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ABSTRACT: Water plays a pivotal role in numerous chemical processes, especially in the production of fuels and fine 
chemicals derived from bio-based feedstocks. Zeolites are porous catalysts used extensively due to their shape-selective 
adsorption and confinement interactions; However the kinetics of zeolite-catalyzed reactions are significantly impacted by 
the presence of water, which may affect product selectivity and intrinsic rate constants depending on transition state po-
larity. In this study, we employed machine learning force fields (MLFFs) to accelerate ab initio molecular dynamics (AIMD) 
simulations and enhance the phase space exploration of water configurations in Brønsted acid zeolites. We interrogated 
the structure of adsorbed water based on the Si/Al ratio and acid site distribution to disentangle the impact of acid site 
density and distribution on water matrix organization as a function of water loading. We integrated adsorption thermody-
namics, vibrational spectroscopy simulations, and local density maps to interrogate the spatial orientation of adsorbed 
water clusters and their degree of hydrogen bonding. Our analysis unveiled the intricate interplay between zeolite structure, 
Brønsted acid site location, and water where spatially disparate acid sites nucleate extended clusters that span siliceous 
regions of the zeolite. We found that the length scale of ordered water regions is directly related to the Si/Al ratio and 
spatial distribution of Al sites. These findings provide insights into the molecular-level structure of water in microporous 
aluminosilicate micropores and demonstrate how acid sites can be used to control water activity which has applications to 
heterogeneous catalysis and adsorptive separations.  
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INTRODUCTION 

Zeolites are nanoporous solids characterized by high crystallin-

ity and hydrothermal stability that have been studied exten-
sively due in part to their role as catalysts and sorbents for the 

petrochemical industry,1–5 environmental remediation,6–11, and 

sustainable chemical synthesis.12–14 Notably, aluminosilicate 
zeolites possess anionic lattice charges resulting from alumi-

num heteroatom substitutions that are balanced by cations such 
as protons, which can function as catalytic active sites. The dis-

tinct coordination and confinement environments of aluminum 

atoms within the zeolite framework allow for cations and guest 
adsorbates to be accommodated in diverse void spaces, which 

are determined by the underlying pore architecture. The cata-
lytic reactivity of a framework proton is determined by the sta-

bility of a proton on a bridging oxygen, which acts as a conju-

gate base (AlO4
-).15 

The distribution and location of intracrystalline aluminum sites 

within zeolite frameworks impact active site accessibility and 

product selectivity.16 The strategic placement of aluminum en-
ables targeted chemical transformations and shape-selectivity 

for the formation of desired products.17,18 Understanding the in-
tricate relationship between acid site location and reactivity is 

pivotal for designing and optimizing zeolite catalysts. This un-

derstanding is facilitated by advanced characterization tech-
niques and computational modeling, leading to highly efficient 

catalyst development for diverse catalytic processes such as 

methanol-to-olefins (MTO)19,20 and Fischer–Tropsch synthe-
sis.21–23 Furthermore, acid site location also significantly affects 

the structure and energetics of guest molecules, including sol-

vents, within the zeolite framework. 

Water often has a prominent role in zeolites, especially in hy-

drophilic aluminosilicate zeolites, due to its large heat of 

adsorption and its frequent formation as a product in oxygenate 

chemistries.12 Additionally, water acts as a solvent, which can 

directly affect the stability of confined transition states, espe-
cially those involving renewable feedstocks and polar reaction 

intermediates within the zeolite.24–26 The protonation of water 

molecules can give rise to various structures, including Zundel 
and Eigen structures and the interplay between these structures 

further contributes to the rich behavior of water in zeolites.27,28 
However, the presence of water can also hinder reaction rates.29 

Water molecules tend to form clusters, limiting the accessibility 

of reactants to active sites and consequently reducing the reac-
tion rate.30 Moreover, coadsorbed water may participate in tran-

sition states, affecting intrinsic kinetics.31 Despite its ubiquitous 
role, fundamental insights into water structuring in acid zeolites 

remain challenging due to the formation of hydrogen bonding 

networks and complex cluster structures.27,32–34 These charac-
teristics also complicate experimental characterization tech-

niques and contribute to the complexity of understanding 

water's behavior in zeolites. 

Despite significant progress in molecular-level simulations of 

zeolite catalysis, the influence of active site density on solvent 
interactions and its impact on catalytic reactivity remains 

largely unexplored. By understanding the molecular interac-

tions between the solvent and zeolites, simulations can open 
new avenues for optimizing reaction kinetics to enable the de-

velopment of more efficient and selective catalysts.  

Simulation methods play a critical role in this endeavor. Two 
commonly used approaches are classical parameterized force 

fields (FF) and Density Functional Theory (DFT), the latter ex-
plicitly includes electron interactions. While it is true that FF 

methods are primarily employed for tasks like diffusion or ad-

sorption, reactive force fields have been developed for various 
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classes of reactions.35–37 These specialized force fields aim to 
bridge the gap between computational efficiency, as seen in tra-

ditional FF methods, and the ability to model bond-breaking 
and bond-formation processes, characteristic of catalytic reac-

tions. On the other hand, DFT-based first-principles (FP) calcu-

lations provide an electron-level description of electronic struc-
ture and energetics, making them a crucial tool for studying ca-

talysis. However, it is important to acknowledge that DFT cal-

culations are computationally more demanding. 

Efficiently predicting interatomic potentials is crucial to under-

standing and modeling complex molecular systems. Traditional 
methods for fitting interatomic potentials, such as quantum 

chemical calculations including DFT are not only computation-

ally intensive but demand substantial time and resources. Ma-
chine learning force fields (MLFFs) describe the potential en-

ergy as a function of atomic structure descriptors, and their pa-

rameters are optimized to reproduce training data obtained from 
FP calculations. MLFFs have been successfully applied to pre-

dict the properties of various systems, including phase transi-

tion38–40, interfaces,41 adsorption,42 and reactions43.  

In this work, we examined adsorbed water behavior within AFI 

aluminosilicate zeolites based on their acid site distribution and 
Si/Al ratio (acid site density) to determine the impact of these 

factors on water organization as a function of water loading in 

the framework. Our investigation focused on developing funda-
mental insights into how aluminum density and distribution af-

fect water organization as a function of water loading in the 
framework. To enhance the sampling efficiency for the large 

configurational space of possible water structures, we adopted 

a strategy that leverages MLFFs to accelerate ab initio molecu-
lar dynamics (AIMD) simulations. The results unveil the role of 

specific aluminum distributions on both the thermodynamics of 
water adsorption and the distribution of adsorbed water clusters. 

The findings underscore the relationship between zeolite struc-

tural characteristics, Brønsted acid sites, and protic solvents, 
which are relevant for liquid phase catalysis as well as oxygen-

ate chemistries that co-produce water. These results have broad 

applications in designing catalysts with tunable control over ad-
sorbed water matrices and consequently improved selectivities 

and kinetics for aqueous phase reactions or those that co-pro-

duce water such as dehydration from bio-based feedstocks.  

METHODOLOGY 

Model Construction. A CIF for zeolite AFI was obtained from 
the International Zeolite Association (IZA) structure database.44 

One and two aluminum-substituted AFI zeolites (denoted here 

as H-AFI and 2H-AFI, labeled based on the number of alumi-
num heteroatoms and protons per unit cell) were built using the 

atomic simulation environment (ASE) which was also used to 
place adsorbate water molecules at their initial positions.45 For 

2H-AFI, we constructed four different configurations based on 

the different aluminum locations and noted them as 2H-AFI-1, 
2H-AFI-2, 2H-AFI-3, and 2H-AFI-4. AFI 1×1×2 supercells 

with Si/Al ratios of 11 and 23, which correspond to 4 and 2 alu-
minum per unit cell (denoted u.c.-1), respectively, were con-

structed by replicating the optimized 2H-AFI-1 unit cell.  

First Principles Calculations. All density functional theory 

(DFT) based ab initio molecular dynamic (AIMD) simulations 

were performed by Vienna Ab initio Simulation Package 

(VASP)46–49 with exchange correlation function of Perdew-
Burke-Ernzerhof (PBE)50 in conjunction with D3 correction 

method,51 and Becke-Johnson (BJ) was used as the damping 

function. The cutoff energy was set to 500 eV, while the 

tolerance for the self-consistent field (SCF) was set to 1×10-5 
eV. The time step was set to 0.5 fs. A Nosé-Hoover thermostat52 

was used to simulate the NVT ensemble at a temperature of 300 
K. Example INCAR files are included in the Supporting Infor-

mation.  

The original AFI CIF obtained from IZA was re-optimized us-
ing VASP. Force criteria were set to 0.03 eV/Å with all other 

parameters the same as described above. The cell constants, a, 

b, and c were adjusted in VASP with the optimized values for a 
and b being 13.68 Å and c being 8.60 Å and were kept constant 

in subsequent simulations. The volume deviation of these opti-
mized cell constants from the original a=b=13.83 Å and c=8.58 

Å is 2.07%. Aluminum atoms replaced silicon atoms to form 

acid sites, and protons were added to the oxygen atom next to 
each aluminum atom in the 12-membered ring to balance the 

charge and expose the proton to adsorbates. We calculated the 

saturation loading of water using the accessible volume (199.88 
Å3) of zeolite AFI which accounts for 14.07% of the total vol-

ume (1420.60 Å3), leading to an approximate equilibrium load-
ing of 6 H2O u.c.-1. Once we determined the water loading, the 

2H-AFI configurations with water molecules were optimized 

by VASP using the same simulation conditions to obtain the 
initial configurations for the following MD simulations. 

POSCAR-formatted structures are included in the Supporting 

Information.  

On-the-fly Machine Learning Force Fields. Investigating the 

behavior of water in confined environments requires simula-
tions conducted over large timescales that include electronic in-

teractions due to proton shuttling that occurs at Brønsted acid 

sites. Simulations based on FP calculations, such as AIMD, ex-
plicitly calculate the forces acting on each ion based on their 

electronic structure, resulting in slower computational speeds. 
Conversely, simulation methods based on empirical parameters 

like force field require solid fundamental knowledge of the 

given system to investigate the relevant interactions at an 
atomic level. The VASP on-the-fly MLFF38,53,54 is a force field 

method that derives its parameters from first-principles calcula-

tions and employs a Bayesian active learning algorithm. The 
VASP on-the-fly MLFF incorporated radial and angular de-

scriptors and basis functions,53 utilizing the Gaussian Approxi-
mation Potentials (GAP) method55 and Smooth Overlap of 

Atomic Orbitals (SOAP) descriptors.56  

After obtaining the 0 K optimized aqueous 2H-AFI structures, 
we employed VASP on-the-fly MLFF simulations to 2H-AFI-

1, 2H-AFI-2, and 2H-AFI-3 with all other simulation conditions 

the same as we used in the AIMD simulations. The total dura-

tion of each MLFF simulation was 215 ps. 

The accuracy of a trained machine learning force field is related 
to the frequency of FP calculations. More frequent FP calcula-

tions result in higher accuracy but significantly increase the 

computational demand. FP calculations were only carried out 
when the Bayesian error for the forces and spilling factors ex-

ceeded the threshold.54,57 In this work, the MLFFs underwent 
refinement after each training step. Refinement occurred when 

the Bayesian error of the force exceeded the average maximum 

Bayesian error of the force observed over the last 10 training 
steps and the relative standard deviation was less than 0.2 in 

normalized units.54 Example force field files and INCARs for 

our training are included in the Supporting Information.  

We assessed the accuracy of our MLFF simulations by both vis-

ually inspecting the obtained structures as well as quantifying 
the error in energies and forces. In each on-the-fly MLFF 
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simulation, we conducted a thorough examination of the system 
geometry which included the AFI framework and water config-

urations. This ensured that our models did not exhibit unphysi-
cal bond formation or bond cleavage events. We calculated the 

mean absolute error (MAE) for each aluminum distribution and 

water loading to quantify the energy and force error of our po-
tential. The MAE for energies in MLFF averaged 0.024 

meV/atom and the MAE for forces in MLFF averaged 0.81 

eV/Å. Further comprehensive data is available in Figure S6 for 

reference.  

We performed 10 ps AIMD simulations of both 2H-AFI-2 at 2 
H2O u.c.-1 and 2H-AFI-1 at 5 H2O u.c.-1 to compare the distri-

bution of adsorbed water molecules compared to those pre-

dicted by our MLFF models. These are shown in Figure S4. 
The AIMD and MLFF models show similar adsorbed structures 

indicating that the MLFF models correctly predict the adsorbed 

water configuration in addition to their energies.  

We conducted on-the-fly MLFF training simulations on three 

different aluminum distributions (2H-AFI-1, 2H-AFI-2, and 
2H-AFI-3) while varying the water loading from 1-6 H2O u.c.-1 

Our calculations indicated that the MLFF model of 2H-AFI-2 

at a loading of 6 H2O u.c.-1 exhibited the lowest energy and 
force errors (with MAEs of 0.0078 meV/atom and 0.79 eV/Å, 

respectively). We then used this MLFF model for H-AFI and 

2H-AFI-4. 

Aluminum Incorporation Energy. The total aluminum incor-

poration energy was calculated by the following equation (1):  

𝐸𝑖𝑛𝑐,𝑡𝑜𝑡𝑎𝑙 = (𝐸𝑥𝐻−𝐴𝐹𝐼 + x𝐸𝑆𝑖(𝑂𝐻)4
) − (𝐸𝑆𝑖−𝐴𝐹𝐼 + x𝐸𝐴𝑙(𝑂𝐻)3

+

x𝐸𝐻2𝑂,𝑔)                                                              (eq. 1) 

Here 𝑥 denotes the number of substituted aluminums, 𝐸𝑥𝐻−𝐴𝐹𝐼 

and 𝐸𝑆𝑖−𝐴𝐹𝐼 represent the potential energy of aluminum incor-

porated AFI and siliceous AFI, respectively. 𝐸𝑆𝑖(𝑂𝐻)4
, 𝐸𝐴𝑙(𝑂𝐻)3

, 

and 𝐸𝐻2𝑂 denote the potential energy of Si(OH)4, Al(OH)3, and 

H2O in the gas phase. The configurations of AFI, H-AFI, and 
2H-AFI were obtained from the geometry optimizations de-

scribed above.  

Adsorption Thermodynamics. The water adsorption energy 
per water molecule at 300 K averaged across the 200 ps simu-

lation production run is presented in Figure S1. The average 

water adsorption energy per water molecule in 2H-AFI-1, 2H-

AFI-2, and 2H-AFI-3 by equation (2) and shown in Figure S2a: 

⟨𝐸𝑎𝑑𝑠⟩ = ⟨𝐸𝑛𝑊+𝑍⟩ − ⟨𝐸𝑍⟩ − 𝑛𝑤𝑎𝑡𝑒𝑟 〈𝐸𝑊〉̅̅ ̅̅ ̅̅         (eq.2) 

Here, ⟨𝐸𝑛𝑊+𝑍⟩ is the average total energy of the zeolite with 𝑛 

adsorbed water over the production run. ⟨𝐸𝑍⟩ is the average po-

tential energy of the framework, obtained from 10 ps MLFF 
simulations using the predicted force field. The force field we 

used here was based on the equilibrated system of the corre-

sponding system with adsorbed water. ⟨𝐸𝑊⟩̅̅ ̅̅ ̅̅  represents the av-

erage intensive potential energy of a bulk water system com-
prising 45 water molecules, obtained from a 10 ps AIMD sim-

ulation in units of energy H2O
-1. The potential energy of each 

water molecule was normalized and calculated using equation 
(3) to account for various interactions between water molecules, 

including Coulomb and van der Waals interactions.58  

⟨𝐸𝑊⟩̅̅ ̅̅ ̅̅ =  
⟨𝐸𝑊,   𝑏𝑢𝑙𝑘,   𝑎𝑖𝑚𝑑,   𝑛=45⟩

45
                                (eq.3) 

To make meaningful comparisons for adsorption energies, it is 
essential to establish uniform reference states. We performed 

additional 10 ps MD simulations from the equilibrated struc-

tures using our trained potentials for all water loadings. The 

reference energy of water was also calculated by averaging a 10 
ps prediction simulation utilizing the same model as above to 

ensure a consistent thermodynamic reference state using the 
same trained potentials. These simulations used the same ther-

mostat, temperature, and timestep as described previously.  

The adsorption energy per water molecule at 0 K was also com-

puted for a comparison shown in Figure S2b by equation (4): 

𝐸𝑎𝑑𝑠,0 𝐾
̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐸𝑊+𝑍,0 𝐾 − 𝐸𝑍,0 𝐾 − 𝐸𝑊,0 𝐾)/𝑛𝑤𝑎𝑡𝑒𝑟                (eq.4) 

𝐸𝑍,0 𝐾 and 𝐸𝑊,0 𝐾 here are the potential energy of 2H-AFI and a 

single water molecule at 0 K from geometry optimizations. The 
calculated water adsorption energies at 0 K shown in Figure 

S2b differ from 300 K due to the finite-temperature reorganiza-
tion of the water molecules. To determine the 0 K ground state 

adsorption configuration, we obtained at least 6 water configu-

rations from each MD simulation with the lowest potential en-
ergy and geometry optimized each of them. The configuration 

with the lowest geometry-optimized potential energy was then 

used as the corresponding 𝐸𝑊+𝑍,0 𝐾 for that system.  

Radial Distribution Functions. Aluminum-water radial distri-
bution functions (RDFs) were computed by obtaining the inter-

atomic distances between the aluminum and the oxygen atoms 

belonging to water molecules. 

Water Density Plots. We generated time-averaged heatmaps 

that illustrate water density distribution by slicing perpendicular 
to the AFI center pore which corresponds to the [001] plane. 

Higher brightness in the heatmaps indicates a higher probability 

of water molecules visiting that region. Each heatmap encom-
passes simulation data spanning from 15 ps to 215 ps. To im-

prove clarity, we centered the AFI pore, making it easier to vis-

ualize the water distribution. In these heatmaps, water positions 
are represented by the oxygen atoms within the water mole-

cules. 

RESULTS AND DISCUSSION  

Zeolite AFI Structure. AFI is a one-dimensional framework 

structure characterized by identical T-sites. Figure 1 depicts a 
2 by 2 by 1 supercell to illustrate aluminum atom positions, alt-

hough all simulations were conducted using a single unit cell. 
A potential aluminum atom location in H-AFI is colored blue 

and labeled by a star. A second aluminum atom was placed rel-

ative to the position of the first aluminum. Aluminum distribu-
tion in zeolites must obey Löwenstein’s rule to avoid Al-O-Al 

 

 
Figure 1. A 2x2x1 supercell of zeolite AFI with O colored 

red, and Si colored tan. Plausible locations for the next-

nearest neighbor aluminum (marked as 1, 2, and 3) and the 
third nearest neighbor aluminum (marked as 4) substitu-

tions are labeled in green relative to the initial aluminum 

substitution labeled in blue.  
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bonds, which could lead to highly unstable structures.59 We first 
explored three aluminum locations (represented by green atoms 

and labeled 1 to 3) for the second aluminum atom, which are 
next-nearest neighbors to the first aluminum substitution. These 

configurations were selected to represent unique combinations 

of aluminum positions relative to the anchoring initial alumi-
num. We note that the AFI unit cell can be divided into two SiO2 

layers along the z-axis. Specifically, the first and the third posi-

tions of the second aluminum atom align with the same layer as 
the anchor aluminum, while the second position, although hav-

ing a similar Al-Al closest geometric distance as the third posi-

tion, sits in a different layer.   

To increase the range of Al-Al distances while maintaining Lö-

wenstein’s rule, we explored a fourth aluminum position. Here 
the second aluminum site was chosen to be the third nearest 

neighbor to the anchor aluminum and situated in the same layer 

as the first and third positions. Table 1 presents the distances 
between two aluminum atoms as both the minimum geometric 

distance, and distance across the AFI center pore. For all further 
analysis, we used the Al-Al distance across the pore as that 

measures the interaction length for water molecules within a 

single pore. 

The single T-site characteristic of AFI makes it a model mate-

rial to interrogate site distribution effects by removing the local 

structure differences around each Al site. We calculated Al in-
corporation energies and found that they differ by at most 0.14 

eV (Table 1) indicating that the thermodynamics of heteroatom 

substitution do not depend on which Si atom we choose.  

Table 1. Aluminum-aluminum distances and their incorpora-

tion energy calculated for each acid site distribution considered.  

Al 
distribution 

Al-Al  
direct 

distance 

(Å) 

Al-Al distance 
across the pore 

(Å) 

Incorporation 
energy (eV) 

2H-AFI-1 5.55 5.55 -2.38 

2H-AFI-2 5.00 11.50 -2.51 
2H-AFI-3 4.98 9.63 -2.49 

2H-AFI-4 8.01 8.20 -2.37 

Water adsorption at different acid site distributions. We 

found that the water adsorption energy varies significantly with 
the water loading and acid site distribution, which can be at-

tributed to the acid site distribution modulating water molecule 

reorganization. We first interrogated the role of aluminum dis-
tribution by calculating the time-averaged adsorption energies 

from our trained machine learning potentials. Figure 2a shows 
the variation of the water adsorption energy per water molecule 

as a function of the Al-Al distance distance measured across the 

pore. Our results indicate that water adsorption becomes less 
favorable as the Al-Al distance increases for intermediate water 

loadings between 2 - 4 H2O u.c.-1 (~33-66% of the saturation 

loading). At the lowest loading of 1 H2O u.c.-1, the Al distribu-
tion is irrelevant as only one acid site can be populated by a 

given water molecule. As a result, we see that the adsorption 

energy for 1 H2O u.c.-1 is invariant with the Al-Al distance. 

Close to the saturation loading of 5 – 6 H2O u.c.-1 the adsorption 
energy per water molecule is also invariant with Al-Al distance. 

This is reasonable as at saturation there are sufficient water mol-
ecules to stabilize protonated clusters regardless of the Al prox-

imity. At intermediate water loadings (2 – 4 H2O u.c.-1) we see 

that the Al-Al distance plays a role that implicates the im-

portance of site proximity in stabilizing water clusters.  

We observed that the magnitude of the water adsorption energy 

decreased as the water loading increased. We hypothesize that 
two primary factors significantly influence the water adsorption 

energy: the direct adsorption of water at the acid site and hydro-
gen bond formation. In the case of 1 - 3 H2O u.c.-1, adsorption 

is dominated by electrostatic interactions with the framework 

proton. From 4 - 6 H2O u.c.-1, the formation of a hydrogen bond 
network among water molecules contributes to stabilizing dif-

ferent adsorbate configurations, diminishing the primary role of 

 
Figure 3. Time-averaged heatmaps of the water density distribution in AFI center pore viewed along the [001] plane. The zeolite 

framework is not shown. (a) to (d) are 2H-AFI-2 with one, three, five and six H2O u.c.-1 and (e) to (h) are 2H-AFI-1 to 2H-AFI-
4 at the saturation water loading. Blue circles indicate the position of Al substituted heteroatoms. A complete set of density maps 

at all water loadings and aluminum distributions are included in Supplementary Figure S3.  

 
Figure 2. (a) Water adsorption energy per water molecule with 

the increasing Al-Al distance across the AFI center pore. (b) 

Snapshot of the water cluster in AFI center pore from 2H-AFI-
2 with 6 H2O u.c.-1. 
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direct adsorption when normalized per water molecule. At 
higher water loadings, the dominant factor in adsorption energy 

is the shift from direct interactions of water molecules with the 
acid site to intermolecular interactions, such as the formation of 

hydrogen bonds, proton transfer, and interatomic interactions.28 

This observation is further supported by Figure 2b, which in-
cludes a snapshot of 2H-AFI-2 at the saturation loading where 

we observed extended hydrogen bonding structures.  

Adsorbed water structure. To complement our thermody-
namic analysis, we tracked the position of water molecules over 

time in our simulations. The behavior of water molecules within 
the AFI center pore was studied as a function of water loading. 

Figure 3 shows heatmaps that illustrate the local density of wa-

ter within the AFI center pore. A subset of water conditions are 
shown in Figure 3, with the complete set of water density maps 

included in Figure S3. Brighter regions of the density map in-

dicate where water molecules are more frequently located, sug-
gesting the presence of favorable adsorbed water structures 

within those regions. For water loadings below 3 H2O u.c.-1, we 
find that water molecules cluster around the acid sites through-

out the duration of the simulation. As the water loading in-

creases, the water distribution extends throughout the central 
pore. At the saturation loading, we observe that water molecules 

access the full volume of the AFI center pore space regardless 

of the aluminum distribution.  

To illustrate the effect of changing water loading, we chose a 

representative aluminum distribution (2H-AFI-2) and plotted 
the density heat maps from 1-6 H2O u.c.-1 (Figure 3a-d). We 

see that a single water can adsorb at a single site with a single 

bright region localized near the Al heteroatom indicated by the 
blue circle. At 3 H2O u.c.-1 water molecules populate both Al 

sites as well as the central pore. At 5 H2O u.c.-1, an extended 
water cluster that spans both Al sites emerges which then satu-

rates the accessible pore volume at 6 H2O u.c.-1.  

At the saturation loading, we observed differences in the ad-
sorbed water structure depending on the Al distribution. We ob-

served that larger Al-Al spacing promoted the formation of 

broad water clusters, contributing to the stabilization of the wa-
ter network within the zeolite AFI center pore (Figure 3e-h). 

For the shortest Al-Al distance (2H-AFI-1) the local density of 
water is more concentrated proximal to the two Al sites with 

minimal exploration of the siliceous region along the outer pore 

wall. This differs from the other distributions where distinct wa-
ter clustering is observed which encompasses the full pore vol-

ume. The observed differences in equilibrium water density in 

conjunction with adsorption thermodynamics indicate that Al 
distribution can modulate both the thermodynamic stability and 

structure of adsorbed water.  

Radial distribution functions of adsorbed water. We calcu-
lated radial distribution functions (RDFs) for the distribution of 

oxygen atoms in water molecules to Al heteroatoms as an addi-
tional measure of water clustering. RDFs for each water loading 

and Al distribution are provided in Figure S5. The RDFs sup-

port the density heatmap conclusions that water molecules oc-
cupy the central pore at high water loadings, and that the prox-

imal Al distribution (2H-AFI-1) nucleates a localized water 

cluster as compared to the disparate Al distributions (2H-AFI-
2,3,4). We also compared RDFs for a single Al heteroatom 

which exhibits a greater degree of peak broadening than the 
paired Al sites indicating weakly nucleated water structures. 

We calculated the first peak position for each RDF (Figure 4a) 

which portrays an overall increasing trend as the water loading 

increases.  

Proton solubility. In addition to tracking the position of water 

molecules, we tracked the position of protons to determine their 
solubility in the pore centers. Previous studies from Mei, Rous-

seau, Lercher, and coworkers have shown that proton solubility 

depends on the number of coadsorbed waters.60,61 Since we can-
not a priori label protons in our system due to proton-shuttling 

events, we calculated proton identities dynamically over the 
simulation. To do this, we generated neighbor lists for each ox-

ygen and hydrogen atom excluding framework oxygens. The 

protons were determined by pairing hydrogens with oxygens 
based on neighbor lists and then determining which hydrogens 

were weakly bound. These hydrogens were then labeled in that 

frame as a proton.  

We sought to determine whether Al distributions affected the 

proton solubilities. Figure 4b illustrates the average distances 
of the framework protons to the AFI pore center in all four 2H-

AFI configurations (i.e. a distance to the center of 0 Å would be 

the center of the pore). At 1 H2O u.c.-1, we note large distance 
values indicating protons remain close to the framework. We 

 
Figure 5. Vibrational density of state (vDOS) of water with different water loading in (a) 2H-AFI-1, (b) 2H-AFI-2, (c) 2H-AFI-
3, and (d) 2H-AFI-4. Black dashed lines are reference gas water bending and stretching frequency, and grey dashed lines are 

reference liquid water bending and stretching frequency.34  

 
Figure 4. (a) The first RDF peak position for all aluminum 
distributions and water loadings (b) Average distances be-
tween framework protons and the AFI pore center. 
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also find that single waters do not appreciably protonate. As the 

water loading increases, the average distance in all configura-
tions decreases, indicating protonation of adsorbed water and 

solvation into the cluster. This observation aligns with previous 

literature at high Si/Al ratios,30 which reported similar trends of 
proton solvation assisted by coadsorbed water. We noticed that 

all Al distributions exhibit a similar trend in proton distance 
with near-saturation loadings having average proton locations 

closest to the pore center. These data would indicate that pro-

tons solvate near the center of the pore more frequently on av-
erage when there are sufficient water molecules adsorbed. Sol-

ubility does not appear to depend on the relative position of the 

acid sites under these conditions, but this opens questions into 
whether different pore topologies or temperatures could be used 

to change the framework-proton distance.  

Vibrational spectra of adsorbed water. We interrogated the 

hydrogen bond strength as a function of water loading by com-

paring water bending and stretching modes. These modes were 
compared by calculating the vibrational density of state (vDOS) 

which is shown in Figure 5. The dashed lines denote literature 

values for the vibrational frequencies of both liquid water and 
water vapor.34 We observed shifts in the bending and stretching 

modes as water loading increased and as we changed aluminum 
distribution. As the water loading increased, both the frequen-

cies associated with bending and stretching modes exhibited 

broader peak profiles, while remaining within a reasonable 
range that would be expected for water. The observed range of 

bending and stretching vibrational frequencies further indicates 
that our MLFF strategy captures the intermolecular forces pre-

sent in water. At the saturation loading, we observed a shift in 

the stretching peak from 3746 cm-1 to 3448 cm-1 as the Al-Al 
distance increased. A decrease in the stretching peak has been 

shown to describe stronger hydrogen bonding.62 These data in-

dicate that disparate Al sites that nucleate extended water clus-
ters form stronger hydrogen bonding networks than proximal 

Al sites.  

Variation in Si/Al ratio. All data thus far have focused on a 

fixed Si/Al ratio with variations in the Al distribution. We ap-

plied our MLFF strategy to probe how changes to the Si/Al ratio 
can affect the nucleation of water clusters. We chose a single Al 

distribution (2H-AFI-2) and then expanded the simulation box 

by doubling its size along the AFI center pore. Figure 6a-b il-
lustrates the water density distribution heat map along the zeo-

lite AFI center cage which corresponds to the [010] plane. Here, 
Figure 6a illustrates the saturation loading of water at Si/Al 11 

and subplot b illustrates the saturation loading of water at Si/Al 

23. A Si/Al 11 corresponds to four aluminum atoms per super-
cell and Si/Al 23 corresponds to two aluminum atoms per super-

cell. We observed that Si/Al 23 exhibits a higher degree of 

clustering around the aluminum sites than the Si/Al 11 config-

uration which has water molecules adsorbed near both sets of 
Al sites marked in blue circles. To quantify the water structure 

around these acid sites, we calculated RDFs which are shown 

in Figure 6c. Both Si/Al 11 and Si/Al 23 RDFs exhibited a sim-
ilar position for the first peak, indicating a consistent average 

distance between the first coordination shell of water molecules 
around acid sites. Si/Al 11 has a sharper RDF beyond the first 

peak as compared to Si/Al 23.  

This suggests that Si/Al 11 produces a more structured water 
environment than the high Si/Al ratio which exhibited broader 

peaks indicating that intraporous water is more evenly distrib-

uted water along the center pore in comparison. At higher Si/Al 
ratio we observe clustering around acid sites, but more disor-

dered liquid-like water fills the siliceous intraporous region. 
Lower Si/Al ratio leads to extended water clusters where a 

greater degree of water structuring was observed indicating that 

acid site proximity plays a role in the spatial extent of water 

clustering.   

CONCLUSION 

Our investigation into water structuring provides insights into 
the intricate relationship between aluminum density and distri-

bution within AFI aluminosilicate zeolites and the organization 
of adsorbed water molecules as a function of water loading. Us-

ing MLFFs to expedite AIMD simulations and improve the 

sampling of diverse water configurations, we have gained a 
deeper understanding of the pivotal role played by specific alu-

minum distributions in the thermodynamics of water adsorption 
and the spatial arrangement and persistence of water clusters. 

Notably, our findings indicate a consistent weakening in water 

adsorption energies as the Al-Al distance increases across load-
ing. Additionally, our examination of water distribution within 

the AFI center pore revealed a propensity for water clusters to 

form at higher water loadings, where framework protons be-
come integral to cluster stability. These findings were corrobo-

rated by independent computational characterization methods 
including density maps, radial distribution functions, proton lo-

cations, and vibrational spectra. The union of these data indi-

cates that spatially disparate Al sites better stabilize extended 
hydrogen bonding networks resulting in denser water clusters. 

At high Si/Al ratios, water clusters nucleate in isolation, with 

intraporous disordered water filling the siliceous regions. As the 
Si/Al ratio decreases, water clusters interact which leads to 

larger clusters with strong hydrogen bonding.  

These findings underscore the interplay between zeolite struc-

ture, Brønsted acid site location, and water adsorption, provid-

ing evidence that precise control over Si/Al ratio and distribu-
tion will directly influence the structure and stability of 

 
Figure 6. Heatmaps of the water density distribution along the AFI center pore in supercells with (a) Si/Al 11, (b) Si/Al 23, and (c) 

water RDFs for both Si/Al ratios. 
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adsorbed water matrices. This may play a role in liquid-phase 
catalysis and oxygenate chemistries involving water co-genera-

tion where adsorption, diffusion, and transition state stability 
are affected by the water activity. Our error validation and data 

characterization have demonstrated the suitability of MLFF for 

studying such complex systems. This approach has key impli-
cations for future studies that link the cluster geometries ob-

served here with the kinetics of reactions catalyzed by zeolites 

or other porous materials. These findings provide evidence that 
controlling the microenvironments around catalytic active sites 

can tailor water activity.   
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