as the dom-16

inant determinant of fracture, influencing both the ultimate strain and stress. The integration17

of MLABT with the AL framework paves the way for efficient and DFT-accurate modeling18

of thermoset fracture, providing an affordable and accurate approach for calculating polymer19

network fracture across chemical space.20

Introduction21

Thermosets, characterized by the presence of irreversible polymer crosslinks and enhanced me-22

chanical properties, are foundational to numerous technological applications ranging from auto-23

motive components and aerospace structures to medical devices and protective coatings.1–3 The24

robust nature of thermosets along with their adaptability have ushered in new horizons for mate-25

rial innovations.4,5 Central to maximizing the potential of thermosets in these domains is an in-26

depth understanding of their fracture behaviors.6–10 Recent advancements in computational tools27

and experimental techniques have provided insights into the fracture of thermosets.11–18 How-28

ever, the atomic-scale processes governing these behaviors remain less explored. Delving into29

this atomic realm promises not only enhanced material predictability but also the prospect of tai-30

lored design.19,20 Nevertheless, this pursuit presents formidable challenges: accurate atomic-level31

modeling of thermoset fracture necessitates substantial computational resources, especially when32

elucidating intricate bond breakage phenomena with quantum mechanical (QM) methods.21 As33

the demand for higher performance materials grows, overcoming these challenges and obtaining a34

more comprehensive understanding of thermoset fracture at the molecular scale is imperative.35

In our previous study, we introduced the Machine Learning based Adaptable Bonding Topology36

(MLABT) framework, an approach tailored for atomistic simulations of thermosets under large de-37

formation.22 MLABT circumvents limitations of classical molecular dynamics (MD) simulations38

by itegrating a machine learning (ML) algorithm for detection and execution of bond-breaking39

events (with near QM accuracy) with any underlying classical force-field. Compared to existing40

methods combining MD and QM,21 MLABT exhibits an approximately two orders of magni-41
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tude improved computational efficiency, coupled with heightened sensitivity to rare bond-breaking42

events at low strains. This blend of speed and accuracy created by augmenting classical force-43

fields accurate at low strain with QM-quality bond-breaking detection renders MLABT a robust44

and chemically general tool for probing strain hardening and material failure dynamics in polymer45

networks.46

While the development of MLABT is promising for modeling thermoset fracture, it is not with-47

out its challenges. First and foremost, generating a sufficient volume of training data using QM48

calculations is resource-intensive. Moreover, provided the rare nature of bond-breaking events,49

bond evaluations are primarily confined to a narrow strain-hardening window for efficiency rea-50

sons. Second, existing MLABT training data derives from configurations possessing intact cross-51

linked topologies, rather than those emerging in situ during fracture. These constraints, revolving52

around inefficient and insufficient configurational sampling, curtail the full potential of MLABT53

in offering a computationally efficient and molecularly detailed modeling paradigm for thermoset54

fracture. Recognizing these limitations, the field of active learning (AL),23,24 defined by its ability55

to iteratively refine and expand training datasets, appears an apt fit for these challenges.25,26
56

In this work we integrate AL into MLABT simulations. This provides two concerted benefits57

for MLABT models: the ability (i) to systematically navigate the vast configurational space of58

thermoset fracture and (ii) to employ higher accuracy (i.e. more computationally costly) density59

functional theory (DFT) calculations that better capture the physics of bond breaking, by virtue60

of using nearly an order of magnitude less training data than previously. Empowered by this61

AL-DFT MLABT model, we conduct the first comprehensive exploration of thermoset fracture62

behaviors using a DFT-accurate bond-breaking model. We scrutinize how the stress-strain behav-63

iors as well as bond breakages are modulated by experimental factors including temperature, strain64

rate, cooling rate, and the degree of crosslinking. The results from our MLABT analysis reveal65

that strain rates have a more pronounced effect on bond breakages than temperature, suggesting66

that the time-temperature superposition principle does not hold for thermoset plasticity. Impor-67

tantly, network topology appears to be more influential than the stability of the glassy structure in68
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determining fracture behavior. Furthermore, we demonstrate that thermoset stress-strain behavior69

exhibits small variance under thermal fluctuations, indicating a certain degree of degeneracy in net-70

work fracture. Considering that MLABT leverages the DFT accuracy for bond breaking in fracture71

modeling, yet doesn’t capture the brittle failure seen in experiments, we conjecture that embracing72

larger spatiotemporal scales in modeling will be essential for better alignment with experiments.73

Methods74

MLABT simulation75

Figure 1: Schematic of the Machine-Learning-based Adaptable Bonding Topology (MLABT)
method. MLABT can efficiently predict and perform bond breaking on-the-fly in MD simula-
tions with near quantum-chemical accuracy.22

MLABT is a method incorporated on-the-fly with classical MD (e.g. OPLS, Amber) to accu-76

rately describe quantum-chemically accurate bond breaking at dramatically reduced cost, with a77

focus on the modeling of thermoset deformation and fracture.22 As illustrated in Fig. 1, MLABT78

scans all potentially breakable bond types in the classical MD simulation and predicts bond rupture79

based on the local structures. If a bond breaks, the corresponding topology is automatically mod-80

ified and MD continues until the next bond breaks. We develop MLABT in an archetypal epoxy81
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polymer network, diglycidyl ether of bisphenol A (DGEBA) cured by methylene dianiline (MDA),82

but the approach is chemically generalizable.83

We employ similar simulation parameters as described in our previous work.22 Specifically, a84

cubic box containing 432 DGEBA and 216 MDA molecules (27,432 atoms in total) is utilized with85

periodic boundary conditions in three dimensions. Bonding topologies of networks are generated86

dynamically by simulating curing reactions in MD, resulting in degrees of crosslinking ranging87

from 77% to 98%. Structures are melted at 800 K for 200 ps and then quenched to 300 K with88

a constant annealing rate ranging from 0.1 K/ps to 100 K/ps. The obtained glassy structures are89

then used as initial conditions for MLABT deformation simulations. Only uniaxial deformations90

are considered in this work. During deformations, the simulation box is deformed every 1 ps at91

a strain rate of 4× 109/s and the atomic coordinates are remapped accordingly. The two trans-92

verse directions are allowed to relax under P=1 atm to avoid the accumulation of artificial stress.93

We apply the Optimized Potentials for Liquid Simulations All Atoms (OPLS-AA) force-field with94

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) in all MD simula-95

tions.27,28 Simulated glass transition temperature, density, and elastic properties are all in good96

agreement with experiments and previous simulations.11,29–31
97

Central to MLABT is the ML model tasked with predicting bond breakages by analyzing the98

bond’s instantaneous surroundings. To characterize the local structure, we employ the Smooth99

Overlap of Atomic Positions (SOAP) descriptor, representing a Gaussian smeared local atomic100

density based on spherical harmonics and radial basis functions.32–34 We apply the support vector101

machine (SVM) with the radial basis function kernel as the classifier.35 More details can be found102

in the reference.22 Considering the additional cost of ML prediction that requires the computation103

of the SOAP vectors for all the relevant atoms, we perform the scanning of bond breaking every104

0.001 true strain. In our testing, as long as the evaluation frequency is greater than one check every105

∆ε =0.01, no evident difference is observed in the resultant deformation behavior, as illustrated106

in Fig. S3 of the Supporting Information. In addition, due to the instability of the structures with107

broken bonds simulated with OPLS-AA, a timestep of 0.25 fs is utilized in MLABT simulations.108
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Tuning force fields or adding hydrogens to broken bonds could solve this instability issue, but is109

not performed in the present study.110

Iterative MLABT-based active learning111

To improve the generalization ability of MLABT across the entire fracture process, the ML model112

in this work undergoes iterative refinement, enriched progressively by the incorporation of AL. AL113

is a data-driven methodology primarily aimed at optimizing the process of data labeling and model114

training.36 Distinct from traditional ML frameworks, where a model is trained on a pre-labeled115

dataset, AL centers on the model actively selecting the most informative data points from a vast116

unlabeled pool of data.37,38 Here, we harness the power of AL to elucidate the fracture behaviors117

of thermosets, minimizing costs of QM computations while maximizing predictive generalization118

ability at diverse deformation conditions.119

The overall AL workflow is illustrated in Fig. 2. We start sampling highly strained configura-120

tions in MD simulations and extracting the local structures that potentially contain broken bonds121

for QM geometry optimization.22 Data pre-screening requires an artificial threshold based either122

on bond length or stretching energy, which could limit the applicability of the ML model in early123

bond breaking prediction. To achieve a high fidelity model, we utilize the more accurate DFT124

method PBEh-3c that improves upon our previous work using the semi-empirical tight-binding125

method GFN2-xTB.22,39 Due to the increased computational cost of PBEh-3c, our computational126

budget permitted generating a smaller initial training dataset, containing around 5,000 data points.127

The initial SVM model is fit using 80% of the data and applied to kickstart the AL campaign.128

To include representative and diverse local structures during deformation into the model train-129

ing, we employ an iterative pool-based AL strategy, as illustrated in Fig. 2. In each AL iteration,130

we collect all inputs (SOAP vectors) of the potentially breakable bonds (around 4,000 bonds per131

frame) in all frames (around 1,250 frames per trajectory) of a MLABT trajectory, which is gener-132

ated based on the latest re-trained ML model, as an unlabeled data pool. Note that this step takes133

no additional computational cost since SOAP vectors of these bonds were already computed while134
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Figure 2: Workflow of the iterative active learning framework for MLABT.

performing MLABT simulations. By doing this, the unlabeled data pool in one iteration already135

contains comprehensive information of in situ chemical bond local environments within a broad136

range of strains throughout the thermoset fracture process. To further improve the model’s gener-137

alization ability, we introduce some variations in conditions of MLABT simulations during the AL138

iterations. In the second iteration, we include simulations at various temperatures from 100 K to139

400 K. In the third iteration, we include simulations starting from initial structures with different140

bonding topologies. In the fourth iteration, we include simulations with different strain rates and141

with initial structures in different degrees of crosslinking (78% to 98%). Over all iterations, around142

85 million unlabeled data instances are collected cumulatively for AL querying.143

Active learning query strategy144

To select the most informative data instances (local configurations) from the large pool of unlabeled145

data for DFT labeling, we use uncertainty sampling, along with the SVM classifier. In the context146

of SVM, uncertainty sampling can be intuitively understood by examining the decision function147

for each prediction.40,41 For a data point, the absolute value of the decision function | f (x)| =148

|∑N
i αiγiκ(xi,x)+b| represents its distance to the decision boundary, where κ(xi,x) = ⟨φ(xi)φ(x)⟩149
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is a kernel function and αiγiφ(xi) forms a weight vector. The smaller this absolute value, the closer150

the data point is to the decision boundary, which indicates a higher level of uncertainty. Thus,151

querying data points with the smallest absolute decision functions maximizes the information gain,152

refining our model with each iteration.153

However, an inherent challenge emerges when adopting this approach: as our model and data154

evolve across iterations, the absolute values of the decision function can shift, rendering them non-155

comparable across different AL cycles. This poses a problem when trying to maintain a consistent156

measure of uncertainty across multiple iterations. To circumvent this challenge, we employ Platt157

scaling—a method wherein a logistic regression model is trained using the decision function’s158

outputs.42 Through this process, the SVM’s raw decision values are transformed into calibrated159

probabilities, providing a consistent measure of uncertainty irrespective of the active learning it-160

eration. Within our binary classification context P(1|x) = 1−P(−1|x), the uncertainty associated161

with each instance x (SOAP vectors) is defined as162

u(x) = 1−max(P(1|x),P(−1|x)) = 0.5−|P(1|x)−0.5| (1)

Under this formulation, data points with probabilities closer to 0.5 are deemed to have maximum163

uncertainty, as they lie in regions where the model is most uncertain about its classifications.164

Using the outlined query strategy, bonds with maximum uncertainty are identified within each165

snapshot of the MLABT simulation. To regulate the number of bonds selected in each AL iter-166

ation, we apply an uncertainty threshold of 0.05. For every selected bond, its local environment167

is extracted from the large MD configuration. This isolated environment is then subjected to full168

optimization via DFT calculations, as in the initial dataset generation.43 Each batch of labeled data169

from the AL is partitioned into a training set (comprising 80% of the data) and a testing set (ac-170

counting for the remaining 20%). Subsequently, the SVM model is retrained, incorporating both171

the initial dataset and the cumulative new AL training data. Test data are composed of both the172

initial data and the cumulative AL test data, as well as unseen data from a new MLABT trajectory173
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(with maximum uncertainty in every snapshot) based on the final model. Detailed results on the174

model convergence are presented in the subsequent section.175

Results176

Active learning performance177

Figure 3: (a) Max uncertainty of bond breaking prediction in MLABT simulations after AL iter-
ations. ‘Model 0’ denotes the model trained by the initial data, ‘Model 1’ and ‘Model 4’ denotes
the updated models after the first and fourth AL iteration, respectively. (b) Initial data and AL data
visualized by principle component analysis of the SOAP vectors. The red points represent bonds
that are found broken in DFT calculations. The evident difference in data distributions demon-
strates that AL explores diverse regions in feature space that are distinct from the initial sampling.
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The AL framework in this work is based on the query strategy of uncertainty sampling, as detailed178

in the Methods section. Since bond breaking events are rare even in material fracture, the majority179

of bond breaking uncertainties are simply zero, even for the initial ML model with a small dataset,180

as shown in Fig. S1 of the Supporting Information. However, the maximum uncertainty during the181

deformation could be high if the bond instance lies closer to the poorly trained decision boundary.182

As shown in Fig. 3A, the initial model shows high peaks in uncertainty around strains of 0.5-183

0.6, where the bonds start to break, and around strain of 0.9-1.3, where the bonds break rapidly184

and the resulting stress reaches a maximum. The strain region in between has relatively lower185

uncertainty, because it is where the initial data are generated. The uncertainty for larger strains186

(>1.3) decreases, due to weaker interaction between strained bonds in the system that is poorly187

crosslinked. Nevertheless, the bonds with maximum uncertainty above a threshold of 0.05 in each188

snapshot are selected, and their local configurations are optimized with DFT to determine bond189

breaking.190

Next, we compare the local environments of the AL selected bonds with the bonds in the initial191

dataset, which are selected by bond stretching energy from configurations in a narrow range of192

strain, in the reduced dimensions by principle component analysis (PCA). The linear transforma-193

tion (coefficients) is constructed based on the SOAP vectors of the bonds in the initial dataset. As194

shown in Fig. 3B, the local environments in the initial dataset form four separated clusters. The195

right two clusters are associated with the ‘CT-CA’ bonds (connecting the sp3 carbon and the aro-196

matic carbon) located on both DGEBA and MDA, and the left two clusters are associated with the197

‘CT-CT’ bonds on DGEBA. Note that only those ‘CT-CT’ bonds on the DGEBA backbone (the198

bottom left cluster) are breakable in deformation, while those on DGEBA side chains (the top left199

cluster) are not. We could remove those from training data, but in this work, they are kept to en-200

hance generalizability. On the other hand, the local environments selected by AL are scattered over201

the principal component space and distributed densely in regions between the clusters. This result202

demonstrates the ability of AL to explore the diverse feature space that is unseen in the initial data.203

As such, including these AL environments in the model training can improve the generalization204
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ability of MLABT for simulating thermoset deformations under diverse conditions.205

Figure 4: (a) f0.5 and geometric mean of the ML model as trained after each AL iteration. (b)
Comparison of stress-strain curves simulated by AL-DFT MLABT model and with the xTB model
at 300 K. The xTB model overestimates the ultimate stress, compared to the AL-DFT MLABT
model and previous simulations.44 The shadow regions represent the standard deviations induced
by randomness in initial velocity generation over three independent trajectories (same for subse-
quent figures).

Figure 4A shows the performance of the ML model on the test set after each AL iteration. The206

selection of the scoring metrics considering the imbalanced classification was discussed in previous207

work.22,45 It can be seen that the initial model exhibits an excellent geometry mean, whereas f0.5208

is relatively low, indicating a higher rate of false positives on regions outside of the initial training209

region. Once the model is updated with the AL selected data from the entire strain range using210

varied deformation and temperatures, f0.5 improves immediately while geometric mean remains211

almost unchanged. With more AL iterations including deformations using various strain rates212
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and configurations with various degrees of crosslinking, the performance of the model remains213

almost unchanged, whereas the maximum uncertainty decreases evidently (Fig. 3). After the214

fourth AL iteration, the maximum uncertainty is almost zero before the first bond breaking, and215

it remains above 0.15 only in a narrow strain range around 1.2. This performance is reflected216

in the distribution of prediction uncertainty, as shown in Fig. S1B and S1C of the Supporting217

Information. In addition, the number of bonds in the same deformation trajectory with uncertainty218

above 0.05 decreases with more AL iterations, but the rate of decrease slows after the second219

iteration, as shown in Fig. S2A of the Supporting Information. These features all suggest that the220

model in the AL framework is converging. To confirm the convergence, we apply the models after221

each iteration in MLABT simulations with identical initial conditions (positions, velocities). The222

results of the models after the second iterations are very similar, especially at ε <1.5, as shown223

in the Fig. S2B of Supporting Information. As such, we end the AL campaign and employ the224

model after the fourth iteration as the final model (denoted as ‘AL-DFT’) in this work for further225

investigation.226

MLABT simulations with the new AL-DFT MLABT model provide more accurate results on227

thermoset fracture than with the previously reported ‘xTB’ model. As shown in the stress-strain228

curves (SSC) in Fig. 4B, although the two models produce similar strains for the fracture initiation229

(the first bond breaking), the ultimate stress, and the material failure, the ultimate stress of AL-230

DFT MLABT is roughly one half of that of xTB, showing improved agreement with previous231

simulations (1-3 GPa).44 This reduced ultimate stress is induced by an increase of broken bonds232

and already appears in the initial model, suggesting that the GFN2-xTB method compared to DFT233

underestimates the probability of bond breaking. In addition, we find that simple models only234

using bond length as the breakage criterion, as reported in earlier simulations,21,46 delay early bond235

breaking events and fail to model the necking regime after the ultimate stress, as shown in Fig. S4236

of the Supporting Information. Furthermore, the shadow regions in Fig. 4B shows the standard237

deviation caused by randomness in velocity initialization, i.e., random seeds in generating initial238

atom velocities from the Maxwell–Boltzmann distribution. Although the specific broken bonds239
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and locations are different, the overall variance in the SSC during strain hardening is small. This240

suggests that there is some degeneracy in fracture initiation sites during thermoset deformation that241

result from velocity initialization, but they weakly affect the overall mechanical properties. The242

variation of ultimate stress and failure is stronger, probably due to the accumulated differences243

in bond breaking resulting in evident differences in the broken topology. We note that to our244

knowledge this study represents the first QM-informed atomistic study to report error bars in stress-245

strain curves of thermoset fracture, as for traditional approaches such error bars would be too246

computationally costly to compute.247
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Bond breaking during deformation248

Figure 5: (a) Bond strain distribution immediately before bond breakage during MLABT simu-
lations in the highly crosslinked system (98%) at 300 K with a strain rate of 4× 109/s. (b) The
numbers of broken bonds in the two dominant broken bond types as a function of strain. (c) The
maximum bond strains for various bond types as a function of strain.

The more accurate AL-DFT MLABT model enables investigation of the bond breaking chemistry249

during thermoset fracture. Figure 5A shows the distribution of bond strain, defined as (l − l0)/l0,250

where l is the instantaneous bond length and l0 is the equilibrium bond length, immediately before251

bond breaking during MLABT simulations in the highly crosslinked system (98%) at 300 K with252

a strain rate of 4×109/s. Similar results are observed at other conditions. It is surprising that the253

14

https://doi.org/10.26434/chemrxiv-2023-6n2mq ORCID: https://orcid.org/0000-0002-1470-1903 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-6n2mq
https://orcid.org/0000-0002-1470-1903
https://creativecommons.org/licenses/by-nc-nd/4.0/


bond breakages occur at much smaller bond strains than previously expected.47 The maximum254

value around 0.12 is even smaller than the threshold value used in Barr’s method for pre-screening255

local configurations that potentially contain broken bonds,21 suggesting that the methods based on256

artificial criteria and QM calculations can delay bond breaking during deformation.257

The actual types of broken bonds in MLABT simulations of thermoset fracture are found to258

align with those revealed in QM calculations. Note that although we observed two types of broken259

bonds in strained DGEBA+MDA by QM calculations (both DFT and xTB), it does not guarantee260

these two types are actually broken during thermoset fracture because the local environments with261

evolving topology could become very different. As shown in Fig. 5B, the numbers of broken bonds262

decomposed into the two types show a consistent ratio throughout the entire fracture process. This263

ratio, i.e., approximately 2:1 for ‘CT-CT’ and ‘CT-CA’, is in agreement with the observations in the264

DFT calculations. This suggests that the bond breaking mechanism in epoxy thermosets remains265

consistent during fracture, independent of global strain. Furthermore, because our ML model is266

designed for only predicting these two types, we need to evaluate the possibility of bond breaking267

in other bond types during fracture. Figure 5C illustrates the maximum bond strain for four types268

of potentially broken bonds in the entire MLABT simulation. The ‘CT-CT’ and ‘CT-CA’ bonds269

indeed exhibit the highest maximum bond strain, with ‘CT-CT’ frequently being slightly higher270

than ‘CT-CA’. This is consistent with the fact that only these two types were broken and that ‘CT-271

CT’ bonds have a higher probability of rupture. The maximum bond strain of ‘CT-N’ or ‘CA-N’272

are evidently lower and cannot exceed those of the two broken types in the entire fracture range,273

confirming that they cannot break and negligibly contribute to the ML bond breaking model.274

Fracture behaviors by MLABT275

Utilizing AL-DFT MLABT simulations, we can efficiently probe the fracture behaviors of poly-276

mer networks at the atomic scale, combining the molecular precision and computational efficiency277

of classical MD with bond-breaking fidelity approaching that of DFT. It is imperative to recognize,278

however, that both the lengthscale and timescale exert significant influence on the network topol-279
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ogy’s formation and its dynamical response. We focus on extracting physical insights, specifically280

examining how the bond breaking events and fracture behaviors of polymer networks are modu-281

lated by factors such as temperature, strain rates, cooling rates, and the degree of crosslinking.282

Temperature effect283

Figure 6: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by AL-
DFT MLABT at three temperatures with the same strain rate of 4× 109/s. (b)-(c) Corresponding
number (b) and rate (c) of the bond breaking events during deformation.

First, we assessed the impact of temperature, held constant during deformation, on the fracture284

behavior of thermosets. Figure 6 displays (a) the SSC, (b) the count of broken bonds, and (c) the285

rate of bond breakage (as deduced from the slope in (b)) at three distinct temperatures, 100 K, 300286

K, and 500 K, in MLABT simulations of a 98% crosslinked system subjected to a strain rate of287

4×109/s. These temperatures are all below the glass transition temperature (Tg ∼ 541 K). In gen-288
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eral, bond breaking events appear temperature-insensitive, with temperature only influencing the289

ultimate stress as a consequence of the temperature effect before yielding. Specifically, a decrease290

in temperature enhances the elastic modulus and the corresponding yield stress, in agreement with291

previous experiments and simulations.48 However, the frequency of bond breakage events remain292

consistent in the plastic regime, and consequently, the characteristic strains for fracture initiation,293

peak stress, and ultimate failure also exhibit temperature independence. Only the stresses during294

strain softening and hardening vary as a result of the effect on the elastic regime, which was also295

observed in previous MD simulations without considering bond breaking.49 These findings suggest296

that bond rupture in amorphous polymer networks may not be characterized as a simple activation297

reaction. The potential reason may be related to heterogeneous local stresses that arise depending298

on the global strain and the network topology.50,51 Additional temperature-dependent behaviors in299

experiments, such as increased brittleness at lower temperatures,52 could be attributed to factors300

like crystallinity, entanglements, or effects occurring over extended spatiotemporal scales.301

Moreover, we find that the resultant stress is generally correlated with the bond breakage rate,302

a trend consistently observed across all conditions evaluated in this study. As the count of bonds303

on the edge of breaking surges during strain hardening, the cumulative stress also rises until the304

bond breakage rate peaks, resulting in the ultimate stress. Following this, as the bond breaking rate305

diminishes, so does the stress, until failure ensues. The total count of bonds required to rupture the306

thermoset is approximately 55, around 0.2% of the total bonds or 1.5% of the potentially breakable307

bond types in the system, which is notably smaller than the number of reactions needed for network308

gelation.309
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Strain rate effect310

Figure 7: (a) Stress-strain curves of the same initial structure (98% crosslinked) simulated by
MLABT with three strain rates at 300 K. (b)-(c) Corresponding number (b) and rate (c) of the
bond breaking events during deformation.

Next, we investigate the effect of strain rate on the thermoset fracture behavior. As shown in Fig. 7,311

distinct from temperature, strain rate not only strongly affects the elastic behavior but also plastic312

and fracture behaviors. In the elastic regime, a larger strain rate results in higher elastic modulus313

and yield stress (Fig 7A), in agreement with previous experiments and simulations.46,47,53–55 Thus,314

a more noticeable strain softening regime is observed at larger strain rates. More interestingly, the315

bond breaking occurs more rapidly at higher strain rates, although the characteristic strains for316

fracture initiation (first bond breaking) and ultimate stress are almost independent of strain rate,317

as shown in Fig. 7B and C. Consequently, more bonds are broken in deformation with a large318

strain rate and the resultant ultimate stress is evidently reduced. The reason for this result is that319
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at large strain rates with little stress release, bond breakages do not occur in the most productive320

way, i.e., breaking apart the network using as few cuts as possible. Hence, the system could321

remain connected even though a large number of bonds have broken, and as a result, the system322

exhibits reduced ultimate stress and behaves more ductile at large strain rates, as shown in Fig. 7A.323

Note that this effect might converge at low strain rates, as the stress is fully relaxed once a bond324

breaks when the associated timescale is closer to or even longer than the stress field propagation325

time, which is supported by the smaller difference in the effect when changing the strain rate from326

4×1010/s to 4×109/s.327

The MLABT results suggest a distinct disparity between effects of strain rate and temperature328

within the plastic regime, although the time-temperature superposition (TTS) is well-known for329

elucidating the viscoelastic behavior of polymers. To confirm this, we conduct three simulations330

with various strain rates and temperatures, in which the temperatures are specifically selected to331

neutralize the timescale difference induced by strain rates based on α relaxation times computed332

from the self-intermediate scattering functions. As detailed in Fig. S6 of the Supporting Infor-333

mation, although the stress-strain curves are almost identical in the linear regime (excluding the334

yielding point) as expected from the TTS of elasticity, the bond breaking behaviors in the plastic335

regime are very different, suggesting that TTS is not obeyed in the plasticity of thermosets.336
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Cooling rate effect337

Figure 8: (a) Stress-strain curves of polymer networks with the same topology (98% crosslinked)
but generated with different annealing (cooling) rates simulated by MLABT at 300 K and with
a strain rate of 4× 1010/s. (b)-(c) Corresponding numbers and rates of the bond breaking events
during deformation.

Furthermore, we study the effect of cooling rate in the melt-quenching process for synthesizing338

glassy thermosets on its bond breaking and fracture behavior by MLABT simulations. As glass339

is a non-equilibrium state below the glass transition, the cooling rate and the associated timescale340

for relaxation controls the temperature at which the supercooled liquid loses ergodicity and the341

amorphous structure becomes “frozen”.56 Specifically, a smaller cooling rate results in a lower342

glass transition temperature, and thereby, a thermodynamically more stable glass state, i.e., a state343

located lower in the potential energy landscape. These more stable glasses show distinct atomic344

structures and materials properties compared to glasses with higher cooling rates, such as higher345
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density and higher mechanical strength.57,58 Such a cooling rate effect is observed in the elastic346

regime of thermosets, as shown in Fig. 8A, as the elastic modulus and yield stress increase with347

reduced cooling rates (details summarized in Table S1 of the Supporting Information). Note that348

in the simulations, the initial structures have identical bonding topology but only are generated by349

different cooling rates in melt-quenching simulations initial configurations from 800 K to 300 K350

prior to deformation. Interestingly, the cooling rate effect does not survive in the plastic behaviors.351

As strain increases in the strain softening and the initial part of the strain hardening (till strain∼0.6),352

the difference of stress induced in the elastic regime gradually disappears, suggesting that the353

effect of the initial glassy structures diminishes. Consequently, the following bond breaking effects354

and the fracture behavior are independent of the cooling rate, as shown in Fig. 8A-C. These355

observations can be understood by considering that the cooling rate in general determines the356

stability of initial glassy structures and therefore controls the elastic behavior (without structural357

change), however, as strain increases, the strain-induced structural modulation becomes dominant358

through the covalent bonded network, and the difference in the amorphous strained structures359

becomes negligible. We should also note that this limited cooling rate effect is an outcome of360

strong topological constraints of thermosets and the short length of strands used in the simulations.361
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Effect of crosslinking degree362

Figure 9: (a) Stress-strain curves simulated by MLABT for structures with different degrees of
crosslinking at 300 K and with a strain rate of 4×109/s. (b)-(c) Corresponding numbers and rates
of the bond breaking events during deformation.

Finally, we study how the degree of crosslinking affects bond breakage and fracture behavior of363

thermosets by MLABT simulations. In this work, the crosslinks are formed dynamically in MD364

simulations of curing reactions, and thus the degree of crosslinking is controlled by how long365

the curing process runs. As shown in Fig. 9, we prepare four structures with various degrees of366

crosslinking from 77% to 98% (all gels) and simulate their deformation responses with MLABT367

at 300 K with a strain rate of 4× 109/s. Note that in this work, we do not provide statistically368

averaged results over various bonding topologies due to computational cost, however, the structures369

evaluated herein with the four degrees of crosslinking are generated from the same curing reaction370

in an effort to emphasize the influence of crosslinking degree.371
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In the system with a higher degree of crosslinking, while the elastic behaviors are subtly372

changed (due to smaller variations of crosslinking density59), the SSC in strain hardening in-373

creases more rapidly, and reaches the ultimate stress at a smaller strain value, as shown in Fig.374

9A. As the degree of crosslinking decreases, the ultimate stress shifts to a larger strain and the375

peak value decreases. Specifically, when the crosslinking degree decreases from 98% to 77%, the376

ultimate stress decreases by roughly 1/3 and the corresponding true strain increases by 1/3. This377

is generally consistent with results of previous simulations using ReaxFF.44 This behavior of SSC378

can be understood from bond breakages in Fig. 9B and C. As expected, fewer bonds are broken in379

systems with lower crosslinking degrees, consistent with the lower ultimate stress values. More-380

over, the dominant bond breaking events, indicated by the maximum rate of bond breaking, occur381

at larger strains, accounting for the shift of ultimate strain. Depending on specific modification of382

bonding topology, the strain of fracture initiation might shift such that it is delayed to a larger strain383

at aa crosslinking degree of 77%. We also note that although the effect of crosslinking degree is384

revealed here, the relationship between network fracture and network topology is intriguing yet385

more complex (the variance induced by topology at same degrees of crosslinking is illustrated in386

Fig. S4 of the Supporting Information), which warrants further investigation.387

Discussion388

The AL-DFT MLABT framework stands out as a promising approach for accurately modeling389

thermoset fracture, as bond breaking during fracture is performed at nearly quantum chemical390

accuracy while computational cost is kept similar to that of classical MD. Specifically, the AL391

modification of MLABT presents two distinct advantages: i) Integration of AL enables incorpora-392

tion of diverse training data across thermodynamic and configurational conditions, improving the393

transferability of models to new conditions. ii) By actively pinpointing the most informative data394

for training, the AL framework is roughly an order of magnitude more efficient in the generation395

of training data than our previous MLABT model. This heightened efficiency permits utilization396
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of more accurate (and computationally costly) QM methods, such as DFT.397

Importantly, these two advantages of the AL-DFT MLABT framework manifest in the po-398

tential generalizability of the methodology across chemical space, an area where other reactive399

models (e.g. ReaxFF) can struggle. As MLABT leverages widely-accepted classical force-fields,400

such as OPLS and Amber, as its baseline simulation method, the high performance of common401

quantities such as density and low strain mechanical response is ensured across a broad chemical402

space. By adding on a QM-quality bond breaking prediction, mediated by ML, to these classical403

simulations, the MLABT approach is inherently adaptable to new chemistries for which accurate404

classical force-fields exist. Moreover, the ML component responsible for bond breaking is also405

inherently adaptable as it leverages structural representations (SOAP vectors) and is informed by406

QM calculations, making it agnostic to specific chemistries. This flexibility allows for the efficient407

adaptation of the MLABT framework to new chemistries, a process further streamlined by the AL408

approach introduced in this study. In contrast, empirical methods like ReaxFF demand a cumber-409

some and iterative parameterization process.60 Transferability of the parameter sets in ReaxFF are410

a well-known (and expected) deficiency compared to classical FF as the prediction task required411

is more much challenging.61 Provided these advantages, MLABT may be a suitable and easily412

implementable alternative to ReaxFF for unparameterized chemistries, especially when a trusted413

classical FF is already known.414

As mentioned in the Methods section, a minor limitation of the current MLABT implementa-415

tion is the necessity for a small timestep (0.25 fs as opposed to 1 fs commonly used in standard MD416

simulations). This issue is primarily due to the instability introduced by broken bonds when using417

classical force fields. However, this drawback can be fixed in future developments of MLABT, ei-418

ther through optimizing the force fields or by appending hydrogens to atoms involved in the bond419

rupture. Importantly, the MLABT simulations conducted in this study did not employ these modi-420

fications, ensuring that our reported outcomes remain free from any influence of mechanoradicals421

that could otherwise alter network dynamics and subsequent bond breakages. The role of these422

mechanoradicals in subsequent bond breaking processes is a challenging topic reserved for future423
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works.424

The computational efficiency of MLABT relative to other QM-informed bond-breaking ap-425

proaches also enables a number of crucial insights into the nature of fracture in epoxy thermosets.426

Specifically, we are able to simulate multiple replicas of our networks both in phase space and427

topology with DFT accuracy at minimal computational cost. From this added computational sam-428

pling, we observe that thermal fluctuations in the fracture process (as mediated by differing initial429

seeds in the velocity distribution) have a small impact on the resulting fracture process until the430

point of material failure. Although the exact bond breaking sites can differ due to randomness in431

the initial velocity distribution, the variations in the SSC and bond breaking are small during strain432

hardening. After the ultimate stress, these variations become larger due to accumulated topological433

differences.434

Importantly, the MLABT results demonstrate that the polymer network topology plays a more435

important role in controlling fracture behavior than fine details of the polymer’s glassy structure.436

Specifically, although the elastic mechanical properties depend on the cooling rate in the melt-437

quenching of thermosets, the plastic properties and bond breakages are independent of it (Fig. 8),438

suggesting that the influence of glassy structure blurs due to strain-induced rearrangement beyond439

the elastic regime. On the other hand, the degree of crosslinking (Fig. 9) and the topology varia-440

tion at the same degree (Fig. S4) primarily determine the fracture behavior, such as the ultimate441

strain/stress and the fraction of broken bonds. This again confirms the importance of topological442

perspective for understanding the fracture mechanisms of polymer networks.7,9,62
443

Lastly, our results show that time and temperature, the superposition of which is often posited444

to understand the viscoelastic behaviors of polymers, play different roles in the network fracture.445

Specifically, temperature does not affect bond breakages but slightly changes the resultant stress446

due to the local relaxation of glassy structures. However, the strain rate can strongly determine the447

strain-stress behavior by influencing the rate of bond breakages. At large strain rates, the strain-448

induced structural evolution can propagate faster than the release of stress via network topology449

immediately after bond scission. As a consequence, additional “unnecessary” bonds break, result-450
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ing in a more fragile network with lower ultimate stress. Note that although this physical scenario451

seems reasonable from the atomistic perspective, it cannot explain the general trend observed in452

experiments that a decrease in temperature or an increase in strain rate leads to more brittle frac-453

ture behaviors. This point is further related to the long-recognized anomaly of ductile fracture454

in molecular modeling of thermosets,63 a phenomenon whose root cause is still under debate.64
455

Given that the MLABT method already offers the QM-level accuracy in bond breaking, yet still456

demonstrates fragile fracture, and considering the revealed atomistic strain-rate effect is unlikely to457

contribute to a brittle fracture (when extrapolated at experimental strain rates), modeling at larger458

lengthscales is imperative to bridge the gap between experiments and simulations. One reasoning459

is that in typical simulation lengthscales, the crosslinking density (∼0.1 mole/cm3) significantly460

exceeds the experimental values (0.001-0.01 mole/cm3).65,66 This discrepancy hinders the forma-461

tion of polymer chain entanglements in current molecular dynamics simulations of thermosets.462

Such entanglements could potentially expedite the fracture towards the elastic regime and exhibit463

a distinct temperature dependence through chain reorganization.67–69
464

Conclusion465

We have combined AL with MLABT to create a framework for the atomistic modeling of ther-466

moset fracture with DFT-accuracy and classical FF cost. This integration offers heightened pre-467

dictive accuracy across thermodynamic and configurational space while simultaneously improving468

efficiency during model training. Moreover, the adaptability of MLABT with AL enables re-469

searchers to explore polymer fracture across diverse chemistries, provided a suitable classical FF,470

avoiding the pitfalls of cumbersome parameterization in other reactive methods. We have applied471

the MLABT framework to understand the molecular determinants of fracture in polymer networks,472

finding that the network topology largely dictates fracture behaviors, while the intrinsic stability473

of the glassy structures has little influence. Interestingly, strain rate, rather than temperature, pre-474

dominantly impacts network fracture at atomic scale, deviating from conventional paradigms in475
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elasticity. Looking ahead, MLABT-based models of thermoset fracture form a potentially useful476

basis for the establishment of chemically generalizable bond-breaking models applicable to a di-477

verse set of polymer chemistries while leveraging the vast array of existing, and high-accuracy,478

classical force-fields.479

Supporting Information480

Uncertainty and convergence of the AL MLABT model, effect of MLABT bond scanning fre-481

quency on failure, comparison of MLABT with a simple model based on bond lenths, effect of482

network topology on fracture, time-temperature superposition in polymer network fracture.483
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