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14

Abstract Machine learningmodels are employed to enhance the speed and provide novel insights in drug15

discovery due to their demonstrated effectiveness in predicting properties of small molecules like pKa, sol-16

ubility, and binding affinity. These approaches accelerate drug discovery by helping researchers efficiently17

identify, prioritize, and optimize compounds. Nonetheless, when investigating properties that depend on18

the interaction between a ligand and its corresponding protein, a compelling need arises to incorporate19

the protein counterpart information within the models. Recently, graph neural networks (GNNs) have been20

developed to incorporate 3D structural information to improve our understanding of the underlying protein-21

ligand interactions. However, incorporating 3D information into GNNs is not always straightforward. To ad-22

dress the challenge, we introduce a model called InterGraph, which models the protein-ligand interaction23

as topological multigraphs. By leveraging a topological representation, InterGraph offers a comprehensive24

approach to a graph representation of the intricate spatial organization and connectivity patterns within25

protein-ligand systems. We introduce interaction spheres that assign varying edge densities, capturing the26

proximity-based influence of interactions. This approach enables us to capture the characteristics of the27

interaction network, filtering out the ones that are beyond 9 Å from the ligand since they are not consid-28

ered relevant or established. Finally, we trained themodel using a ligand binding dataset from PDBbind and29

tested it on a hold-out test set, achieving an RMSE value of 1.34. Our findings have demonstrated the power30

of the multigraph to encode the importance of close interactions, a factor that is relevant in the context of31

binding affinity. On average, our model accurately predicts binding affinity values for several protein-ligand32

complexes and exhibits higher accuracy for hydrolase, lyase, and families of proteins involved in mediating33

protein-protein interactions. Additionally, the Intergraph method displayed sensitivity to the binding mode34

when compared to a set of complexes that had undergone redocking calculations.35

36

Introduction37

Protein-ligand interactions are critical in numerous biological processes, and understanding how their bind-38

ing influences biological processes is at the core of drug discovery and development. Binding affinity is a39

thermodynamic property that describes the strength of such interactions, providing valuable insights into40
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the likelihood of successful binding and the potency of a drug candidate [1]. Since experimental determi-41

nation of the binding affinity is costly and time-consuming, computational methods are largely adopted be-42

cause they can successfully prioritize drug candidates from extensive compound libraries more efficiently,43

accelerating drug discovery anddevelopment. Free energy calculations based onmolecular dynamics are of-44

ten employed; however, they come with a high computational cost, requiring substantial time to obtain reli-45

able results [2, 3]. The greatest challenge lies in the intricate interplay between protein and ligandmolecules,46

involving diverse molecular interactions and conformational changes, which limit the achievement of pre-47

cise predictions [4]. Therefore, overcoming these challenges and developing efficient computational meth-48

ods for accurate binding affinity prediction remains an active area of research [5]. Graph convolutional49

neural network (GCN) architectures have recently gained significant traction in the field [6–9]. Researchers50

have achieved exciting results by capitalizing on the inherent graph structure and the powerful learning ca-51

pabilities of GCNs [10, 11]. This progress underscores the versatility and potential of GCN architectures in52

pushing the boundaries of predictive modeling in molecular sciences [7, 12–14]. Nevertheless, integrating53

the three-dimensional (3D) structure of the protein-ligand system into GCNs may not always be straightfor-54

ward.55

Present approaches characterize protein-ligand interactions using ligand molecular graphs, wherein56

each node encodes the contacts as features. These interactions are acquired by considering proximity-57

based contacts and applying a defined cutoff distance[7, 9]. This work presents a novel approach to model58

the intricate structure of a protein-ligand interaction occurring across various distances. Features of both59

the ligand and the protein are included, creating a topological representation of the interactions. Specif-60

ically, our approach uses a multigraph-based methodology, which proves to be highly advantageous in61

capturing the importance of close molecular interactions that determine binding affinity. The multigraph62

is constructed based on a PDB file where the atoms are represented as nodes, while the edges describe63

the Euclidean distances between the ligand and the protein atoms within three distance ranges [15, 16].64

Consequently, this leads to forming three subgraphs within the main graph, with each subgraph defined65

by an area referred to as the "interaction sphere". The edge density within each interaction sphere cap-66

tures the spatial proximity relationships and emphasizes the significance of closer interactions. Specifically,67

some spheres demonstrated a higher edge concentration, indicating an increased likelihood of interaction68

between protein atoms closer to the ligand. Conversely, a low edge density is observed in spheres that69

enclose atoms farther away, implying a reduced impact on the ligand’s binding affinity.70

As demonstrated, our approach involves incorporating distance features into multigraph reasoning71

models, which are inherently non-Euclidean [17]. These models primarily establish relations among graph72

elements and often overlook the significance of distance features, which, in contrast, play a crucial role in73

protein-ligand binding interactions. Nevertheless, graph convolutional neural networks (GCNs) are highly74

effective at capturing intricate patterns in the graph’s structured data, and they showed remarkable results75

in predicting binding affinity [18, 19]. Therefore, we exploit the strengths of GCNs and incorporate the dis-76

tance features to enhance their capabilities further.77

The PDBbind dataset was used to train the model, specifically the PDBbind v.2020 refined set [20]. The78

refined set comprises non-covalent co-crystal structures with a resolution lower than 2.5 Å and an R-factor79

lower than 0.250. Binding affinity values are expressed as pKi and pKd. We trained and evaluated themodel80

on a holdout set which showed amean absolute error (MAE) of 1.34 and a Spearman correlation coefficient81

(𝑆𝜌) of 0.66. We also performed a 10-fold cross-validation to assess the robustness and reliability of the82

results. Concluding our discussion, we present an analysis of the protein families where our model demon-83

strated higher accuracy.84

This study aims to contribute to the research on binding affinity prediction using deep learning. We also85

proposed a novel approach to conceptualize protein-ligand interactions as multigraphs, promoting a valid86

approach that includes both entities (protein and ligand) involved in the binding process. Furthermore, the87

model can serve as pre-trained model that can be further fine-tuned as needed to cater to specific target88

proteins, enabling accurate and reliable predictions.89
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Results & Discussion90

In this section, we present the results of our study aimed at predicting binding affinity from protein-ligand91

complexes. We will start by discussing our approach for modeling macromolecule complexes using graph92

representations. Then we will continue to describe the generation and optimization of the graph neural93

network model. Finally, we showcase the performance and robustness of the model on holdout sets.94

Encoding close interactions in protein-ligand complexes using high edge density95

As described in the method section, we construct a graph using pairwise atomic distances. Graphs were96

generated at the atomic level, representing protein and ligand atoms as nodes. Figure 1 illustrates the97

schematic representation. The distance thresholds essentially acted as guiding parameters. They defined98

a range around each ligand atom, delimiting which atoms fell within the proximity of the ligand atoms.99

This spatial region, defined by each threshold, creats what we refer to as an "interaction sphere." This in-100

teraction sphere conceptually represents the proximity within which potential molecular interactions are101

considered relevant and possible. This inherent variation in edge density (number of edges divided by the102

volume of the sphere) across different interaction spheres, becoming the focus of our analysis. The analysis103

of edge density was performed by calculating the number of edges present within each sphere for every104

ligand atom. These calculations offer valuable insights into the prevalence and distribution of connections105

occurring within distinct distance intervals around each ligand atom. Figure 2 illustrates the density analysis106

performed on the PDB ID 5E89. The ligand under investigation consists of 80 atoms, and for each atom, the107

edge density within its corresponding interaction sphere was computed. Notably, each ligand atom was108

associated with three interaction spheres aligned with a specific distance threshold. We can observe that109

the edge density decreases by increasing the threshold. For instance edge density for the 3Å threshold is110

higher than the 6Å threshold, and so on for all ligand atoms.111

The radial distribution function of our analysis is discrete, with specific intervals defining the radii (0-3 Å,112

3-6 Å, and 6-9 Å).113

A remarkable aspect is how edge density acts as a structural feature, revealing the local environment114

of the protein-ligand complex. The closer the interaction (i.e., lower cut-off threshold), the higher the edge115

density and the higher the importance. Since closer interactions have a more profound impact on binding116

affinity, this information is embedded to help the network to focus on one of themost crucial aspects of the117

interaction process. Moreover, incorporating edge density in the graph representation gives theGCN spatial118

awareness. We intend to give the model a clearer picture of how interactions are distributed throughout119

the protein-ligand complex. By directly integrating this information into the graph representation, the GCN120

can learn to assign varying levels of importance, emphasizing edges that represent the denser and more121

influential interactions, especially those in closer proximity.122

Protein-ligand interactions graph shows predictive power on an independent test set123

To ensure improved model performance and generalization, we closely monitored the learning process on124

both the training and validation sets.125

In Figure 3, we report the training and validation learning curve, which presents the loss (Y-axis) as a function126

of the training time (X-axis). The learning curve plot illustrates how the loss metric (MAE) evolves as the127

model undergoes training iterations. MAE was continuously monitored during the training process for both128

the training and validation sets. The plot indicates that the MAE on the training set decreases steadily129

throughout the training, as indicated by the blue line. Meanwhile, the orange line shows that the MAE on130

the validation set reaches the minimum value of 2.61. Upon examination, the plot indicates a good fit of131

the model, as evidenced by both the training and validation loss decreasing and stabilizing with a minimal132

difference between their values. Throughout the epochs, this close alignment of the training and validation133

lines reveals a consistent level of the model’s performance and generalizability. Moreover, we observed134

that further training did not yield significant improvements, and the model did not overfit or underfit.135
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(a)

6 Å
9 Å

3 Å

(b)

Figure 1. (a) This figure visually represents a protein-ligand topological interaction graph. The nodes (atoms) in the graphare depicted as filled circles, with blue circles representing the ligand atoms and green circles representing the proteinatoms. The shading of the green circles reflects the proximity of the atoms to the ligand, with darker circles indicatingcloser atoms and lighter circles representing farther atoms. The connections between protein and ligand atoms (edges)are shown as lines, and distance thresholds of 3Å (red line), 6Å (orange line), and 9Å (blue line) are used to determinethe proximity and to connect these atoms. The edges were drawn from a single reference atom shown in dark blue tosimplify the overall representation, but the same concept was applied to each ligand atom to create the entire graph.This approach resulted in the creation of three interaction spheres for each ligand atom, represented by the dashedcircles within the distance thresholds of 3Å (red), 6Å (orange), and 9Å (blue). Using multiple distance thresholds results ina multigraph with different edge densities. The nodes closer together have a higher edge density, and the nodes fartherapart have a lower edge density. The full grey circles in the graph denote atoms excluded from the graph because theydid not meet the set distance thresholds. (b) This example shows the interaction between a small molecule and theGLN amino acid within a protein. The atom type annotations next to each atom act as identifiers, giving essential detailsabout their connectivity and chemical identity. In the case of protein atoms, it also indicates whether they belong tothe amino acid’s side chain or backbone. Specifically, the interaction involves a hydrogen bond between the protein’samide hydrogen (H) atom and the sixth ligand’s carbon-oxygen double bond (C=O). On the protein side, the𝑁𝜖 notationspecifies the nitrogen (N) atom in the amino acid’s side chain. As for the ligand, the numbering system designates thepositions of atoms within the molecule
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Figure 2. Discrete radial distribution function of edge density. This plot presents the edge density analysis of ligandatoms (PBD id 5E89). The bars represent calculated densities within interaction spheres of 𝑟 = 3, 𝑟 = 6 and 𝑟 = 9 Å.
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Training and validation performance: mean absolute error (MAE) on validation set
Figure 3. In the top panel of the graph, the model’s performance on the training and validation sets is displayed over arange of epochs. The mean absolute error (MAE) metric evaluates the model’s performance. The plot provides essentialinsights into the neural network’s performance, indicating that further training may result in only minimal improvementsin the model’s performance on the validation set.

Investigating model generalization ability and rank capacity in predicting binding affinities136

Evaluating the trained models is critical to assess accuracy and reliability beyond its training data. In the137

context of binding affinity prediction, the evaluation was conducted regarding the model’s predictive accu-138

racy and ability to rank ligands based on their affinities. We conducted this evaluation using a hold-out set139

(the test set), which contains data the model hasn’t seen during training. The data distribution in the test140

and training sets (see SI Figure 2) exhibited a homogeneous representation. Mean absolute error (MAE) and141

Sperman’s rank correlation coefficient (𝜌) were used as metrics.142

MAE indicates the average absolute difference between the predicted and true values and provides143

insight into the model’s accuracy in predicting binding affinity values. The model showed a MAE value of144

1.34 pK on the test set, with a 95% % Confidence Interval (CI) ranging from 1.2 to 1.48 pK. In Figure 4,145

we can observe the kernel density estimates (KDE) of the predicted and reference pK distribution. The146

peak of the distribution around 0 on the x-axis indicates a close agreement between the expected and147

calculated values, which indicates good model performance. The bell-shaped curve of the distribution also148

indicates that the data are uniformly distributed. The relatively narrow CI interval indicates that themodel’s149

predictions are consistently close to the true values. This outcome highlights the reliability of the model’s150

predictions, motivating confidence in its performance. The ranking capacity is another desirable feature and151

was evaluated with the Spearman correlation coefficient (𝜌). It evaluated how the predicted and true values152

are ranked similarly. The coefficient ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0153

indicates no correlation, and 1 indicates a perfect positive correlation (when one value increases, the other154

also increases) [21]. A higher (𝜌) signifies that the model has a strong ranking capacity. The coefficient was155

calculated on the test with a value of 0.66. The encouraging 𝜌 score indicates that the model has effectively156

learned relevant patterns from the training data, allowing it to provide accurate predictions [22, 23]. A157

more in-depth examination of the residuals (see Figure 5) reveals a consistent positive correlation. About158
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Distribution of the difference between the experimental and calculated binding affinity

Figure 4. The plot in the figure provides a visual representation of the performance of a predictive model for a testset of 156 samples. The plot’s x-axis shows the difference between the expected and calculated values, while the y-axisrepresents the probability density. This plot is labeled with the calculated mean squared error (MSE), mean absoluteerror (MAE), and the confidence interval (95%) of the model is given in square brackets.

46% of the points fall within the ±1 error range, and 30.7% of the points lie within the range 1 < 𝑥 ≤ 2 and159

−2 ≤ 𝑥 < −1, where 𝑥 represents the error. Nevertheless, although a substantial proportion of predictions160

fall within the ±1 error range and follow a linear trend, the residuals display some discrepancies from the161

ideal fit (shown by the diagonal line) in the lower range. This patternmight indicate that themodel is lacking162

in capturing specific trends or relationships for some compounds with very strong binding affinity. The163

challenge of predicting low values can be attributed to the amount of low-value data in the training set (see164

SI2)165

Exploring protein families with enhanced binding affinity prediction166

The analysis of the residual plots on the test set showed deviations between themodel’s predictions and the167

actual binding affinity values for some data points. This observation prompted a more in-depth evaluation168

of the model’s predictive abilities, specifically identifying whether these errors were associated with specific169

protein families. Additionally, we searched for which protein families the GCN demonstrated a higher accu-170

racy.171

The examination indicated that the hydrolase protein class is the predominant category within the dataset172

(Figure 6). Most predictions concerning this family remain within the error range of ±2, except for 7 data173

points in the tail of the plot. The tail also comprises predictions related to the ligand bound to sugar-binding174
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Figure 5. Scatter plot with error bands depicting the relationship between the true (X-axis) and predicted (Y-axis) bindingaffinity values (blue dots). The gray line represents the ideal linear relationship (y = x). The light purple-shaded regionrepresents the ±1 standard deviation error band, while the lighter blue-shaded region represents the ±2 standard devi-ation error band. On top, the Spearman Correlation Coefficient (𝑆𝜌) value is reported.

proteins and transferases. In contrast to other proteins in the set, this group represents instances where175

the model’s predictions showed the most substantial deviation from the actual values.176

Taking a broader perspective, the model does not consistently perform poorly for any specific pattern or177

cluster of proteins. Nonetheless, we garnered insightful findings related to protein families, resulting in im-178

proved accuracy. Table 1 reports the number of entries of the most significant protein families, the count179

of predictions falling within a ±1 error range, and the corresponding percentage of predicted values within180

this error range[24]. Among the protein families analyzed, the hydrolase family is the predominant one for181

which the model exhibits good performance, with 26 out of 57 predictions (45.61%) accurately falling within182

the predefined ±1 error range. The Transferase family also displayed a promising outcome, with 15.30%183

of predictions falling within this error range. Furthermore, the Lyase family demonstrated high predictive184

accuracy, with 9 out of 16 predictions (56.25%) aligning within the desired error range. Similarly, the Chaper-185

one and Transcription protein families achieved satisfactory results, with 33.34% and 50.00% of predictions186

within the ±1 error range, respectively. Included in SI Figure 4 is a comprehensive plot showcasing the data187

for all other families.188

8 of 20

https://doi.org/10.26434/chemrxiv-2023-bvps7 ORCID: https://orcid.org/0000-0002-3490-1179 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-bvps7
https://orcid.org/0000-0002-3490-1179
https://creativecommons.org/licenses/by/4.0/


October 25, 2023

Figure 6. Comparative subplots are showing variation in binding affinity predictions across diverse protein families. Pro-tein categories analyzed include Transferase, Hydrolase, Lyase, Chaperone, Transcription, Protein-protein interactions,Isomerase, and Aspartyl protease.
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Table 1. Summary of protein family entries, predictions within ±1 error range
Protein family N entries Prediction within ±1 error Percentage of predicted values in error range
Hydrolase 57 26 45.61
Transferase 30 15 50.00

Lyase 16 9 56.25
Transcription 8 4 50.00
Chaperone 6 2 33.34

Protein-protein interaction 4 3 75.00
Isomerase 3 2 67.67

Aspartyl protease 2 1 50.00

Cross-validation results: assessing model performance and robustness189

We performed a 10-fold cross-validation to assess the robustness of our model, subjecting it to varying190

training and testing data splits. This involved dividing the training set into 10 distinct subsets. In each191

iteration, a different subset out of the 10 was designated as the test set, while the remaining 9 subsets were192

utilized for training. Figure 7 presents the mean absolute error (MAE) on the test set for each fold. The193

minimum and maximum values reported in the box plot are 1.20 and 1.32, respectively, while the mean194

value is 1.26. The median is 1.27, represented by the horizontal line in the box plot.195

Figure 7. This figure presents two visual representations of the Mean Absolute Error (MAE) values obtained from a 10-fold cross-validation. On the top, a bar plot displays the MAE value for each fold in the cross-validation process. Onthe bottom, a box plot illustrates the distribution of MAE scores across all ten folds. The box represents the interquartilerange (IQR), with a horizontal line inside denoting themedian. The whiskers extend from theminimum value to the lowerquartile (the start of the box) and from the upper quartile (the end of the box) to the maximum value.

In line with our strategy of predicting binding affinity through protein-ligand interactions, we also calcu-196

lated the Root Mean Squared Error (RMSE) and Pearson correlation coefficient. This allowed us to bench-197
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mark our results against documented outcomes in the literature that employed the GCN architecture. No-198

tably, the reference for comparison originates from the CASF-2016 set [25] and is referred here as GCN-199

NET PLIG [7]. The comparison can be made because CASF-2016 is representative of the PDBBbind dataset200

[7, 20, 26]. Table 2 provides the results, computed as the mean of individual point predictions for each201

data point within the test set. The GCNNet-PLIG model [7] showcased a Pearson correlation coefficient of202

0.76, indicating a meaningful and positive linear relationship between its predicted and actual values. In203

contrast, the InterGraph model demonstrated a slightly lower but comparable coefficient of 0.60. Although204

our model displayed a relatively weaker correlation (𝜌), it is important to highlight that it is still positive and205

not random.206

Table 2. Table compares the performance of twomodels, namely GCNNet-PLIGs and InterGraph. The evaluationmetricsused for comparison are the Pearson correlation coefficient (𝜌) and the Root Mean Square Error (RMSE).
Model 𝜌 RMSE

GCNNet-PLIGs 0.76 0.80
InterGraph 0.60 1.59

Assess the robustness and sensitivity of our model when applied to docked poses207

Our study contributes to the growing body of research aiming to develop deep-learning methods for pre-208

dicting binding affinity. While classical structure-basedmethodologies have proven valuable tools in acceler-209

ating the drug discovery process, it is essential to acknowledge that suchmethods have inherent limitations.210

In particular, we refer to the constrained conformational sampling and reliance on approximated scoring211

functions, which can yield results that deviate from the biological reality [27].212

Therefore, an accurate binding affinity prediction strictly depends on the correctness of the binding213

mode, and developing models that can distinguish the correct ones when predicting the binding affinity is214

required. Accordingly, we examined themodel’s sensitivity to the bindingmode by analyzing the correlation215

between themodel predictions and the pose accuracy across a series of docked complexes [28]. The investi-216

gation startedwith the cognate docking of ligands into their corresponding receptors (see SectionMolecular217

docking calculations). As a first filter, we excluded docking outcomes with RMSD larger than 2 Å, a standard218

threshold for filtering out less accurate binding poses [29]. We calculated interaction multigraphs from the219

set of not filtered-out complexes, resulting in a total of 3784.220

We applied the trainedmodel to the docked dataset, resulting in a Mean Absolute Error (MAE) of 2.8 and221

a Spearman correlation coefficient (S𝜌) of 0.52. Model performance slightly decreased on the docked com-222

plexes compared to the experimental ones. This outcome can be foreseen, as slight interaction deviations223

can lead to observable effects.224
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Figure 8. Relationship between the accuracy of the resulting pose (RMSD expressed in Å), and Spearman’s rank correla-tion coefficient (Spearman’s 𝑆𝜌)

Our evaluation continued as a comparative analysis of our model’s rank capacity and docking accuracy.225

We observed a correlation between the positive Spearman correlation coefficient (S𝜌) and the accuracy226

of the docking outcomes. Our findings suggest that the model exhibits a heightened sensitivity to pose227

accuracy, as evidenced by the decreasing trend in Spearman correlation (S𝜌) as the degree of error in pose228

prediction from docking increases (Figure 8).229

Conclusion230

Predicting accurate binding affinity is a significant challenge in the early drug discovery and development231

stages. Researchers possess a comprehensive understanding of both the capabilities and limitations of232

the existing tools. While they remain a powerful resource, there is a pressing need to develop more robust233

methods. As a result, in recent times, scientific literature has significantly expanded onAI-based approaches234

for binding affinity prediction. Such development has paved the way for new techniques that have the po-235

tential to address the limitations of traditional methods, whether on their own or combined. Inspired by the236

growing interest in including the protein counterpart in AI approaches, we developed the InterGraphmodel,237

a deep-learning approach to predict binding affinity from protein and ligand complexes. In our implementa-238

tion, protein-ligand complexes aremodeled as 3D topological multigraphs. The design of the protein-ligand239

multigraph involved a multi-threshold-based approach, which generated interaction spheres around each240

ligand atom, specifically to enclose proximity-based contacts. The resulting multigraphs were used to train241

a four-layer graph convolutional neuronal network. Notably, node features, as atom types, were retrieved242

directly from the PDB files to ensure a consistent and accurate representation of the molecular structure243

without relying on external atom typing references. Furthermore, InterGraph provides researchers with the244

flexibility to explore, allowing them to change distance thresholds and node attributes. This adaptability em-245

powers researchers to tailor the model according to specific datasets or research objectives, enhancing its246

versatility. Our findings highlight the potential of InterGraph in capturing the complex relationships be-247

tween proteins and ligands, leading to good predictions of binding affinities across multiple protein targets248

(MAE = 1.34; 𝑆𝜌 = 0.64). Despite being trained on diverse protein families, it exhibited superior accuracy249

in categories such as Transferase, Hydrolase, Lyase, Chaperone, Transcription, Protein-protein interactions,250

and Isomerase. This makes it suitable as a pre-trainedmodel that can facilitate reinforcement learning algo-251
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rithms in building upon its existing knowledge and fine-tuning it for the specific target categoriesmentioned252

above. Finally, we have shown that themodel exhibits a remarkable sensitivity to the binding pose, highlight-253

ing its ability to discern slight changes in molecular interactions. This feature is of particular significance as254

it addresses a known limitation in conventional docking scoring functions, offering a more accurate binding255

affinity prediction. In conclusion, while binding affinity prediction remains an open challenge, InterGraph256

showed to be a valid approach that embraces the complexity of binding interactions and offers promising257

results. Moving forward, further advancements, including incorporating more diverse and comprehensive258

datasets and features, will likely contribute to the refinement and robustness of InterGraph.259
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Detailed methods269

Data collection and preprocessing270

The protein-ligand complexes used in this study were obtained from the PDBbind database, specifically,271

the refined set, where we obtained the PDB IDs and corresponding binding affinity values expressed as pKi272

and pKd. To retrieve the three-dimensional structures of these complexes, we utilized the Batch Download273

service provided by the RCSB Protein Data Bank (PDB) website (https://www.rcsb.org). The PDB files were274

processed to removemetal ions, co-factors, solvent molecules used for crystallization, and ions in the struc-275

tures. Complexes containing multiple chains or multiple ligands were excluded from the dataset to ensure276

a focused and consistent analysis. Hydrogen atoms were added using the pymolPy3. The final processed277

dataset consists of 3,178 unique protein-ligand structures. Each structure is composed of a single chain.278

Protein-ligand graph generation and proximity analysis279

The implementation involved defining a graph, denoted by G, comprising a set of vertices, V (also called280

nodes), and a set of edges, E, where each edge connects a pair of vertices. The nodes of the graph repre-281

sent atoms from either protein or ligand. For each ligand atom, we established connections (edges) with282

protein atoms located within predefined distance thresholds. The distance thresholds were set at discrete283

values, specifically 3, 6, and 9 Angstroms. These thresholds were instrumental in determining the extent of284

interactions between protein and ligand atoms.285

Our approach involved a step-by-step creation of edges originating from ligand atoms. The algorithm 1286

iterates through all ligand atoms and then checks if it encounters another atom within the specified thresh-287

olds of 3,6 and 9Å. If it does, an edge is formed. These thresholds defined the closeness of the interactions288

among protein-ligand atoms and simultaneously within the ligand atoms. The result of the algorithm is289

a graph structure that allows for multiple edges between nodes, as exemplified by the ligand atoms and290

their neighbors. This outcome led to a multigraph framework. Notably, the neural network can distinguish291

between protein and ligand atoms based on the attributes associated with the respective nodes. The con-292

structedmultigraph is three-dimensional (3D). Within this setup, the distance threshold acts as the radius of293

a sphere, encompassing edges located within the defined distance 𝑟 from the reference ligand node (atom).294

Consequently, a distinct set of three interaction spheres emerges for each ligand atom. These interaction295

spheres vary in their edge density. We calculated the edge densities in each interaction sphere, which offers296

insights into the arrangement and distribution of interactions across diverse spatial extents. The method-297

ology centers on calculating edge densities within three distinct spheres for each atom within the ligand.298

Around the origin atom 𝑜, we define three concentric spheres with radii of 3, 6, and 9 angstroms.299

Definition 1 Let 𝐺 = (𝑉 ,𝐸) be a multigraph where 𝐸 = (𝐸′, 𝑚) and300

𝐸′ ⊆ 𝑉 × 𝑉 ,𝑚 ∶ 𝐸′ → ℕ

Given 𝑜 ∈ 𝐴𝑙, let 𝐸𝑜
𝑘 be the set of edges such that 𝑚(𝑥) = 𝑘 for all 𝑥 ∶ (𝑜, 𝑣) ∈ 𝐸′, 𝑣 ∈ 𝑉 :301

𝐸𝑜
3 = {𝑥|𝑥 ∈ 𝐸′, 𝑚(𝑥) = 3}302

𝐸𝑜
2 = {𝑥|𝑥 ∈ 𝐸′, 𝑚(𝑥) = 2}303

𝐸𝑜
1 = {𝑥|𝑥 ∈ 𝐸′, 𝑚(𝑥) = 1}304

Let 𝐷𝑜
𝑟Å be the edge density within radius 𝑟:305

𝐷𝑜
3Å =

|𝐸𝑜
3 |

4
3 𝜋3

3
306

𝐷𝑜
2Å =

|𝐸𝑜
2 |

4
3 𝜋6

3
307

𝐷𝑜
1Å =

|𝐸𝑜
1 |

4
3 𝜋9

3
308

Each node in the graph is defined by a bit vector that captures atomic features obtained using the Biopy-309

thon cheminformatics package. The set of features was implemented by concatenating one-hot-encoded310
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vectors where each dimension corresponds to a specific feature. In these vectors, the presence of a feature311

is represented by the value 1, while the absence of a feature is represented by the value 0.312

The feature set included:313

• Protein or ligand atom: This binary feature indicates whether the atom belongs to a protein or a314

ligand molecule.315

• Atom Type: This feature captured the specific atom type. To ensure a complete representation, we316

collected atom type information from all the atom types in the PDB files in our dataset. The atom317

type column in PDB files serves to specify the particular classification or type of an atom based on318

its chemical environment and connectivity. As a result, this feature represented the most extended319

feature vector among the encoded features.320

• Element: This feature represents the elemental composition of the atom. It allowed us to consider321

the specific elements present in the molecule, further enhancing our understanding of its chemical322

composition.323

• Thenumber ofHydrogen atoms: Hydrogen bonding plays a significant role inmolecular interactions,324

particularly in binding affinity. By considering the number of hydrogen atoms bound to each atom,325

we aimed to capture the involvement of hydrogen bonding in the affinity towards binding partners326

As part of our proposed method, we combined the above features to model protein-ligand interaction and327

capture relevant contributions to binding affinity. Finally, it has resulted in a 2450-dimensional node feature328

vector.329

Memory optimization through online approach in graph generation330

This study used a systematic and practical method to generate multigraphs for each protein-ligand entry.331

Because of multigraph dimensionality, considerable memory resources are required. The high dimension-332

ality of the system can be attributed to two key factors: the extensive node feature set and the large number333

of nodes and edges. In our implementation, the node features are represented as vectors using one-hot334

encoding, resulting in a substantial length of 2450 dimensions. To ensure the accuracy and uniqueness335

of the feature set, all the features must be stored in memory throughout the graph construction process.336

Moreover, it is important to acknowledge that constructing these multigraphs is not a single-step process337

but rather an iterative one. The algorithm iterates through each structure, progressively incorporating fea-338

tures into the evolving graph representation. Due to the significant amount of data and structures involved,339

managing these multigraphs is memory-intensive. Furthermore, we encountered issues when attempting340

to save the generated graphs using "torch.save.". During the serialization process performed by torch,341

the graph data is temporarily stored in memory before being written to the disk. This intermediate storage342

adds an extra memory overhead, impacting overall memory usage.343

Unlike a regular graph, there is no maximum limit for the size of the edges’ multiset. In our case, an edge344

can be repeated at most three times within the multiset. This means that given the cardinality of nodes345

within a multigraph, the maximum size of the set of edges will be 3(𝑛2), indicating a space complexity of346

𝑂(𝑛2). In this context, we are examining multigraphs characterized by a node size on the order of 103 and a347

range of edge numbers spanning from 106 to 107. Intuitively, managing such graphs represents a challenge.348

We implemented an iterative approach to overcome this hardware limitation that involved constructing the349

graphs in batches. We began by building the multigraphs using the first batch of data. As we progressed to350

subsequent batches, we updated the one-hot encoded features of the previously processed 𝑛 − 1 batches351

whenever we encountered new features. This ensured that we maintained the up-to-date encoding of the352

previous batches while also generating new encoding for the current batch. Specifically, if the feature set of353

the new batch 𝑛 (denoted as 𝐿) was an improper subset of the feature set from the previous 𝑛 − 1 batches354

(denoted as𝑀 ), the node’s feature vector is not expanded because it already includes the required features.355

However, if the feature set L is not an improper subset of𝑀 , it means that the new batch 𝑛 introduces new356

features (denoted as𝐾 = 𝐿⧵𝑀 ), and the feature vectors from the previous 𝑛−1 batches are expanded to in-357

clude them. Throughout this process, we carefully maintained the order of features to ensure accuracy and358

consistency across all nodes. We empirically observed that constructing graphs in batches of 200 PDBs at a359
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time allowed us to process a reasonable number of graphs while avoiding excessive memory consumption.360

In total, we had 23 batches. Finally, the resulting dataset was loaded from the disk into the main memory361

for the model training.362

Algorithm 1 Graph Construction
Definition 0.1 Graph 𝐺 = (𝑉 ,𝐸)

Input:

– 𝑉 = 𝐴𝑝 ∪ 𝐴𝑙 where 𝐴𝑙 set of ligand atoms, 𝐴𝑝 set of protein atoms.
– 𝑑 ∶ 𝑉 × 𝑉 → ℝ+

𝟘 the euclidean distance.– 𝑑1, 𝑑2, 𝑑3 ∈ ℝ+
𝟘

Output:

– (𝐸,𝑚) ∶ 𝐸 = {(𝑢, 𝑣) ∶ 𝑢 ∈ 𝐴𝑙, 𝑣 ∈ 𝑉 }, 𝑚 ∶ 𝐸 → ℤ+

Initialize

– (𝐸,𝑚), 𝐸 = ∅

for 𝑢 ∈ 𝐴𝑙 do
for 𝑣 ∈ 𝑉 doCompute the distance 𝑑(𝑢, 𝑣) between atoms 𝑢 and 𝑣

for 𝑑𝑖 ∈ {𝑑1, 𝑑2, 𝑑3} do
if 𝑑(𝑢, 𝑣) ≤ 𝑑𝑖 then

(𝐸,𝑚) ∪ {(𝑢, 𝑣)}
end

end
end

end

Training and testing363

Test and training were performed using PyTorch geometric [30]. The dataset was randomized and split364

(90:5:5) into training, validation, and test set. Mean squared error (MSE) was used as a cost function be-365

tween predicted and experimental values. The training was done on the negative base-10 logarithm of Ki,366

Kd (pKi, pKd). We evaluated themodel performance using the validation and test sets. The validation setwas367

crucial in guiding model refinement and optimization, while the test set measured its overall performance368

and generalizability to new data. We employed two statistical metrics: the Spearman rank correlation coef-369

ficient (S𝜌) and the Pearson correlation coefficient (𝜌). These metrics offered distinct insights into different370

aspects of the model’s performance. The Spearman rank correlation coefficient allowed us to assess the371

ranking of binding affinities, providing insights into the strength and direction of the monotonic relation-372

ship. By analyzing S𝜌, we could evaluate whether the model captured the ranking of binding affinities. On373

the other hand, the Pearson correlation coefficient measured the linear relationship between the predicted374

and experimental values. 𝜌 enabled us to evaluate the linear association’s strength and direction and the375

linear trends’ characterization in the model’s binding affinity predictions.376

Molecular docking calculations377

We performed docking calculations using AutoDock Vina software [31, 32]. Ligand and protein structures378

were provided by the PDBbind dataset in SDF and PDB format, respectively.379

As Vina works on PDBQT format, we used Open Babel v.2.3.1 [33] to process the PDB file format to PDBQT.380

Ligands were processed from SDF to PDBQT through the 𝑚𝑘_𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑙𝑖𝑔𝑎𝑛𝑑.𝑝𝑦 script implemented in the381
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Meeko package (https://github.com/forlilab/Meeko). The docking box was defined from the centroid of the382

ligand experimental coordinates and extended 25 Ångströms in each dimension (25x25x25). The centroid383

was calculated using ComputeCentroid, a specific function within rdkit.Chem.rdMolTransforms. Docking384

calculations were finally performed by setting the exhaustiveness parameter as 32, and for each ligand, the385

best 5 poses were stored. We employed RDKit’s AllChem (http://www.rdkit.org) to evaluate and choose the386

most accurate docking result. AlignMol function was used to compute the Root Mean Square Deviation387

(RMSD) between the docked and co-crystallized ligands. Specifically, we retained the lowest docking poses388

with RMSD values below 2 Å, excluding 824 structures and a final set of 3784 docked complexes.389

GCN architecture390

The model was built using the PyTorch library with CUDA support and trained on a GPU for accelerated391

computation. The model’s architecture consists of two graph convolutional layers (GCNConv) and a linear392

classifier that performs a linear transformation. In the first graph convolutional layer, the input features393

undergo a graph convolution operation, generating 32 output features. These output features are then394

normalized using a batch normalization layer. The second graph convolutional layer takes the normalized395

features from the previous layer and applies another graph convolution operation. Similar to the first layer,396

the output features are normalized using batch normalization. The rectified linear unit (ReLU) activation397

function is applied. This activation function ensures that negative values are set to zerowhile positive values398

remain unchanged. Following the graph convolutional layers and the ReLU activation, a global max pooling399

operation is performed. This operation extracts the maximum value across the feature dimension for each400

node in the graph. In the final step, the global max-pooled features are processed by a linear classifier that401

maps them to a single scalar value. It is important to note that the scalar value is always positive, with a402

lower bound of 0.403

Inputdata Conv
Layer1 Batch

Norm

Relu
Conv
Layer2 Batch

Norm

ReLu MaxPooling
Lineartransfor-
mationLayer

Figure 9. Graph Convolutional Neural Network (GCN) Architecture Scheme.

Cross Validation404

To ensure the model’s robustness and ability to generalize accurately to new data, we performed 10-fold405

cross-validation on the training set, constituting 10% of the dataset. Data was randomly partitioned in406

each fold into 10 subsets, with 9 subsets utilized for training and the remaining subset for validation. This407

procedure was repeated 10 times.408
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