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Abstract: 

Both at the academic and the industrial level, material scientists are exploring routes for mass 

production and functionalization of graphene, carbon nanotubes (CNT), carbon dots, 2D 

materials, and heterostructures of these. Proper application of the novel materials requires fast 

and thorough characterization of the samples. Raman spectroscopy stands out as a standard 

non-invasive technique capable of giving key information on the structure and electronic 

properties of nanomaterials, including the presence of defects, degree of functionalization, 

diameter (in the case of CNT), different polytypes, doping, etc. Here, we present a computational 

tool to automatically analyze the Raman spectral features of nanomaterials, which we illustrate 

with the example of CNT and graphene. The algorithm manages hundreds of spectra 

simultaneously and provides statistical information (distribution of Raman shifts, average values 

of shifts and relative intensities, standard deviations, correlation between different peaks, etc.) of 

the main spectral features defining the structure and electronic properties of the samples, as well 

as publication-ready graphical material. 

Introduction: 

The field of nanoscience and nanotechnology has drawn extensive attention in the last decades 

due to the extraordinary physical and chemical properties of different materials in the nanoscale. 

The synthesis and development of nanomaterials and heterostructures of them is on high demand 

due their practical application at the academic and industrial level.1,2 There are several types of 

nanomaterials, classified according to their dimensionality (from 0 to 2D) and their components 

(metal-based, semiconductors, nanocomposites, etc). One of the most common families of 

nanomaterials are the carbon-based nanomaterials,3 with graphene, carbon nanotubes (CNT) or 

fullerenes as relevant examples. Material scientists are devoting their efforts to the development 

of advanced carbon-based nanomaterials taking advantage of the characteristics of the pristine 

material and using different doping methods to enhance properties for different applications.4,5 
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Examples of this and industrial applications can be found in many different fields, including 

composite fabrication,6 (micro)electronics,7–10 energy conversion devices,11 biomedicine and 

health,12,13 among others. Since the discovery of graphene and its extraordinary optical, electrical, 

mechanical and thermal properties, a variety of novel 2D materials have emerged trying to 

achieve similar characteristics with a sizable energy gap which will open the door to important 

applications in nanoelectronics.14–17 Examples of these are the transition metal dichalcogenides 

family (TMDCs),18 black phosphorus,19 hexagonal boron nitride,20 or metal-organic frameworks 

(MOFs).21 

The mass production of nanomaterials for industrial use can result in heterogeneity within 

samples, with variations in size, doping levels, or diameters depending on the fabrication process, 

and with it comes a need for rapid and effective characterization to measure critical properties 

such as size, tube diameter, chiral angle, doping level, etc.22–24 Raman spectroscopy has been 

established as a standard characterization tool to effectively characterize nanomaterials in a non-

invasive manner both at ambient conditions and under controlled environments. With high energy 

resolution (down to the eV regime), Raman is especially suitable for the characterization of 

specific nanomaterials such as the carbon-based and the TMDCs families due to highly efficient 

resonant effects which open the door to detect Raman inactive modes with enhanced 

sensitivity.16,25–29 

After years of research, the Raman response of carbon-based materials is well understood and 

provides rich information about chemical composition, strain, doping and defects through the 

frequency shifts and intensity changes of their characteristic bands.25,27,30 In particular, radial 

breathing modes (RBM 50-350 cm-1) are characteristic of NT and are related with their cylindrical 

shape. They are assigned to an out-of-plane bond stretching with frequency inversely proportional 

to the tube diameter.31 The G band (1584 cm-1), an in-plane C-C bond stretching appears in all 

sp2 carbon-based materials, and it splits in G+ and G- peaks as a result of strain and electron-

phonon coupling in CNT and uniaxially-stretched graphene. The D band (1300-1400 cm-1), also 

referred as defect mode, originates when the sp2 network exhibits sp3 defects. It is a double-

resonance Raman peak that originates from the first order component of the hexagon-breathing 

mode (not active in first-order Raman scattering) combined with elastic scattering of an electron 

photoexcited by the defect. The 2D mode (2600-2800 cm-1 also referred as G’ by some authors) 
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is an overtone of the hexagon-breathing mode (forbidden in first-order Raman, but allowed as an 

overtone).30  

Detailed analysis of the position and intensity changes of the described Raman bands gives 

information about the state of a given sample. For example, ID/IG ratio is directly proportional to 

the relative abundance of defects in the material,32 so it has become a standard parameter to 

control defects and chemical doping induced by different fabrication methods. It is also an 

indicator of the degree of molecular covalent functionalization.33,34 The linewidth and frequency 

of the D band can also be used to determine the degree of disorder in a material, and the 

coherence length.32 The frequency of G and 2D bands is sensitive both to strain35–37 and also to 

doping (both frequencies are extremely dependent on the extra charges induced by electrical and 

chemical methods).38–40 By looking at the correlation between the Raman shifts of both modes (G 

and 2D), one can resolve the bimodal dependence on strain and charge doping effects of these 

two modes, and determine the type of doping based on the direction of the shifts (p- or n-).41,42 

Changes in temperature can also induce shifts of the G band, due to changes in the electron-

phonon renormalization, phonon-phonon coupling and thermal expansion-induced volume 

changes.43,44  

TMDCs are MX2 layered structures (X-M-X trilayer with X= S, Se, Te and M= Mo, W, Nb) stacked 

by weak van der Waals forces.45 Tailored materials can be designed by stacking TMDCs layers 

together with different energy band alignments and doping, achieving 2D heterostructures with 

specific properties. Raman spectroscopy emerges as a convenient tool for the characterization 

of TMDCs and their heterostructures, able to resolve the stacking characteristics between 

trilayers and their interactions.29 The principal Raman active modes in TMDCs are: 𝐸2𝑔
1 , an in-

plane vibration where X and M atoms vibrate against each other; 𝐴1𝑔, out-of-plane vibration where 

the two X atoms within a trilayer vibrate in opposite directions; and 𝐵2𝑔, out-of-plane vibration 

where the X and M atoms within a trilayer vibrate against each other with a 180º phase shift to 

the vibration in the adjacent layers.28,46,47 𝐸2𝑔
1  and 𝐴1𝑔 undergo red and blue shifts, respectively, 

with increasing number of layers in MoS2, WS2, MoSe2 and WSe2, and hence their separation is 

a good indicator for material thickness.29,48–50 Moreover, the evolution of both the linewidths and 

frequency shifts of these bands reflects the density of defects.51 For heterostructures, the 

frequency difference between the main modes reflects the stoichiometry and stacking patterns52, 
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and the 𝐵2𝑔 mode is a fingerprint for interlayer coupling.46 Additional second order peaks appear 

at certain materials under specific resonance conditions. For example, a broad spectral feature 

appears at 450 cm-1 in MoS2, involving the longitudinal acoustic phonon at the M point (LA(M)) 

and has been used as a marker of flake functionalization.53,54 

While detailed analysis of the Raman spectra of nanomaterials provides important information 

about the state of the sample, it requires mathematical treatment including baseline correction 

and fitting procedures for all interesting modes. This is easily doable to characterize one (or few) 

specific specimens, say a graphene or TMDC flake or a single CNT. A much more common 

situation when characterizing nanomaterials is that the sample is heterogeneous either chemically 

or physically, at least to some extent, so that typically hundreds of Raman spectra are acquired 

to get a representative picture of its properties. In these cases, detailed analysis of each individual 

spectrum becomes tedious and, in some cases, downright unfeasible. To overcome this, typically, 

researchers tend to provide the results for average spectra, reflecting the mean values of peak 

position and intensities over large amounts of material. However, the mean values fail to provide 

information of the heterogeneity within a sample, and small band shifts are often overlooked (and 

sometimes overinterpreted) given the spectral resolution of Raman spectrometers. In contrast, 

by analyzing the individual spectra obtained within a sample, the statistical distributions of spectral 

features can reveal important aspects of the nature of a material.  

The evolution of programming languages and machine learning techniques in the last years have 

enabled the development of analysis routines that facilitate the extraction of relevant information 

of large-scale data. In this regard, different computational tools have been reported targeting the 

automatization of Raman analysis of nanomaterials. For instance, graphene thickness can be 

automatically inferred by analyzing the intensities of G and 2D modes in Raman mapping by 

Lorentzian fitting routines.55 Principal component analysis (PCA)56 has been introduced for the 

analysis and classification of large amount of Raman spectra of the carbon-based family.57  For 

example, interlayer coupling and number of layers in graphene has been determined by means 

of parameterized PCA combined with neural-network.58 Deep-learning techniques have been 

reported for automatic denoise of Raman spectra of graphene,59 fit specific Raman bands and 

isolate the most informative Raman features to extract crystallinity or functionalization.60 Similarly, 

the thickness of TMDCs and inhomogeneity can be automatically classified using neural 
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networks61 and k-means clustering analysis,62 respectively. These tools have been developed to 

meet specific user requirements, mostly related to the automatic assessment of material quality 

for industrial applications. To the best of our knowledge, a general tool targeting the spectral 

features (position, intensity and width) of all relevant Raman modes in the general case of 

nanomaterials has not been reported. 

Here, we present a computational tool to automatically analyze the main Raman signatures of 

hundreds of spectra simultaneously, generalized for any type of nanomaterial. The algorithm 

analyzes single spectra separately and provides statistical distributions of the position, widths and 

intensity of the main Raman bands within a sample, instead of relying on the Raman response of 

the average spectrum, providing fitting errors and standard deviations for each parameter. It also 

allows the analysis of several samples simultaneously, such that the differences can be quickly 

spotted. Moreover, the user can plot Raman maps of specific spectral features, for samples where 

the spatial arrangement is relevant, such as in the case of controlled patterning of nanomaterials.  

This user-friendly code is available in MATLAB and Python programming languages. It is 

available as plain code to be used programmatically and modified according to needs by users 

with programming experience. A graphical user interface is also available for users without a 

programming background that simply want to use the code. In the following we discuss the code 

and its working principle including examples of results for single-walled CNT (SWNT), chemically 

modified SWNT samples and patterned graphene.  

Methods:  

a. Data analysis methodology: 

The software allows to analyze a maximum of 10 different files (or samples) containing as many 

spectra per file as wanted. It is not required that all files contain the same number of spectra, 

however if the different files contain very different number of spectra, it is advisable to use the 

optional normalization feature, such that the generated histograms will be of comparable 

amplitude. The input files should be in .txt or .dat format, with a first column containing the 

wavenumber data (same for all spectra within a file) followed by intensity columns for each 

spectrum.  
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Each individual spectrum is initially normalized to the maximum of the peak defined by the user 

(normalization range defined by user as detailed in section b). Mathematically, the minimum value 

within a spectrum is subtracted from it (in order to account for unwanted constant baseline) and 

subsequently divided by the maximum value within the normalization range. A mean spectrum is 

calculated by averaging all normalized spectra within the same sample.  

After normalization, the software calculates the spectral features of the main Raman signatures 

as defined by the user, in this example, those of carbon-based materials: RBM, D, G and 2D 

modes. Different analysis routines (for instance focusing on the E1
2g and A1g modes for 2H MoS2) 

can be easily defined by the user. Note that currently, the code evaluates only 3 main Raman 

peaks, apart from the RBMs. 

Method 1:  

On one hand, a simple and fast analysis can be performed where the position of a certain band 

is defined as the wavenumber with maximum intensity within the band range specified by the 

user. As for the band height, it is calculated as the maximum intensity within a range minus the 

minimum intensity (figure 1). Intensity ratios are calculated by simply dividing the results from the 

intensities of the different modes. RBM modes are handled differently, due to the fact that several 

modes are expected in a small spectral range. To calculate peak position, we use the MATLAB 

function findpeaks (scipy.signal.find_peaks in Python) that locates local maxima within a vector. 

Position and height of each mode for each spectrum is stored and used to construct the population 

histograms returned by the software. 
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Note that this method does not perform proper band fitting, which will return the most accurate 

results and provide additional information such as the width of the peaks. However, the simple 

procedure described above allows for an important reduction of computation time, which is 

essential given that the algorithm is designed to handle large amount of data, and it works well 

provided that the raw data fulfill certain conditions. Specifically, irregular backgrounds result in 

mistakes in the calculation of position and intensity. For example, if a mode appears on a very 

steep linear background, and the selected spectral range contains portions of the background at 

higher intensity than the peak itself, the position and height will not be properly determined. This 

issue can be partially handled by selecting an appropriate spectral range or applying background 

correction routines before analysis. Advanced background correction routines are over the scope 

of this work and the reader is referred to the multiple tools available in literature if baseline 

correction is required for a specific set of data.63–67 This method is recommended when a quick 

unsupervised analysis is desired, since the software can return accurate results for peak position 

and intensity with little input information from the user.  

Method 2.1: Lorentzian fitting  

The program can also evaluate the spectral features of the Raman modes performing proper 

peak fitting, if necessary. Spectral ranges selected by the user (see section b) are analyzed and 

Lorentzian band fitting is done following the expression:  

Figure 1: Scheme of the calculation of peak position and intensity for a Raman mode (the G band in a 
SWNT) with the method 1 
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𝑦 = 𝑦0 +
𝐴

(𝜔−𝜔0)2+𝐵
                                                                       (1) 

Where  is the wavenumber, y the intensity, and y0, A, 0 and B are the fitting parameters. For a 

Lorentzian-shaped peak, 0 is the peak center, the full-width half maximum (FWHM) equals 2√𝐵, 

the maximum intensity at the peak center is A/B and y0 is a constant value defining a baseline. 

This method is more accurate at determining peak frequencies and it gives additional information 

such as the FWHM of the modes. In exchange, it requires a deeper supervision from the user to 

control the evolution of the fittings and it is, therefore, more dependent on the user defined inputs. 

In particular, the spectral range defined for each mode can alter the results. Generally speaking, 

the shorter range possible including the desired peak returns better results. In addition, this 

method requires the user defining initial estimates for the peak positions, intensities and FWHMs 

of each dataset analyzed. If the initial estimates are off, the fitting procedure might not converge 

and the analysis needs to be repeated. However, reasonable estimates for a given spectral 

feature of the nanomaterial under analysis are typically common knowledge. The fitting results 

are plotted such that the user can control the evolution of the analysis and repeat it selecting 

different spectral ranges and/or initial estimates. Moreover, as the method depends on the initial 

estimates, which are constant for a given dataset, it works fine when the spectral features within 

a sample are homogeneous. Drastic changes of background, peak position or intensity between 

spectra from a same sample, often results in inaccurate results, due to the fact that a set of initial 

guesses and spectral range cannot cover the variability within the sample. In these cases, it is 

preferable to use method 1. Alternatively, one can try to vary slightly the initial values repeating 

the analysis since often it is possible to find a set of estimates that work for all spectra within a 

sample. Note that RBM modes of CNT are not included in the Lorentzian fitting routine and are 

calculated in this case as explained previously. 

In carbon-based nanomaterials, the G mode is split in two (G+ and G-) as a result of strain in CNT, 

or uniaxially stretched graphene. The software allows for the analysis of the G band as a double 

peak and the spectral features of G+ and G- can be recovered independently. In this case, 

Lorentzian fitting as explained above is performed to the G spectral region, where 2 different 

peaks are located with 7 fitting parameters following the expression:  

𝑦 = 𝑦0 +
𝐴𝐺+

(𝜔−𝜔0,𝐺+)
2
+𝐵𝐺+

+
𝐴𝐺−

(𝜔−𝜔0,𝐺−)
2
+𝐵𝐺−

                                      (2) 
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The expression has one Lorentzian term for each of the peaks (G+ and G-), with the same 

parameters as described above and indicated with subscripts for each of the bands. Note that 

this split in two bands can be used with other Raman peaks when handling different 

nanomaterials. For example, when analyzing the 𝐴1𝑔 mode in TMDCs, one can define a split to 

determine spectral features of the main peak and a commonly observed shoulder. 

Method 2.2: Voigt fitting 

A recent interlaboratory study has concluded that the standard deviation of peak widths of 

graphene spectra, especially for the 2D band, are substantially reduced if Voigt fitting is used 

instead of Lorentzian.68 A Voigt function is a convolution of a Gaussian and a Lorentzian function 

and it captures better the broadening of the 2D mode resulting from doping, strain variations or 

increasing defect density since the gaussian component of the Voigt can accommodate the 

change in the peak tails. Therefore, we have developed an alternative code where Lorentzian 

fitting functions are replaced by a pseudo-Voigt functions as defined in OriginPro 2020 

(‘PsdVoigt1’): 

𝑦 = 𝑦0 + 𝐴[𝑚𝑢
2

𝜋

𝑤

4(𝑥−𝑥0)2+𝑤2+ (1 −𝑚𝑢)
√4𝑙𝑛2

√𝜋𝑤
𝑒
−
4𝑙𝑛2

𝑤2
(𝑥−𝑥0)

2

]                          (3) 

where 𝑦0 is a constant background, 𝐴 is the peak area, 𝑤 is the FWHM, 𝑥0 is the peak center and 

𝑚𝑢 the profile shape-parameter (or gaussian weight/fraction).  

Similar to the case of Lorentzian fitting, this method requires a supervised analysis by the user 

and the input of initial estimates for all the 5 fitting parameters. The output is dependent on the 

initial estimates and analysis needs to be repeated until the optimal settings (spectral ranges and 

initial estimates are found). The split of one of the peaks into 2 peaks (G+ and G- in carbon-based 

materials) is also included in the Voigt fitting method, by just adding up two pseudo-Voigt functions 

as the one described in equation 3, with a single constant background (y0).  

Raman Mapping:  

The statistical data and distributions of the spectral features of multiple measurements on a 

sample are very interesting when assuming the sample is homogenous over the measured 

region. However, sometimes samples are heterogenous, and differences in spectral features 

could be due to this sample heterogeneity and not statistical noise (for example the edges vs the 
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center of flakes). As such, mapping the spectra over the 2-dimensional area can give us important 

information about sample properties. The code has been developed to allow the user to map out 

selected spectral features over the measured area to help visualize these differences. Position of 

all Raman modes and intensity ratio between the main modes (ID/IG  and I2D/IG for carbon-based 

materials) will be plotted in color maps. If Lorentzian (or Voigt fitting) is performed, Raman maps 

of the peak widths (FWHM) can also be generated. If several samples are analyzed 

simultaneously with the mapping option, the pixel numbers and dimensions need to be equal.  

In addition, an interactive option is included in the Python code to help the user understand the 

spectral differences of the Raman maps. The code will save an image of a map of the selected 

feature for each file analyzed. However, only the last file analyzed can be further analyzed 

interactively. Using the matplotlib library in Python, pick event can be defined for clicking on a 

pixel of the final file’s property map. Each pixel corresponds to a specific Raman spectrum. By 

clicking on a specific pixel, the code will open a new figure that plots the corresponding spectrum 

for that pixel. The x and y locations, as well as the chosen property’s value will be listed in the 

legend, and a red dot is marked on the original property map on the selected pixels. Additional 

spectra can be added to the spectra plot by clicking on additional pixels on the map, and a text 

file containing all the spectra plotted in the figure will be updated with each click, as well as the 

saved image of the spectra graphic. By closing the spectra graph window, clicking on additional 

pixels on the map will clear the previously selected red dots and refresh the spectra plot as well 

as the output image and text file to only include the newly selected spectra.   

b. User defined inputs: 

The user is required to define certain parameters for the analysis. This can be done 

programmatically by modifying the first lines of code (notes are included in the code to guide the 

user about them), or interactively with a graphical user interface developed to facilitate the use to 

inexperience users. The required inputs are: 

• File name(s), extension and path of the files to be analyzed. Also, the names for the 

legend of the generated plots have to be included. Note that the parameter ‘total’ is 

required and indicates the total number of files to be analyzed. The program will analyze 
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the number of files indicated in ‘total’ independently of the number of files specified in 

‘file_name’ 

• All spectra are normalized before further analysis, to the intensity maximum of a 

wavenumber range specified by the user as [normLow , normHigh]. 

• For the identification of peaks, the user has to include spectral regions where the 

signature peaks are located. In the case of RBM modes in CNT, a prominence value 

defining the maximum limit at which peaks will be considered is required. The prominence 

needs to be adjusted for each set of data, to account for variable noise and signal to noise 

ratio. 

• If the analysis method 2 (Lorentzian fitting) is chosen, initial guesses for position, FWHM 

and maximum intensity of the Raman modes are required. For multiple file analysis, the 

user must define initial guesses for each of these files. If Voigt fitting is chosen, initial 

estimates for 𝑦0, 𝐴, 𝑤, 𝑥0 and 𝑚𝑢 should be provided for each sample. 

• If handling with a double G band, the analysis of G+ and G- can be selected (‘nt=1’), giving 

initial guesses for position, FWHM and maximum intensity of each of the peaks. 

Additional inputs must be defined for using the mapping feature: 

• A variable that defines whether the user wants to map the data. 

• In the Python code, the user has to select which feature should be mapped. The user 

must input ‘I’ for intensity ratio, ‘G’ for G band, ‘D’ for D band, or ‘2D’ for 2D band. The 

MATLAB code maps all peak positions and intensity ratios (and FWHM upon selection). 

• Number of pixels in each column and row 

• In python: Whether or not the user has the dimensions for the selected area. A value of 

1 is used if the specific dimensions are used. If the value is 0, then the x and y axes will 

just be in units of pixel 

• In MATLAB: The lengths of the x and y sides of the area in μm.   

Last, the user can define to a certain extent the output plots generated by the program. In this 

way the computation time can be reduced by discarding certain plots according to user 

requirements. In particular, figures with raw data, normalized spectra, D, G and 2D spectral 

ranges selected by the user and RBM peak selection can be included or excluded. These figures 
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might be useful when first handling a new dataset in order to control the proper evolution of the 

analysis, but do not provide important information about the spectral features, and can be 

excluded at later stages. Moreover, the code allows plotting upon selection of certain correlations 

between spectral features. 

c. Outputs: 

The outputs of the program include figures and data. Regarding figures, the algorithm will return 

by default: 

• Figure with the average spectrum for each of the samples analyzed, in the same graph. 

• Histograms of the ID/IG and I2D/IG intensity ratio, and positions of the G (G+ and G-), D, 

2D and RBM modes (in the general case I2/I1 and I3/I1.and position of peaks 1 (1+ and 1-

), 2 and 3). If several samples are analyzed simultaneously, the plots will include the 

results of each of them together in different colors. The average value and standard 

deviation for the specific feature are included in the figure legend. If the Lorentzian or 

Voigt fitting routines are chosen, figures with the distribution of FWHM for each peak will 

be also generated. 

• Correlations between different spectral features: in this case, ID/IG vs G, D and 2D 

positions, 2D position vs G position and position vs FWHM of all modes. For each 

sample, and correlation, a linear fit is performed to the data and the resulting fitting 

function included in the legend. Note that any other correlation that might be needed can 

be easily included.  

In addition, as described above, the user can include certain optional figures such as the raw and 

normalized spectra or the spectral ranges for each mode.  

All results are also included in a .txt file saved automatically at the folder specified by path. A 

single file will be created for each different sample, including heights and positions of the G, D, 

2D and RBM modes for each spectrum. In the case of Lorentzian or Voigt fittings, widths will also 

be included as well as the value of R2 for each individual fitting to check the quality of the fit.  

Results and discussion: 

To illustrate the capabilities of the algorithm, we present the results obtained using this tool for 

the analysis and comparison of mechanically interlocked CNT (MINTs)69–76 and the pristine 6,5-
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SWNT used for their preparation. In particular, mechanical bonds are used to anchor Cu2+ 

metalloporphyrin dimeric rings around CNT to form magnetic cooper MINTs (Cu-mMINTs), as 

reported elsewhere.77 The resulting Raman spectra are carefully analyzed in the following 

paragraphs.  

Cu-mMINTs and pristine SWNT are measured in a Senterra II Raman spectrometer, at 633 nm 

excitation wavelength and 10 mW power. 20 individual spectra are taken per sample. The 

average spectra for 6,5-SWNT and Cu-mMINTs are included in figure 2a. No notable differences 

between spectra are obvious from these data. Figure 2b, d-g include histograms summarizing the 

results for each individual spectrum of both samples: ID/IG ratio (Fig. 2b), peaks positions of RBM 

(Fig. 2d), D (Fig. 2e), G (Fig. 2f) and 2D (Fig. 2g) modes. Note that for this analysis the method 1 

described in previous section was employed. 

The ID/IG ratio is often used as a signature of the degree of defects induced in a material, and in 

this case can be used as an indicator of damage of the tubes as a consequence of the mMINT 

fabrication process. ID/IG goes from 0.060.01 to 0.080.01 in average for pristine and Cu-mMINT, 

respectively. The average values are therefore equal within error, which we interpret as no 

significant covalent functionalization during the formation of mMINTs. However, the histogram in 

figure 2b reflects a small but consistent increase of the ID/IG ratio during the mMINT reaction, 

assigned to the formation of a small number of defects while encapsulating the tubes with the 

Figure 2: Results obtained applying method 1 for the comparison of 6,5-SWNT (gray) and Cu-mMINTs(blue). 
a) Raman spectra of Cu-mMINTs and the pristine 6,5-SWNT, corresponding to the average of 20 individual 
spectra. b) Distribution of the ID/IG ratio values obtained for each individual spectrum used to compose the 
average spectra in a; c) correlation between 2D and G Raman shifts. Distribution of Raman shifts of RBM 
(d), D (e), G (f) and 2D modes (g). 
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porphyrin rings due to the filtering, sonication and stirring steps. Although the total increase of the 

ID/IG ratio is small enough as to conclude that the overall structure of the tubes is mostly preserved 

upon mechanical interlocking, this analysis provides a much more complete picture of the 

chemical functionalization process. 

Identical RBM modes are detected in both samples in terms of band position, indicating no notable 

change in the tube diameter upon the MINT fabrication process, as expected. However, a 

noticeable decrease in the relative intensity of the smaller diameter SWNTs (higher frequency 

Raman shift) is also observed. This is in line with our previous findings,78 and reflects the diameter 

selectivity of the MINT formation reaction. A small blue shift of the 2D band in the Cu-mMINT 

(2585 cm-1) with respect to the 6,5-SWNT (2578 cm-1) is observed in the average spectra plotted 

in figure 2a, however the resolution of the spectrometer is 9 cm-1 and therefore, a shift of 7 cm-1 

between two single spectra cannot be unambiguously assigned. In contrast, when looking at the 

statistical distribution of the position of the 2D mode among all individual spectra (figure 2g) the 

shift becomes more apparent, with two well defined and distinct spectral distributions. Similarly, 

a shift from 1577 cm-1 (6,5-SWNT) to 1583 cm-1 (Cu-mMINT) is observed in the G mode, and it is 

again reflected in the spectral distributions shown in figure 2f. Shifts of the G and 2D modes are 

usually good indicators of doping of the CNT due to the encapsulation but can also reflect strain. 

The correlation between the shifts of these modes can be used to disentangle the two effects.41,42 

Figure 2c includes a correlation between the shifts of the G and 2D modes, including a linear fit 

(solid lines) with slopes of 1.20.5 for the 6,5-SWNT and 1.00.5 for the Cu-mMINT sample. The 

slopes are almost identical within error for the tubes after encapsulation, which allows to discard 
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strong doping effects (significantly larger or smaller slopes will indicate p- or n-doping effects 

respectively),42 confirming that the mMINT formation leads to no significant modulation of the 

electronic properties of the tubes, as we observed directly in the I/V characteristics of FET 

devices.77 

Alternatively, we perform the analysis of the same datasets using method 2 (Lorentzian peak 

fitting), including the analysis of the G+ and G- split. The results are included in figure 3, where 

example fittings, distribution of Raman shifts and distribution of FWHM are plotted for the D band 

(a-c), G band (d-f) and 2D band (g-i), for both 6,5-SWNT (gray) and Cu-mMINTs (blue). Numerical 

values for averaged position and FWHM of each band is included in table 1. The results obtained 

for band shifts are equivalent to the ones retrieved using method 1, with no shift of the D band 

(Fig. 3b), and small but noticeable blue shifts the 2D band (Fig. 3h and table 1) upon mMINT 

Figure 3: Analysis results obtained using Lorentzian peak fitting (method 2) for the same data reported 
in figure 2. Example of fittings for single spectra of 6,5-SWNT (black, left) and Cu-mMINTs (blue, right) 
in the D (a), G (d) and 2D (g) regions (in all cases the red curve represents the best fit to a Lorentzian, 
or double lorentzian function). The resulting histograms reflecting the distribution of Raman shifts and 
FWHM for all spectra within a sample are plotted in (b-c) for the D band; (e-f) for the G band split in G- 
and G+ (only FWHM for the G+ band are plotted); and (h-i) for the 2D band. In all cases, 6,5-SWNTs are 
represented in gray and Cu-mMINTs in blue.  
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formation. In the case of the G mode, this method allows resolving G+ and G- bands. Both G+ and 

G- present a small blue shift of 5 cm-1 (figure 3e and table 1). 

The advantage of this method is that we can retrieve additional spectral features, such as the 

FWHM of the analyzed bands. We observe a decrease in the FWHM upon encapsulation of G+ 

and 2D modes, as seen in figures 3f and i, respectively and summarized in table 1. Moreover, the 

FWHM is inversely proportional to the peak position for both modes, as shown in the correlations 

displayed in figure 4 c and d. The D band show a broad distribution of widths within each sample, 

as evident from the large errors for this mode in table 1, so a change cannot be unambiguously 

identified between samples. Sharpening of G mode has been observed as a result of doping in 

graphene79,80 and CNT81 (both electron and hole doping produce a decrease of FWHM) and 

attributed to blockage of the phonon decay into electro-hole pairs due to Pauli exclusion principle. 

The decrease of the FWHM of this peak is related with the blue shift of the mode as shown in 

Fig.4c and in agreement with previous reports.79 While this is an indication of doping, the small 

magnitude of the shifts suggests that the doping effect is quantitatively very small. This 

observation is further supported by the linear distributions shown in figure 4b, relating the Raman 

shift of G and 2D modes. The slopes obtained for 6,5-SWNT and Cu-mMINTS are the same within 

error (1.40.2 and 1.10.3, respectively), thus strong doping effects are discarded, as concluded 

when using method 1. With respect to the intensity ratio ID/IG goes from 0.060.01 to 0.070.01 

for pristine and Cu-mMINT tubes in average, respectively (Fig. 4a), showing a perfect agreement 

with the ratios obtained using method 1. The small increase evident in the distribution is attributed 

to the formation of small quantity of defects during the work up and purification processes, as 

explained above. 

 

Table 1: Summary of averaged peak position and FWHM for each sample and mode using Lorentzian 

peak fitting 

 

Raman shift (cm-1) FWHM (cm-1) 

6,5-SWNT Cu-mMINTs 6,5-SWNT Cu-mMINTs 
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D 13003 13002 6116 5511 

G- 15285 15333 355 333 

G+ 15784 15833 343 283 

2D 25776 25844 988 918 

 

Figure 4: a) Intensity ratio distribution of D and G bands; b) correlation between Raman shifts of 2D and G 

bands; c) correlation between FWHM and position of G band; and d) correlation between FWHM and position 

of 2D band for 6,5-SWNT and Cu-mMINTs in gray and blue, respectively, using analysis method 2.   

In conclusion, the results of the analysis using both methods for these sets of data are almost 

identical, which validates the robustness of the simpler approach (method 1) to extract the 

relevant information regarding the Raman signature of the samples. Nevertheless, the peak fitting 

routine (method 2) is more precise and, in addition to peak position and intensity, returns a 

distribution of linewidths (FWHM) and correlations between all spectral features. Method 2 is 

therefore more complete and provides more detailed information about the samples which might 

be of interest for some users and applications. 

Pseudo-Voigt peak fitting: 

The results presented in figures 3 and 4 correspond to an analysis based on Lorentzian peak 

fitting. Our algorithm allows changing to pseudo-Voigt functions instead of Lorentzian. In figure 5 

we present an example of the fitting of the 2D band of a graphene flake comparing the Lorentzian 

(eq.1) vs Voigt (eq. 3) fitting procedures.  

Qualitatively, the Voigt function describes better the experimental data, especially the tales of the 

peak, where the Lorentz fit deviates and cannot describe perfectly the widening. However, both 

fitting functions retrieve almost identical values for the position (2676.1 cm-1 for Lorentzian and 
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2676.0 cm-1 for Voigt) and intensity (1.07 a.u. for Lorentzian and 1.02 a.u for Voigt) of the peak. 

The FWHM values (25.7 cm-1 for Lorentzian and 28.1 cm-1 for Voigt) differ by 3 cm-1 and the R2 

value of the fittings are 0.9999 (Voigt) and 0.994 (Lorentz). Therefore, while the Voigt fitting 

describes better the widening of the peak in certain cases, the fitting results are almost identical 

using both methods 

It is worth to mention that the fitting of a double peak using a double pseudo-Voigt function often 

fails to describe the experimental data, so in this case it is recommended to use the Lorentzian 

fitting routine. 

 

Mapping: 

To demonstrate the mapping capability of the software, a 32 x 32 pixel map of ID/IG of a 38 μm x 

42 μm region of patterned graphene is plotted in figure 6. This sample is a graphene substrate 

functionalized by a microemulsion pattering method consisting of 4-bromobenzenediazonium 

tetrafluoroborate dissolved in a microemulsion of water (+ T80 surfactant) and mineral oil.33 The 

diazonium salt can functionalize the surface of graphene and dissolves better in water than oil. 

Covering the surface of graphene with the microemulsion results in small spherical regions of 

Figure 5: fitting of the 2D band in a single Raman spectrum from a graphene flake using a Lorentzian function (top) 
and pseudo-Voigt function.  

https://doi.org/10.26434/chemrxiv-2023-5nhdj-v3 ORCID: https://orcid.org/0000-0002-8739-2777 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-5nhdj-v3
https://orcid.org/0000-0002-8739-2777
https://creativecommons.org/licenses/by-nc/4.0/


non-functionalized surface, that correspond to the droplet sizes of the oil micelles where there is 

far less diazonium salt. This is evident from the spherical low ID/IG regions of the map in Fig. 6a, 

corresponding to the oil droplets. The functionalized regions have a much higher ID/IG value, as 

functionalization creates defects on the graphene sp2 surface, leading to an increase in intensity 

of the D band.  

The code allows the user to select and compare spectra from these two regions in an interactive 

manner. The selected pixels are marked with a red dot in Fig. 6a and the corresponding spectra 

are plotted in Fig. 6b with the low ID/IG, unfunctionalized region shown in blue vs. the high ID/IG, 

functionalized region in orange. The D band (1340 cm-1) is clearly more intense in the patterned 

area than in the non-patterned region. This functionality within the code enables users to explore 

interactively their results. 

 

 

Figure 6: (a) Raman map of the D to G intensity ratio, ID/IG showing the patterning of a graphene substrate 

with an emulsion of diazonium salt. The darker areas correspond to unfunctionalized graphene. The red 

dots correspond to the location of the individual spectra plotted in (b). 

Conclusions: 
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In conclusion, we present a user-friendly analysis routine that can be used by material scientists 

to extract all relevant information from their Raman spectra. The program is designed to handle 

large amount of data and analyze spectra individually, in a simple manner and with little 

supervision, while providing enough options for most users to obtain the useful information that 

will fully characterize any given material. The results include information about the fitting 

parameters for each individual spectrum analyzed, R2 values for each fitting, average results for 

each spectral feature per file with the corresponding standard deviations. Moreover, the program 

generates figures including histograms for each parameter, correlations between spectral 

features and mappings. The required inputs from the user are spectral ranges for each Raman 

peak to be analyzed and initial estimates of the spectral features for the fittings (position, intensity 

and width). The code does not require to have extensive experience in Raman analysis or 

programming since it is designed to be easy to use and robust. 

The analysis of spectral features can be performed using two different methods depending on 

user needs. Method 1 is based on finding local maxima within a spectrum, so it is simple yet it is 

still robust enough to provide band position and intensity pretty accurately. For a more detailed 

characterization, method 2 is suggested, where proper peak fitting is performed to recover also 

FWHM of the characteristic Raman bands. Both Lorentzian and Voigt fitting are available at the 

moment, depending on the characteristics of the spectra to handle. While Voigt fitting describes 

better the tales of broad peaks such as the 2D mode of graphene, Lorentz fitting works better 

when a double peak has to be fitted (such as the G split in carbon-based materials). Last, since 

it is the user that defines the spectral ranges where the peaks are located, the code can be easily 

adapted to analyze the Raman spectrum of any material by simply accommodating the spectral 

regions to the new sample. This will work fine for any 2D material, such as for example TMDCs.  
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