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Abstract

Water transport through nanopores is widespread in the natural world and holds significant
implications in various technological applications. Several researchers observed a significant in-
crease in water flow through graphene-based nanotubes. Graphene sheets are deformable, so
we represent nano/Angstrom-size tubes with a deformable wall model using the small displace-
ment structural mechanics with a linear pressure-area relationship. We assume the lubrication
assumption in the shallow tubes, and using the microstructure of confined water along with slip
at the capillary boundaries, we derive the model for deformable nanotubes. Our derived model
also facilitates the flow dynamics of Newtonian fluids under different conditions as its limiting
cases, which have been previously reported in the literature. We compare the predictions by our
deformable-wall and rigid-wall model with the experimental results and the MD simulation pre-
dictions by multiple literatures. Many studies were well-predicted by the rigid-wall model with
slips. However, we find that there are many studies with high porosity and thin wall tubes, where
elasticity or deformability of the tube is essential in modelling, which is well-predicted by our
deformable-wall model with slips. In our study, we focus on investigating the impact of two key
factors: the deformability of the nanotubes and the slip length on the flow rate. We find that the
flow rate inside the tube increases as the deformability 1/α increases (or corresponding thickness
T and elastic modulus E of the wall decreases). We find that the flow rate in deformable tubes
scales as ṁdeformable ∼ 1/α0 for

(
∆p/αAo

)
� 1, ṁdeformable ∼ 1/α for

(
∆p/αAo

)
∼ O(10−1) and

ṁdeformable ∼ α2 for
(

∆p/αAo

)
∼ O(1). We also find that, for a given deformability factor α, the

percentage change in flow rate in the smaller diameter of the tube is much larger than the larger
diameter. As the tube diameter decreases for the given reservoir pressure, ∆ṁ/ṁ increases A−1o
followed by A−2o after a threshold with the tube diameter. We find that for the rigid tube, where
the deformability parameter 1/α = 0, the mass flow rate varies linearly, i.e., ṁrigid ∼ ∆p, whereas
for the deformable tubes, the flow rate scales as ṁdeformable ∼ ∆p2 for

(
∆p/αAo

)
∼ O(10−1) dur-

ing transition from ṁrigid ∼ ∆p to ∼ ∆p3, and finally to ṁdeformable ∼ ∆p3 for
(

∆p/αAo

)
∼ O(1).

We further find that the slip also significantly increases the mass flow rate in the nanotubes. Still,
the deformability has, in comparison, a more substantial effect in increasing the mass flow rate
to several orders than the slips.
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1 Introduction

The study of water’s transport behavior within nanopores holds considerable importance in
terms of fundamental understanding and practical applications. This significance arises from
the widespread occurrence of nanopores in nature and has numerous technological uses [1–9].
For example, in the natural world, plants absorb water through nanocapillaries [10, 11]. Also,
from a technological perspective, the utility of nanocapillary flow has been harnessed in diverse
applications. Prominent instances encompass deformable nanotubes within lab-on-a-chip devices,
which enable precise manipulation and analysis of minute fluid volumes [12, 13]. These pliable
nanotubes facilitate the creation of miniaturized systems, serving purposes such as chemical and
biological sensing, DNA sequencing, and drug delivery [14–16]. Furthermore, the employment
of deformable nanotubes in processes like water purification, desalination, filtration, and the
separation of biomolecules is driven by their selective permeability, allowing specific molecules or
particles to pass through while impeding others [17, 18]. Also, given their large surface area and
the controlled channeling of water flow, deformable nanotubes find application in heat exchange
systems to enhance the efficiency of cooling processes [19–22].

Several researchers observed a significant increase in water flow through graphene-based nan-
otubes [8, 9, 23–25]. Many of those researchers employed a hybrid approach, combining the
Hagen-Poiseuille theory [26, 27] under the continuum modeling of nanoconfined water properties
and molecular dynamic simulations to investigate capillary and transport behavior in nanotubes.
They represented the capillaries as rigid wall nanotubes and presented a model for the mass
flow rate. They linked the rapid nanoconfined water flow to water molecules’ elevated density,
viscosity, or considerable slip lengths within nano capillaries. The characteristics of water flow
in highly confined nanoscale environments continue to be a subject of fascination, with some re-
searchers suggesting further significantly increased flow rates that remain unresolved even after
applying substantial slip effects [23, 25, 28–33].

Given the deformable nature of Graphene sheets [34], the flexibility of a narrow carbon
nanotube (CNT) plays a pivotal role in influencing both the effective pressure drop across the tube
and the resultant flow pattern [35, 36]. This is primarily because the flow rate is susceptible to the
cross-section’s length scale, demonstrating a third-power dependence [35]. Consequently, even
minor alterations in the tube’s geometry can lead to substantial changes in the system’s pressure
drop and flow characteristics. To address this, in this paper, we adopt a small displacement
structural mechanics approach with a linear pressure-area relationship, as introduced by Sochi
[35], to model these graphene-based nanotubes as deformable structures.

Under the lubrication approximation in the shallow nanotubes (specifically, the ratio of the
tube’s diameter to its length is assumed small), and using the microstructure of nanoconfined
water along with slip at the capillary boundaries, we study the effect of deformability of nanotube
to the flow rate. We compare predicted flow rates considering both the tube’s deformability and
the application of slips with the experimental findings and the molecular dynamic simulations
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results from multiple literature [8, 9, 23–25, 28–33]. We also compare the same with the rigid-wall
model as well in this paper.

Figure 1: Schematic diagram of the flow Q in a graphene deformable-wall nanotube with length L and
the cross-section radius R (diameter D).

We consider a shallow nanotube with a length L and radius R (diameter D), satisfying the
condition D � L as shown in figure 1. The tube’s wall is deformable. The flow Q because of
the applied pressure field occurs along the x-direction. As a result of the normal stresses exerted
by the flow on the walls, the soft wall of the tube deforms radially. A pressure field p is applied
at the reservoir at x = 0, and the exit pressure is assumed to be zero for reference purposes.
Currently, we do not assume any particular magnitude for the deformable displacement. Still,
we anticipate the magnitude |δ| � D in our problem, where δ is the change in radius due to
wall deformation, i.e., R = Ro + δ, where Ro is the initial or rigid wall tube radius and R is the
radius after tube-wall deformation. The structure of the paper is outlined as follows. Section 2
describes the the governing equations, while Section 3 presents the model’s derivation. In the
Section 4, we present and analyze the results. Finally, we present conclusions in Section 5.

2 Governing equations

2.1 Cauchy equations

The Cauchy’s equation and the continuity equation for an incompressible fluid are given by

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p− ρg + ∇.τ ,

∇ · v = 0,

(1a,b)

where v = [u ur uθ] is the fluid velocity with u along axial direction, ur along radial direction,
and uθ along azimuthal direction. Also, p is the fluid pressure, ρ is the fluid density, g is
the gravitational body force, and τ is the total deviatoric stress tensor. We use a cylindrical
coordinate system (x,r, θ) with r and x orientated radially and along the centreline of the tube.

We assume axisymmetry flow field, i.e.
∂

∂θ
() = 0.
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2.1.1 Boundary conditions

Boundary conditions play an essential role in determining the solution. We assume that the fluid
cannot penetrate the tube’s wall therefore, on the boundary Γ, it gives

v · nwall = 0, (2)

where nwall is the unit outward normal vector on the wall. Generally, the no-slip boundary
condition at the fluid-solid interface is common in fluid mechanics. However, fluid flow at the
nano and Angstrom scale require a certain degree of tangential velocity (Navier slip) to match
experimental observations [37–40]. This leads to

v.mwall = λ|vg|, (3)

where mwall is the tangential unit vector along the wall. Also, the arbitrary parameter λ is the
slip length, and vg is the tangential velocity gradient with the normal direction.

The symmetry boundary condition at the centreline of the tube r = 0 demands the velocity
normal to the centreline, and the Cauchy traction vector t tangential to the centreline is zero.
These two conditions can be expressed as

v · ncentreline = 0, (4)

and
t ·mcentreline = 0, (5)

respectively, where ncentreline and mcentreline are the unit normal and unit tangent vector to the
centreline boundary, respectively. The traction on the boundary, which is equivalent to a Neu-
mann boundary condition, is expressed as

t = (−pI + τ )ncentreline. (6)

3 The Axisymmetric model: Involving microstructure of confined wa-
ter

3.1 Structural small displacement mechanics: A linear pressure-area relationship

Many models describe the relationship between local pressure and local cross-sectional area in
deformable tubes [35]. In this paper, we use a simple linear Pressure-Area correlation model

p = α(A− Ao) (7)

to derive the axisymmetric model [35]. This model assumes a linear correlation between pressure
p and the change in cross-sectional area A − Ao. Here, α represents the proportionality factor,
which indicates the stiffness of the tube wall. A is the tube’s cross-sectional area at the actual
pressure p, and Ao is the initial tube area (or rigid tube-wall area) at the reference pressure
(assumed to be zero for convenience). The model essentially states that the change in pressure
at a specific point within the tube is directly proportional to the change in the cross-sectional
area relative to its reference state.
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3.2 Axisymmetric model

We consider fully developed, axisymmetric, steady, incompressible laminar flow in a circular
deformable tube of radius R (Diameter D) as shown in the schematic diagram (figure 1). The
tube is assumed to be sufficiently long in comparison to the radius (i.e., R/L� 1, to use a two-
dimensional axisymmetric model [41, 42]. We also exclude any hydrodynamic instability caused
by deformable walls in the transience flow field. We further assume a very small expansion δ
due to deformability in comparison to the radius of the tube, δ/R � 1, which is caused by the
pressure difference between the fluid and the atmospheric conditions in the deformable tube.

We assume the cylindrical velocity components u and ur along longitudinal and radial direc-
tions x and r, respectively. The r coordinate is measured from the centre of the tube. Therefore,
assuming a fully developed, axisymmetric, steady, incompressible laminar flow in a circular de-
formable tube and using the impermeable solid-wall boundary condition, which is ur(r = R) = 0,
we get the radial velocity vanishes everywhere, i.e.

ur(r, t) = 0. (8)

Also, we neglect all body forces, such as gravitational forces over capillary forces. Under these
assumptions for R/L� 1, the Cauchy’s equation (1)(a) can be written as

0 = −1

ρ

∂p

∂x
+
η

ρ

1

r

∂

∂r

(
r
∂u

∂r

)
,

0 = −∂p
∂r
,

(9)

where η and ρ are the viscosity and density of confined water, respectively. Using the Navier
slip, the tangential solid-wall boundary condition gives

u(r = R) = λ

∣∣∣∣∣∂u∂r
∣∣∣∣∣, (10)

where λ ≥ 0, is the slip length [43]. Further integrating equation (9), we get

u =
∂p

∂x

r2

4η
+ c1 ln r + c2, (11)

where c1 and c2 are the integration constant. Since u needs to be finite at r = 0, this implies
c1 = 0. From equation (10), the slip boundary condition at the tube wall yields

c2 = λ

∣∣∣∣∣∂p∂x R2η
∣∣∣∣∣− ∂p

∂x

R2

4η
. (12)

Upon substitution, we get

u = −∂p
∂x

1

4η
(R2 − r2) + λ

∣∣∣∣∣∂p∂x R2η
∣∣∣∣∣. (13)
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The volume flow rate in a deformable nanotube is given by

Q =

∫ R(x)

0

u 2π r dr = −∂p
∂x

πR4

8η
− λπ ∂p

∂x

R3

2η
. (14)

As we know from equation (7), that
A =

p

α
+ Ao, (15)

where A = πR2, and Ao = πR2
o. Substituting equation (15) in equation (14), we get

Q = −∂p
∂x

[
1

8πη

(
p

α
+ Ao

)2

+ λ
1

2η
√
π

(
p

α
+ Ao

)3/2]
. (16)

We assume p(x = 0) to be the relative inlet pressure with respect to the pressure at the tube
outlet, i.e., p(x = L) = 0. In nano and Angstrom scale tubes, the viscosity η(D) and density
ρ(D) is a function of the diameter of the tube [44]. Under small displacements of the wall,
we assume the viscosity and density to be η(R) ∼ η(Ro), and ρ(R) ∼ ρ(Ro), respectively. We
integrate equation (16) along the tube length L, which yields∫ L

x

Qdx =

∫ p(x)

0

[
1

8πη

(
p

α
+ Ao

)2

+ λ
1

2η
√
π

(
p

α
+ Ao

)3/2]
dp, (17)

=⇒ (L− x)Q =
α

24πη

[(
p

α
+ Ao

)3

− A3
o

]
+ λα

1

5η
√
π

[(
p

α
+ Ao

)5/2

− A5/2
o

]
. (18)

As the flow rate Q is not a function of longitudinal directional. Therefore substituting x = 0 in
equation (18) gives the volume flow rate in the tube as

Q =
1

L

(
α

24πη

[(
∆p

α
+ Ao

)3

− A3
o

]
+ λα

1

5η
√
π

[(
∆p

α
+ Ao

)5/2

− A5/2
o

])
, (19)

where p(x = 0) = ∆p. Therefore the mass flow rate can be written as

ṁdeformable = ρQ =
ρ(D)

η(D) L

(
α

24π

[(
∆p

α
+Ao

)3

−A3
o

]
+λα

1

5
√
π

[(
∆p

α
+Ao

)5/2

−A5/2
o

])
, (20)

where ρ(D), and η(D) are the density and viscosity of nanoconfined water, which are the function
of the diameter of the tube as explained in the following section 3.3.

3.3 Microstructure of confined water

Many investigations have highlighted the impact of tube diameter on essential fluid properties
[9, 24, 45–49]. Moreover, these researchers have employed diverse models and equations to fit
density, viscosity, and slip length data, leading to a certain level of confusion and making it
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challenging to determine which model is most suitable for incorporation into modeling and nu-
merical simulations [50–52]. To address this uncertainty, Garg and Bishnoi [53] paper presents a
unified model that can be employed to characterize density, viscosity, and slip length in nanoscale
confined tubes. Using the density, viscosity, and slip length models from Garg and Bishnoi [53]
such as for density

ρ(D)

ρo
= a+

b

(D − c)n , (21)

where ρ(D) is the tube’s diameter-dependent fluid density. The ρo is the bulk density at D =⇒
∞. a, b, c are the free parameter. The power-law index n shows the diameter dependence. As D
tends to infinity, the density ratio approaches a constant value a, whereas if a = 1, it approaches
a regular bulk density value. For viscosity, we use

η(D)

ηo
= a+

b

(D − c)n , (22)

where η(D) is the tube’s diameter-dependent viscosity of the fluid. The ηo is the bulk viscosity
at D =⇒ ∞. a, b, c are the free parameters and capture the specific behavior of the fluid’s
viscosity in confinement. The power-law index n shows the diameter dependence. In this paper,
we use Ye et al. [44] nanoconfined density and viscosity at 298 K. We model for tube diameter
D ≥ 25 Å in this study, for that, the slip length is constant and from multiple studies including
Ye et al. [44], the constant value is reported between 50nm to 300nm. In order to model Ye et al.
[44] nanoconfined density data at temperature 298 K as shown by Garg and Bishnoi [53] in green
color solid-line, they get ρo = 1000 kg/m3, a = 1, b = −7.96 X 10−10 m, c = −1 X 10−10 m,
and n = 1. Also, to model the Ye et al. [44] nanoconfined viscosity data at temperature 298 K
as shown by Garg and Bishnoi [53] on the solid-green line, they get ηo = 1 mPa-s, a = 0.9,
b = −3.21 X 10−10 m, c = 1 X 10−10 m, and n = 1. Under small displacements of the tube
wall, we assume the density and viscosity to be ρ(D) ∼ ρ(Do) and η(D) ∼ η(Do), respectively.
We model the flow rate in deformable nanotubes using these experimental parameters in the
following section 4.

4 Results and discussion

Using equations (20), the mass flow rate for the deformable wall N carbon tubes using the
microstructure properties of confined water can be written as

ṁdeformable = ρNQ =
Nρ(Do)

η(Do) L

(
∆p A2

o

8π

[
1

3

(
∆p

αAo

)2

+

(
∆p

αAo

)
+1

]
+λα

1

5
√
π

[(
∆p

α
+Ao

)5/2

−A5/2
o

])
.

(23)
From equation (23), we can easily identify the following limits:

I. The mass flow rate in the rigid wall N nanotubes with and without slips, i.e.
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1/α = 0: Using equation (23), the mass flow rate for the rigid tube with slips can be written as

(ṁrigid)slip = lim
1/α→0

[
Nρ(Do)

η(Do) L

(
∆p A2

o

8π

[
1

3

(
∆p

αAo

)2

+

(
∆p

αAo

)
+ 1

]
+

λα

5
√
π

[(
∆p

α
+ Ao

)5/2

− A5/2
o

])]
,

(24)

=⇒ (ṁrigid)slip =
Nρ(Do)

η(Do) L

(
∆p A2

o

8π
+ λ∆p

A
3/2
o

2
√
π

)
= π ∆p

Nρ(Do)

η(Do) L

(
R4
o

8
+ λ

R3
o

2

)
, (25)

and the flow rate without slips is (i.e., using λ = 0), we get

(ṁrigid)no-slip = π ∆p
Nρ(Do)

η(Do) L

(
R4
o

8

)
, (26)

which from equation (25), and (26), we get the flow enhancement E as,

Erigid =
(ṁrigid)slip

(ṁrigid)no-slip
=

(
1 + 4

λ

Ro

)
(27)

the above expression (27) is well known and also described in Kannam et al. [24], Whitby et al.
[54]. Further the flow enhancement due to deformable tubes Edeformable can we written by using
equations (23) and (26) as

Edeformable =
(ṁdeformable)slip

(ṁrigid)no-slip
=

[
1

3

(
∆p

αAo

)2

+

(
∆p

αAo

)
+1

]
+
λα

∆p

8πRo

5

[(
∆p

αAo
+1

)5/2

−1

]
. (28)

To our knowledge, we have not seen the above-derived equation (28) in the literature so far. In

equation (28), it’s evident that the presence of additional non-linear terms, expressed as

(
∆p

αAo

)
,

due to flexibility, results in an increase in the mass flow rate and hence the flow enhancement.

II. The mass flow rate in the deformable wall N nanotubes without slip, and
without confined water properties, i.e. λ = 0, ρ(D) = ρo, η(D) = ηo:

(ṁdeformable)no-slip =
Nρo
ηo L

(
∆p A2

o

8π

[
1

3

(
∆p

αAo

)2

+

(
∆p

αAo

)
+ 1

])
. (29)

Equation (29) is the same as the analytical model derived by Sochi [35].

III. The mass flow rate in the rigid wall N nanotubes, without slip and without
confined water properties, i.e. 1/α = 0, λ = 0, ρ(D) = ρo, η(D) = ηo: Under these limits,
we obtain

ṁrigid = π ∆p
Nρo
ηo L

(
R4
o

8

)
, (30)

which is a classical result of Hagen-Poiseuille flow in tubes [41, 55–57]. Now, in the following
section, we will discuss the effect of deformability and slip on flow enhancement.
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4.1 Enhancement and mass flow rate as a function of tube diameter

Many experimental studies suggest that the slip length varies as a function of tube diameter below
25 Å . On the other hand, the slip length is approximately constant for Do ≥ 25 Å [24, 53].
We show these two regions in figure 2 as I and II (in red), respectively, which are divided by
the dashed blue line. In Region II, the slip length does not depend on the diameter and can be
assumed constant [53]. Using the experimental parameters, such as pressure p = 1 bar [24, 29, 44],1

10
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o



�

D−1
o

JĴ

FIG. 1.Figure 2: We show the enhancement factor using the rigid tube model (dashed red and dotted green
with λ = 500 Å , and λ = 3000 Å , respectively), and the deformable tube model (solid black line)
as a function of the diameter of the nano/Angstrom-sized tubes and compared with many previous
experimental results and Molecular Dynamic simulation’s predictions (shown with various symbols) on
the log-log scale. Here, for diameter Do ≥ 25 Å , i.e., Region II, the slip length does not depend on the
diameter and can be assumed constant [24, 53].

viscosity and density as the fitted confined water properties as described in previous section 3.3
[44], we calculated the mass flow rate by assuming the rigid wall tube for Do ≥ 25 Å using
λ = 500 Å (shown with dashed red line), and λ = 3000 Å (shown with dotted green line),
respectively. Using the calculated mass flow rate, we show the enhancement factor for the rigid
tube (as described by equation (27)) as a function of the diameter of the nano/Angstrom-sized
tubes in figure 2 and compared with many previous experimental results and Molecular Dynamic
simulation’s predictions (shown with various symbols). We further use α = 1×1019 Pa/m2 for the
flexible (deformable) wall tube, and using λ = 500 Å while keeping other parameters the same as
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for the rigid wall tube, we calculated the enhancement factor (by using equation (28)) as shown
with the solid black line. We find that many of the experimental results and Molecular Dynamic
simulation’s predictions, such as the data by McGinnis et al. [8], Secchi et al. [9], Borg et al.
[47], Thomas and McGaughey [48], Kim et al. [58] are well fitted with the rigid wall tube model.
On the other hand, the experimental results and Molecular Dynamic simulation’s predictions
by Majumder et al. [23], Baek et al. [25], Zhang et al. [28], Majumder et al. [29], Majumder
and Corry [30], Trivedi and Reecha [31], Lee et al. [32], Bui et al. [33] are well fitted with the
deformable wall tube model.

In the later data set, researchers used a more significant pore density of the nanotube struc-
ture, which decreases the adequate thickness of the tube and hence increases the flexibility of the
wall. Therefore, assuming a small deformability parameter 1/α = 10−19 m2/Pa, which describes
the change in tube cross-sectional area per unit pressure difference due to the flexibility of the
wall, is enough to model these results. It shows how small deformability increases the mass flow
rate and, hence, the enhancement factor several times.

We find that the flow rate in the rigid tube scales as ṁrigid ∼ ∆p, whereas for the deformable
tube, for negligible wall-displacement perturbation, the flow rate scales as ṁdeformable ∼ ∆p

for
(

∆p/αAo

)
∼ 0, ṁdeformable ∼ ∆p2 for

(
∆p/αAo

)
∼ O(10−1), and for large perturbation

ṁdeformable ∼ ∆p3 for
(

∆p/αAo

)
∼ O(1). We also find that, for a given deformability α, the

percentage change in flow rate in the smaller diameter of the tube is much larger than the larger
diameter of the tubes. We see in figure 2, as the tube diameter increases for the given parameters,
the flow rate converges for the rigid and deformable wall tubes (shown with dashed red and solid
black line for Do ≥ 103 Å ). For the larger diameter of the tube, where

(
∆p/αAo

)
� 1, the

change in flow rate scales as (ṁdeformable − ṁrigid)/ṁrigid = ∆ṁ/ṁ ∼ (∆p/αAo), whereas for the
smaller diameter of the tube, the wall perturbation due to deformity is large and the change in
flow rate scales as ∼ (∆p/αAo)

2. Hence, as the tube diameter decreases for the given reservoir
pressure, ∆ṁ/ṁ increases A−1o (D−2o ) followed by A−2o (D−4o ) after a threshold with the tube
diameter as shown in 2. We also find that the enhancement factor varies from E ∼ D−4o for(

∆p/αAo

)
∼ O(1) to E ∼ D−1o for

(
∆p/αAo

)
∼ 0 (shown with red triangle) as the tube

diameter increases.

4.2 Effect of deformability on mass flow rate

We take a tube diameter Do = 30 Å , the tube length L = 1000 Å [59], λ = 500 Å , and the
confined water properties at the Do = 30 Å in this section. We keep the other experimental
parameters as it is and show the mass flow rate as a function of varying reservoir pressure from
0.001 Pa to 3 × 108 Pa (3000 bar) in figure 3. The data from the green line to the purple line
indicate α is increasing from 1020 to 1029, respectively. This suggests that the corresponding
deformability of the tube wall is decreasing. For all data values, the nonlinear term due to
flexibility varies between

(
∆p/αAo

)
∼ 0 to

(
∆p/αAo

)
∼ O(1), where the maximum value at a

given pressure occur for the green data for α = 1020. We find that for the rigid tube, where the
deformability parameter is tending to zero for α = 1029, the mass flow rate varies linearly, i.e.,
ṁrigid ∼ ∆p as shown with purple data in figure 3, whereas for the deformable tubes where the
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FIG. 1.Figure 3: We show the mass flow rate as a function of varying reservoir pressure under varying
deformability (1/α) of the tube wall on the log-log scale. The red arrow indicates the increasing values
of α (corresponding decreasing value of deformability), respectively.

deformability parameter (1/α) is starting to get larger values from orange data to green color
data, the flow rate scales as ṁdeformable ∼ ∆p2 for

(
∆p/αAo

)
∼ O(10−1) during transition from

ṁrigid ∼ ∆p to ∼ ∆p3, and finally to ṁdeformable ∼ ∆p3 for
(

∆p/αAo

)
∼ O(1) as shown with

the black scaling triangles in the figure 3. This suggests that the mass flow rate increases as the
deformability of the tube increases.

4.3 Effect of slip on mass flow rate

We take a tube diameter Do = 30 Å , the tube length L = 1000 Å , λ = 500 Å , and the confined
water properties at the Do = 30 Å in this section. From equation (23), the mass flow rate could
be divided into two parts. One the mass flow in the deformable tube due to only slip and the
other due to no-slip as

ṁ1 =
Nρ(R)

η(R) L

(
∆p A2

o

8π

[
1

3

(
λα

1

5
√
π

[(
∆p

α
+ Ao

)5/2

− A5/2
o

])
, (31)

and

ṁ2 =
Nρ(R)

η(R) L

(
∆p A2

o

8π

[
1

3

(
∆p

αAo

)2

+

(
∆p

αAo

)
+ 1

])
, (32)

respectively. We keep the other experimental parameters as it is and show the ratio of these mass
flow rate on the linear and log-log scale as a function of varying reservoir pressure from 0.001 Pa
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to 3× 108 Pa (3000 bar) in figures 4(a), and 4(b), respectively. The data shown from the green
line to the cyan line indicate α is increasing from 1019 Pa/m2 to 1029 Pa/m2, respectively. 1
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FIG. 1.

Figure 4: We show the ratio of the mass flow rate in the varying deformability of the tube due to
only slip ṁ1 and the other due to no-slip ṁ2 as a function of varying reservoir pressure. The red arrow
indicates the increasing values of α (corresponding decreasing value of deformability), respectively. In
(a) and (b), the data is shown on the linear and log-log scale, respectively.

We find that for low values of α, such as for green curve α = 1019 Pa/m2, where the deforma-
bility is greater in comparison to α = 1029 Pa/m2 for cyan curve, the flow rate due to slip is
higher in comparison to the flow due to without slip. We also find that for low pressure, the ratio
remains constant irrespective of the value of the deformability parameter α. As the pressure
difference increases, the ratio dependence reaches from ṁ1/ṁ2 ∼ ∆p0 to ∆p−2.5. This transition
starts at early pressure rise at lower value of α as shown in 4(b), where first green data curve
starts to transition (α = 1019 Pa/m2) followed by red curve (α = 1020 Pa/m2), yellow curve
(α = 1021 Pa/m2) and finally the cyan curve remains constant for larger pressure. This trend
suggests that the mass flow rate due to slips has a lower effect on the more deformable tubes
than on the less deformable or rigid tubes.

4.4 Effect of deformability and slip of graphene sheet on the mass flow rate

In this section, we take tube diameter Do = 30 Å and the confined water properties at the same
diameter. We use 1/α = 0 m2/Pa for rigid tubes and 1/α = 10−18 for deformable tubes. We
keep the other experimental parameters as it is and show the mass flow rate for the deformable
tube (1/α = 10−18 m2/Pa) with slip (i.e., λ = 500 Å ) in green color, mass flow rate for the
deformable tube (1/α = 10−18 m2/Pa) without slip (i.e., λ = 0 Å ) in red color, mass flow rate
for the rigid wall tube (1/α = 0 m2/Pa) with slip (i.e., λ = 500 Å ) in yellow color, and mass
flow rate for the rigid wall tube (1/α = 0 m2/Pa) without slip (i.e., λ = 0 Å ) in purple color in
figure 5 as a function of varying pressure, respectively.

We find that the deformability of the wall increases the mass flow rate at all varying pressure
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Figure 5: We show the mass flow rate in the rigid and deformable tubes with and without slips as a
function of varying reservoir pressure. In (a) and (b), the data is shown on the linear and semilog scale,
respectively. The data shown are the mass flow rate for the deformable tube (1/α = 10−18 m2/Pa)
with slip (i.e., λ = 500 Å ) in green color, mass flow rate for the deformable tube (1/α = 10−18 m2/Pa)
without slip (i.e., λ = 0 Å ) in red color, mass flow rate for the rigid wall tube (1/α = 0 m2/Pa) with slip
(i.e., λ = 500 Å ) in yellow color, and mass flow rate for the rigid wall tube (1/α = 0 m2/Pa) without
slip (i.e., λ = 0 Å ) in purple color, respectively.

fields compared to the rigid wall tube, as shown with green and red data lines. We find that for
∆p = 3 kbar, the mass flow rate in the rigid tube wall with slips (yellow) is 8.3x10−10 g/s, whereas
for the deformable tube with slips (green), it is 1.2x10−4 g/s. Therefore, slight deformability in
the tube increases the mass flow rate by approximately an order of 105 times, which is significant.
We further find that the difference between mass flow rate with slips and without slips for both
deformable tubes (with and without slip) and rigid wall tubes (with and without tubes) are
of order 102 times. This shows that although slip increases the flow rate in nanotubes, the
deformability has a larger effect in increasing the mass flow rate. Finally, the summary of figure
5 says the lowest mass flow rate is for rigid wall tubes without slips, then incremented for rigid
wall tubes with slips, further increment for deformable wall tubes without slips, and the most
significant mass flow rate for deformable wall tube with slips for the given parameters.

We also find that as the magnitude of the pressure increases in a deformable tube, the flow
rate also increases significantly compared to the rigid tube. The reason is that in the case of a
rigid tube, the mass flow rate is linearly proportional to ∆p. On the other hand, in the case of
the deformable tube, the flow rate (from equation (23)) consists of non-linear terms of ∆p, where
it starts to increase from ∆p to ∆p3 as pressure increases.

5 Conclusion

In this paper, we derived a model for the mass flow rate in the rigid and deformable nano/Angstrom-
size tubes for the nanoconfined water/fluid transport by using the small displacement structural
mechanics through a linear pressure-area relationship as presented by Sochi [35] under the lubri-
cation approximation. For the validation purpose, we show that the newly derived model also
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describes the flow dynamics of Newtonian fluids under different conditions as its limiting cases,
which have been previously reported in the literature [24, 35, 54–57]. Thorough validation tests
have revealed that the newly derived model produce mathematically and physically sensible flow
rate in diverse situations of applied pressure, deformability, shallow tube geometry, and bound-
ary conditions in the nanotubes. We also compare the predictions by our deformable-wall and
rigid-wall model with the experimental results and the MD simulation predictions by multiple
literatures. We find that many studies, as shown in figure 2, were well-predicted by the rigid-
wall model with slips [8, 9, 47, 48, 58]. However, there are many studies with high porosity
and thin wall tubes, where elasticity or deformability of the tube is essential in modelling were
well-predicted by the deformable-wall model with slips [23, 25, 28–33].

In our study, we focus on investigating the impact of two key factors: the deformability of the
nanotubes and the slip length on the flow rate. We find that as the deformability 1/α increases
(or corresponding thickness T and elastic modulus E of the wall decreases), the flow rate inside
the tube increases. We find that the flow rate in deformable tubes scales as ṁdeformable ∼ 1/α0

for
(

∆p/αAo

)
� 1, ṁdeformable ∼ 1/α for

(
∆p/αAo

)
∼ O(10−1) and ṁdeformable ∼ α2 for(

∆p/αAo

)
∼ O(1). We also find that, for a given deformability factor α, the percentage change

in flow rate in the smaller diameter of the tube is much larger than the larger diameter. As the
tube diameter decreases for the given reservoir pressure, ∆ṁ/ṁ increases A−1o followed by A−2o
after a threshold with the tube diameter.

We further find that for the rigid tube, where the deformability parameter 1/α = 0, the mass
flow rate varies linearly, i.e., ṁrigid ∼ ∆p, whereas for the deformable tubes, the flow rate scales
as ṁdeformable ∼ ∆p2 for

(
∆p/αAo

)
∼ O(10−1) during transition from ṁrigid ∼ ∆p to ∼ ∆p3,

and finally to ṁdeformable ∼ ∆p3 for
(

∆p/αAo

)
∼ O(1).

We further find that the slip also plays a significant role in increasing the mass flow rate in
the nanotubes. Still, the deformability has, in comparison, a more substantial effect in increasing
the mass flow rate to several orders than the slips.
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