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Abstract 

Purpose Laryngeal cancer (LC) is the most common head and neck cancer, which often goes undiagnosed 
due to the expensiveness and inaccessible nature of current diagnosis methods. Many recent studies have 
shown that microRNAs (miRNAs) are crucial biomarkers for a variety of cancers.  

Methods In this study, we create a decision tree model for the diagnosis of laryngeal cancer using a 
calculated miRNAs’ attributes, such as sequence-based characteristics, predicted miRNA target genes, and 
gene pathways. This series of attributes is extracted from both differentially expressed blood-based 
miRNAs in laryngeal cancer and random, non-associated with cancer miRNAs.  

Results Several machine-learning (ML) algorithms were tested in the ML model, and the Hoeffding Tree 
(HT) classifier yields the highest accuracy (86.8%) in miRNAs-based recognition of laryngeal cancer. 
Furthermore, HT-based model is validated with the independent laryngeal cancer datasets and can 
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accurately diagnose laryngeal cancer with 86% accuracy. We also explored the biological relationships of 
the attributes used in HT-based model to understand their relationship with cancer proliferation or 
suppression pathways.  

Conclusion Our study demonstrates that the proposed model and an inexpensive miRNA testing strategy 
have the potential to serve as a cost-effective and accessible method for diagnosing laryngeal cancer. 

Keywords: microRNA; laryngeal cancer; decision tree; machine learning, Hoeffding Tree classifier 

 

1 Introduction 

Laryngeal cancer is the presence of a tumor in the larynx, or the voice box within a human’s throat. 
According to the American Cancer Association, laryngeal cancers represent one-third of head and neck 
cancers [1]. In a study of thousands of laryngeal cancer patients in the United States, results showed that 
57.7% of the subjects died from the disease [2]. 

The current gold standard for laryngeal cancer diagnosis is either physical exam of throat and neck, a biopsy 
of the throat, or medical imaging [3], all of which are relatively expensive and are inaccessible for many 
areas of the world. Moreover, these forms of diagnosis are more invasive and have a high propensity of 
false negative results. That is why most diagnoses of laryngeal cancer are made in the late stages of the 
disease, which makes it very difficult to cure. The late-stage disease is associated with worse outcomes, 
warrants multimodal therapy, and is less likely to allow for the preservation of the larynx [1]. Non-cancerous 
voice box diseases, such as laryngitis, voice box paralysis, and vocal leukoplakia, can also cause similar 
symptoms and may be misdiagnosed as laryngeal cancer [4]. However, the early detection of laryngeal 
cancer significantly increases survival rate and reduces the length of hospital stay and health care costs for 
patients [5]. Thus, the need for a reliable and accurate diagnosis method exists and can serve as a potential 
solution for decreasing laryngeal cancer mortality rates.  

MicroRNAs (miRNAs) are small noncoding RNAs that typically have around 22 nucleotides in length [6]. 
MiRNAs have shown potential to serve as biomarkers for diagnosing cancer, since the expression of several 
miRNAs varies between normal and tumorous tissue [7]. In a study of 10,841 laryngeal cancer cases, 
Broseghini and co-workers found that 69 miRNAs are upregulated in the tumor and 95 miRNAs are 
downregulated in tumor compared to normal mucosa—the downregulated miRNAs are putative tumor 
suppressor miRNAs [8]. MiRNAs are found to be linked to several cancers because they can affect mRNA 
translation through the repression of specific mRNAs during translation or accelerating the destruction of 
mRNAs, which can trigger cancers, and it has been shown that specific miRNAs are linked to the 
occurrence of tumors [9, 10]. Since miRNAs are stable in bodily fluids like blood, urine, and saliva, they 
offer a minimally invasive means of assessing disease states and therapeutic efficacy [11]. Studies analyzing 
mice with miRNA overexpression or ablation have shown causal links between miRNAs and cancer 
development [12, 13]. Thus, these studies show the importance and relevance in studying miRNA as 
biomarkers for laryngeal cancer diagnosis. 

Over the past few years, many different studies have attempted to utilize the miRNA-disease association to 
identify novel miRNAs that show association with different types of cancer. For example, L. Li and co-
authors developed a miRNA-cancer association database, miCancerna, which used text-mining to find 
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thousands of miRNA-cancer associations from current studies published [14]. Another study used a 
Gaussian Bayesian network to analyze relationships between genes and miRNAs, which provided 
information of significant genes in cancer-related pathways [15]. 

A study by Sultan and co-workers used a decision tree model to compare relative miRNA expressions in 
regular and cancer tissues to identify significant miRNAs [16]. Our study goes a step further by analyzing 
specific attributes of miRNAs that contribute to miRNA being a biomarker of laryngeal cancer, which also 
enables us to identify previously unassociated miRNAs. 

There were several attempts to diagnose laryngeal cancer using machine learning (ML). A study by Aicha 
[17] extracted acoustic features from recorded speech and performed feature selection to determine which 
speech features were most important for diagnosis. Another study by Z. Li and colleagues. Analyzed the 
Raman spectra from normal larynxes and cancerous larynxes and used a feature extraction approach to 
identify which parts of the Raman spectra indicated presence of a tumor [18]. Finally, a study by Singh and 
Maurya proposed a computer-aided-diagnosis system which can analyze patches of endoscopic videos, 
perform feature extraction, and determine which parts of an endoscopy are most crucial for diagnosis [19]. 
However, there is no existing research that uses biological attributes of microRNA for laryngeal cancer 
diagnosis. Thus, we propose a novel ML-based approach that can use biomarkers of cancer-associated 
miRNAs. This approach is far less invasive and more accessible, and it has the potential to improve 
diagnostics. 

 

2 Methods 

2.1 Data Pre-Processing and Mining 

To elucidate which miRNA characteristics are most important for cancer association, we explored existing 
studies where miRNAs shown an association with laryngeal cancer [20–27].  

 

2.2 Generating Attributes for miRNAs 

To prepare the ML model using miRNA descriptors for diagnostics of laryngeal cancer (LC) we prepared 
two sets of miRNAs. The first set was selected from public sources of miRNA-related to LC, and the second 
set included random miRNA extracted from the miRBase [28]. Then we created a strategy to generate 
attributes for these miRNAs. Our strategy was three-fold: (1) generate sequence-based attributes for each 
miRNA’s sequence, (2) generate a list of predicted target genes for each miRNA, (3) generate a list of 
predicted pathway processes in which are involved genes that are targets of selected miRNA. Such a list of 
attributes was generated for each miRNA. This data was used for training of the ML model. Before 
generating any other attributes, we created a separate attribute that categorized classification—we assigned 
a 1 to all LC associated miRNA and a 0 to all randomly associated miRNA. Our model was trained to 
classify miRNA based on this attribute. 

 

2.2.1 Sequence-Based Attributes 
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Our strategy for generating sequence-based attributes is based on a strategy developed by Kang et al. [29], 
where the authors analyze quantity of bases, frequency, mean mass, hydrogen bonds, and motifs. We 
analyzed the sequence of all miRNAs because it is important in complimentary binding to the target genes 
mRNAs to inhibit the mRNA’s expression [30]. 

 
Table 1 Sequence-Based Attributes and their Descriptions. 

Sequence-Based 
Attribute Description 

Bases in miRNA 
sequence N 

Frequency of each base NA / N, NC / N, NG / N, NU / N 

Mean Mass of bases 135.1(NA) + 111.1(NC) + 151.1(NG) +112.1(NU) / N 

Number of hydrogen 
bonds 2(NA + NU) + 3(NC + NG) 

2 base motifs Checks the sequence for each occurrence of 2 base motifs. Each motif is a separate 
attribute, and the miRNA is assigned 1 if it has the motif, 0 if not. 

3 base motifs Checks the sequence for each occurrence of 3 base motifs. Each motif is a separate 
attribute, and the miRNA is assigned 1 if it has the motif, 0 if not. 

4 base motifs Checks the sequence for each occurrence of 4 base motifs. Each motif is a separate 
attribute, and the miRNA is assigned 1 if it has the motif, 0 if not. 

Note: 2 hydrogen bonds form between adenine and uracil and three between cytosine and guanine 

We downloaded a full database of miRNA sequences from miRBase (https://mirbase.org/) [28], which 
contained the human miRNA names and their corresponding sequences. Using this information, we created 
a script, which parsed through the database and prepared a list of all the miRNA sequences that we were 
analyzing. 

With the list of sequences, we generated sequence-based attributes for all the individual miRNAs. Table 1 
shows the types of attributes that we had for each sequence. NA is the amount of Adenine bases, NC is the 
amount of Cytosine bases, NG is the amount of Guanine bases, NU is the amount of Uracil bases and N is 
the total amount of bases. 

 

2.2.2 miRNA Target Genes 

We chose to use target genes as descriptors because through them miRNAs affect cancer development. 
Dysregulated miRNAs can affect cancer growth, and depending on the target genes of miRNAs, they can 
function as either oncogenes or tumor suppressor genes [31]. 

In order to find the predicted target genes for all the miRNA, we used miRDB 6.0 (http://www.mirdb.org/) 
[32, 33]. miRDB provides a prediction score for all suggested target genes, so we removed all target genes 
that had a score below 98. We created a Python script, which found the individual target genes from all 
associated miRNA. These genes were added to the list of attributes. Then we created a script, which iterated 
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through all miRNAs and their target genes. For each predicted gene target in the file, the miRNA would be 
assigned “1” for that attribute. All target genes that a particular miRNA was not predicted to have relation 
with were assigned a “0” for the attribute. 

 

2.2.3 miRNA Pathways 

Finally, we used different pathway processes of the miRNAs as attributes. This was important to study 
because a single miRNA can target hundreds of mRNAs which can affect transcription and subsequently 
influence signaling pathways for cancer processes, which can either trigger or suppress the growth of cancer 
[34]. 

To find the predicted pathway processes for different miRNA, we downloaded data from NcPath 
(http://ncpath.pianlab.cn/) [35] to get a list of all experimentally validated miRNA-target mRNA-pathway 
lists. The pathways, which had a weak association, as determined by NcPath’s verification methods like 
Luciferase reporter assay, were removed from the list. Similar to the target genes, we created a script, which 
elucidated all the individual pathways associated with each selected miRNA and created a list of them, to 
be added to the list of attributes. We also created a script, which iterated through all the pathways and 
assigned a “1” attribute to the miRNAs, which had those pathway processes, and a 0 to the miRNAs, which 
did not.   

Once we added the miRNA pathway attributes, the list of attributes was finalized for all the LC-associated 
miRNAs. Figure 1 shows an example of an LC-associated pathway, Central Carbon Metabolism in Cancer. 
This pathway and one of its target genes, RPS6KA5, were chosen by attribute selection and are areas of 
future study for biological association between miRNAs targeting related pathways that trigger 
proliferation. 
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Fig. 1 Central Carbon Metabolism in Cancer Pathway section from KEGG, the area boxed shows the function of 
MSK1, (RPS6KA5), which was a chosen target gene by our model and triggers cancer cell proliferation. 

 
2.3 Adding Random miRNAs 

We also used miRBase [28] to get a list of randomly generated miRNAs that have not shown association 
with laryngeal cancer. In order to do this, we generated a list of miRNAs that have no known association 
with laryngeal cancer and randomly chose 57 miRNAs. We then repeated all the steps, which were 
previously described for generating attributes of the random miRNAs.  

 
2.4 Attribute Selection 

Once we had a final list of miRNAs and their attributes, we input our data into Waikato Environment for 
Knowledge Analysis (WEKA) [36]. Since we had many attributes and many of them may add noise to the 
model, we used WEKA’s InfoGainAttributeEval feature to perform attribute selection on the dataset. We 
used the Ranker functionality to choose the attributes that were most significant in classification of the data. 
WEKA’s attribute selection narrowed our list of attributes from 876 attributes to the 25 most important for 
classification. The selected target pathways are shown in Table 2. These target pathways are more common 
in the miRNAs that were used in training our model and already have known association with LC. We also 
analyzed the features chosen from the attribute selection. For the predicted target genes and pathway 
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processes, we visualized the relation of the different target genes in more complex cancer pathways using 
KEGG (https://www.genome.jp/kegg/) [37–39]. 

 

2.5 Training Decision Tree Model 

The set of attributes we created was used as input to train our model. We tested different classification 
algorithms of WEKA to see which produced the highest classification accuracy. Our goal was also to 
optimize the area under the receiver-operating characteristic (ROC) curve, accuracy, precision, true-positive 
rate, false-positive rate, and area under the precision-recall (AUC-PR) curve. 

We tested several classifiers from which the best were Random Forest, Naïve Bayes, Multilayer Perceptron, 
Logistic Model Tree, Hoeffding Tree (HT), and Logistic Regression. Each algorithm was tested using cross-
validation, which divides the dataset into a given number of folds and tests each fold on the remaining folds, 
so each fold is tested multiple times. WEKA then averaged the results for each of these tests to return the 
accuracy, which reduces variance in the model. After testing models with different numbers of folds for the 
cross-validation on different algorithms, we found that the HT with five folds performed the highest. This 
model had 86.8% accuracy and was also ranked among the highest in the other metrics, when compared 
against the other models. We exported this model from WEKA and used it for testing data from other 
independent datasets. 

 

 
 

Fig 2 Workflow of Methods. First, obtain a list of random and LC-associated miRNAs from existing studies and 
generate sequence-based, gene target, and predicted pathway attributes. Once this is done, the model can be trained, 
or feature selection can be done before training. Performing feature selection increases the accuracy of the model 
when it is trained. Finally, the model is validated using independent cancer datasets. Created using LucidChart 
(https://www.lucidchart.com/). 

 

2.6 Testing Model with the Independent Dataset 

Once we finalized the model, we downloaded data from the Cancer Genome Atlas 
(https://portal.gdc.cancer.gov/) [40], which provided patient data and their concentration of specific 
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miRNAs. We only included miRNAs in testing that were more commonly expressed in patients who had 
LC (p < 0.05). We removed all miRNAs that were used in the training of the model. This finalized 29 
miRNAs, which were used for independent testing. For each of these 29 miRNAs, we used our developed 
Python script to generate values for the attributes selected during the attribute selection process. 

 

 

Fig. 3 ROC Curve for the Developed Hoeffding-Tree-Based Model. 

 
We then input all this data into the previously created HT-based model in WEKA and the associated 
miRNAs were classified with 82% accuracy and the randomly selected miRNAs had <55% accuracy. The 
full workflow is visualized in Figure 2. 

 

Table 2 Cancer-Associated Pathways Chosen by Attribute Selection of HT-based ML Model. 

Cancer-Associated Pathways 
Central carbon metabolism in cancer, Transcriptional 
misregulation in cancer, Melanoma, Small cell lung cancer, 
Hepatocellular carcinoma 

Other Pathways Hypertrophic cardiomyopathy, Pathways of 
neurodegeneration, Chagas disease, Toxoplasmosis 

 

3 Results 

3.1 Model Performance  

Our final model, which is based on Hoeffding Tree (HT) classifier, showed high performance across 
multiple statistics. It had 0.868 accuracy, 0.871 precision, 0.868 recall, 0.868 F‑measure, 0.740 Mathews 
correlation coefficient (MCC), 0.902 Area under ROC curve (AUROC), and 0.860 Area under precision-
recall curve (AUC-PR). 
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The high true-positive rate shows that the model is successful is accurately classifying miRNAs as cancer-
associated. The high precision shows that the model consistently performs well. In addition, the AUROC 
being over 0.9 indicates that the model performs well in both classification of associated and random 
miRNAs, so it is a reliable method for classification. The ROC curve and AUROC are shown in Figure 3. 

Other algorithms used on this dataset also performed at high accuracies, but we found that the HT-based 
model was most optimal across all statistics. Table 3 illustrates the performance of other models, all with 
cross-validation of five folds. The HT algorithm shown at the top of Table 3 is the model we chose. Figure 
4 shows the accuracy of all the different models, including those that were less optimal. 

 

Table 3 Performance of ML Algorithms on Dataset with Five-Fold Cross-Validation. 

 Accuracy Precision Recall F-Measure AUROC  AUC-PR  

Hoeffding Tree 0.868 0.871 0.868 0.868 0.902 0.860 

Random Forest 0.789 0.790 0.789 0.789 0.910 0.906 

Multilayer Perceptron 0.816 0.818 0.816 0.815 0.844 0.824 

Logistic Regression 0.807 0.813 0.807 0.806 0.723 0.693 
 

 

Fig. 4 Comparison of the Accuracies of Five Different ML Classifiers on the Cross-Validation of Training Dataset. 

 

In addition, we verified that HT-based ML model was most optimal based on the number of miRNAs that 
were provided for training and the number of attributes that were in the model after attribute selection. Both 
factors affected the accuracy of classification, since the number of miRNAs defined how much data the 
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model had for training, and the number of attributes affected which biological characteristics were 
determined to be most important in classification. Figure 5 shows a comparison of the highest-performing 
model accuracy with different numbers of miRNA being used in training and different numbers of attributes 
being used for classification.  

HT-based model is the most optimal based on the number of attributes and the number of associated 
miRNAs. The model performed the highest across multiple metrics, and it was the best to use for validation 
with new independent data. Figure 5a shows that HT-based model performed better with increasing number 
of miRNAs included in training. The model was trained with 57 miRNAs, which includes the majority of 
available studies on biologically associated miRNAs.  The accuracy of predictions after some threshold is 
inversely proportional to the number of attributes (Figure 5b). 

 

 

Fig. 5 Comparison of the accuracies of the highest-performing ML models. (a) Accuracies of Model with Different 
Numbers of miRNA in Model Training. (b) Accuracies of Model with Different Numbers of Attributes in Model 
Training. 

 

3.2 Validation of Trained Model  

The Hoeffding-Tree-based ML model, which we created, was exported and used for validation. Using the 
independent data of patients with LC from the Cancer Genome Atlas, we inputted 29 miRNAs into 
HT‑based model, and it classified 25 miRNAs as associated with LC. The classification accuracy was 
86.2%.  

Since these miRNAs were shown to have biological association based on both a patient’s clinical data and 
HT-based model, they are especially important to investigate for future diagnostic of laryngeal cancer. 

 

3.3 Analysis of Model Attributes 

We also investigated the model attributes that were chosen after attribute selection. InfoGainAttributeEval 
evaluated all the different attributes based on the effect of the attribute on reducing the overall entropy when 
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performing classification. Thus, the attributes that are selected have the greatest relevance for which 
biological characteristics of miRNA cause the miRNA to be associated to laryngeal cancer.  

We found which pathways and target genes were more/less associated with LC by comparing the proportion 
of associated miRNAs with the target/pathway process to the proportion of random miRNAs with it. 

Elucidated gene targets of miRNAs related to LC likely have a clear relation to cancer. For example, Figure 
1 shows how one of selected target genes, RPS6KA5 triggers cancer proliferation. RPS6KA5 (MSK1), 
which is shown in the figure. This is an area of future study because it shows that the RPS6KA5 target gene 
of miRNA and the pathway it operates in promotes cancer growth, which is the central carbon metabolism 
in cancer, or hsa05230. We found that this pathway was more linked with laryngeal cancer-associated 
miRNA, so we can look further into these pathways for treating cancer in the future. Thus, the presence of 
this target gene and its pathway give an indication of cancer presence and are also a potential target for 
controlling cancer growth. Similarly, the HT-based model identified the MDM1 target gene of miRNA to 
be associated with LC. This gene deactivates p53, which causes decreased cancer proliferation. This gene’s 
interaction can be visualized in the hsa05206 pathway, which is for microRNAs in cancer. In addition, we 
found that the TET2 target gene of miRNA was less expressed in LC-associated miRNA, indicating that 
LC-associated miRNAs may downregulate TET2. Downregulation of TET2 can prevent its ability to 
suppress tumors, which is an important area to investigate for cancer proliferation. 

 

4 Discussion 

Our model based on the Hoeffding Tree (HT) classifier has high accuracy, AUROC, and precision when 
compared to other classifiers. HT-based model is also the highest performing based on the number of 
miRNAs and attributes used in training. Thus, the created model is most effective for the analysis 
performed. 

The HT algorithm was especially efficient because it was able to deal with noisy data. The tree structure 
makes local decisions based on sufficient statistics, which reduced the impact of noise on the final 
classification performance. Cross-validation showed that this model performed with high accuracy. The 
AUROC indicates the robustness of the model since it can optimize the classification rate without creating 
any false positives. This shows the promise of HT-based model because it can distinguish which attributes 
are most important in miRNA-cancer association. 

In addition, we found that the model can effectively classify any given miRNA as associated or non-
associated with laryngeal cancer. The model has the potential to be applied to any given miRNA, by running 
a Python script to generate a list of attributes and checking whether the miRNA is classified as cancer-
associated or not. 

The system described in this study can also be applied to other forms of cancer or other disease diagnosis 
when they have an association with miRNA and there is existing data about it. The same methodology as 
described in Figure 2 can be applied. In the future, we can generate attributes for a given set of miRNAs 
that has already shown experimental association with the disease. Our approach has the potential to 
elucidate unknown molecular mechanisms of various diseases, since miRNAs participate in many of them. 
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In future studies using this approach would also help to add attributes such as age, gender, and ethnic groups 
of patients. These factors have been shown to be associated with higher mortality rates [41] and may be 
confounding variables that made certain miRNAs or attributes more important in the model, even if they 
are not as significant in laryngeal cancer patients.  

We would also suggest studying the biological associations of the newly discovered miRNAs to verify if 
they are associated with laryngeal cancer. This can advance our current understanding of the relevant 
miRNA characteristics, which are associated with laryngeal cancer.  

We would also suggest studying cancers or diseases, which have more existing data about associated 
miRNAs, since LC has historically been under-researched.  

 

5 Conclusions 

We selected miRNAs that have already shown association with laryngeal cancer. For each miRNA, we 
generated sequence-based attributes, predicted target genes, and predicted related pathways and used 
attribute selection to narrow which characteristics are most important for cancer-related miRNAs. We then 
used the data to train different ML models and found that the HT classifier performed the best. The HT-
based model can predict LC using miRNAs analysis data with 86.8% accuracy and was also validated with 
the independent patients’ data showing 83% accuracy. We identified new miRNAs that had not previously 
shown biological relationship with laryngeal cancer, and we found out which pathways and target genes are 
predicted to trigger cancer proliferation. Our methodology can be applied to other diseases in the future and 
the data found can be crucial in providing diagnosis or identifying targets for cancer proliferation. 
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