Electrochemically induced CO₂ capture enabled by aqueous quinone flow chemistry

Yan Jing, 1,2,3,7 Kiana Amini, 2,4,7 Dawei Xi, 2 Shijian Jin, 2,5 Abdulrahman Alfaraidi, 2 Emily F. Kerr, 1,6 Roy G. Gordon, 1,2 Michael J. Aziz Michael J. Aziz

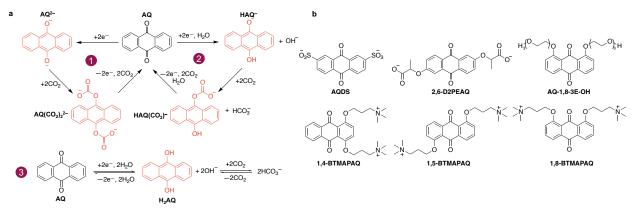
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- 3. Present address: Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
- 4. Present address: Department of Materials Engineering, University of British Columbia, Vancouver, BC Canada V6T 1Z4
- 5. Present address: X, the moonshot factory, 100 Mayfield Ave., Mountain View, California, United States
- Present address: Chemistry Department, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, United States
- 7. These authors contributed equally to this work.
- E-mail: gordon@chemistry.harvard.edu; maziz@harvard.edu.

Abstract

Climate change caused by the accumulation of anthropogenic CO₂ emissions motivates the development and deployment of cost-effective, scalable, and energetically efficient techniques to capture CO₂ from point or diffuse sources. Electrochemically-driven CO₂ capture processes utilizing redox-active organics in aqueous flow chemistry show promise for nonflammability, continuous-flow engineering, and the possibility of being driven at high current density by inexpensive, clean electricity. We show that the deprotonated hydroquinone-CO2 adducts, whose insolubility limits the utility of the quinone-hydroquinone redox couple, become soluble when alkylammonium cations are introduced. Consequently, we introduce alkylammonium groups to anthraquinone via covalent bonds, making the resulting bis[3-(trimethylammonio)propyl]-anthraquinones (BTMAPAQs) soluble. We report the first aqueous quinone flow chemistry-enabled electrochemical CO₂ capture process, which occurs at ambient temperature and pressure, and show that it proceeds via both a pH-swing and a nucleophilicity-swing mechanism. 1,5-BTMAPAQ reaches the theoretical capture capacity of two CO₂ molecules per quinone from 1-bar CO₂-N₂ mixtures for which the CO₂ partial pressure is as low as 0.05 bar, or the applied current density is as high as 100 mA/cm², or the organic concentration is as high as 0.4 M. The energetic cost ranges from 48 to 140 kJ/molCO₂. In a crude simulated flue gas composed of 3% O₂, 10% CO₂, and 87% N₂, 1.5-BTMAPAQ electrolyte reversibly captured and released 50% of the theoretical capacity during an exposure of over 4 hr. It outperforms its isomeric counterparts 1,4-, and 1,8-BTMAPAQ in capture capacity and O2 tolerance, demonstrating a substituent position effect on the reactivity of isomers with CO2 and O2. The results provide fundamental insight into electrochemical CO2 capture with aqueous quinone flow chemistry and suggest that oxygen tolerance of reduced quinones may be significantly advanced through molecular engineering.

Introduction

Accumulating atmospheric CO₂ concentrations from anthropogenic emissions compose the major source of global climate change. While progress is being made in switching from fossil fuel combustion to virtually emissions-free electricity sources, hard-to-abate sectors such as aviation and shipping will remain large sources of emissions for decades even in the most optimistic scenarios. Consequently, CO₂ removal – whether by capture from combustion exhaust or directly from the air or the ocean – is the subject of greatly increased attention, as it has become urgent to develop techniques that can be scaled up in a timely manner and globally deployed in the real world at reasonably low material and energetic cost. Even after the attainment of a net zero emissions economy, it is likely that CO₂ removal will be desired in order to cut atmospheric concentrations toward pre-industrial levels. In an increasingly-electrified society, electrochemically-driven CO₂ capture at ambient conditions becomes an increasingly attractive option.


Quinones are ubiquitous electron-transfer carriers found in a range of living organisms.^{2,3} Featuring structural diversity, richness, and tunability as well as the earth-abundance of the compositional elements (C, H, O, N, S), quinones have been used as industrial dyes and for large-scale industrial production of hydrogen peroxide.^{4,5} Aqueous quinone flow batteries are approaching commercialization as a new generation of large-scale energy storage

technique.⁶ Apart from energy storage, quinone cores can also be utilized for electrochemically induced carbon capture via two different mechanisms, depending on the use of solvents (Figure 1a). First, CO₂ can be directly chemisorbed by reduced quinones (Q²⁻), forming adducts [Q(CO₂)₂²⁻] in aprotic solvents.^{7,8} Second, quinones can undergo proton-coupled electron transfer (PCET) to be reduced to the hydroquinone form (H₂Q) in protic solvents,⁹ accompanied by the accumulation of hydroxide ions, indirectly leading to chemisorption of CO₂.^{10,11} For both mechanisms, the captured CO₂ can be reversibly released upon electrochemical oxidation. For simplicity, we name the first (direct) capture mechanism the nucleophilicity-swing mechanism and the second (indirect) capture mechanism the pH-swing mechanism. In both cases, a CO₂ capture–release cycle involves quinone reduction (an electron transfer process, abbreviated as $E: Q + 2e^- \rightarrow Q^{2-}; Q + 2e^- + H₂O \rightarrow HQ^- + OH^-; Q + 2e^- + 2H₂O \rightarrow H₂Q + 2OH^-), CO₂ absorption (a chemical reaction, abbreviated as <math>E: Q^{2-} + CO_2 \rightarrow Q(CO_2)^{2-}; HQ^- + CO_2 \rightarrow HQ(CO_2)^-; OH^- + CO_2 \rightarrow HCO_3^-)$, and concerted electrochemical oxidation and CO₂ release ($E: Q(CO_2)^{2-}; HQ^- + CO_2 + 2e^-; HQ(CO_2)^- + HCO_3^- \rightarrow Q + H_2O + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2HCO_3^- \rightarrow Q + 2CO_2 + 2e^-; H₂Q + 2CO_2 + 2e^-; H₂$

Quinones explored for CO₂ capture have been, almost without exception, immobilized on electrodes¹²⁻¹⁵ or dissolved in organic electrolytes. ^{12,16,17} Solution-based capture inherits many of the advantages of flow batteries, including simple maintenance/top-off of active species, decoupled electrolyte activation and CO₂ capture, and continuous-flow engineering. ^{17,18} In particular, aqueous electrolytes possess the advantage^{10,11,19-21} that water is non-flammable with virtually no cost; furthermore, high ionic conductivity of aqueous electrolytes allows high current density, enabling high areal throughput at ambient temperature and pressure. Combined, these advantages illustrate the opportunity for a capture system based on electrochemically-driven aqueous-soluble quinone flow chemistry. The sole aqueous-soluble quinone studied to date for CO₂ capture, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), was studied only in static H-cells. ^{22,23} One CO₂ per quinone was released via pH-swing caused by the electrochemical oxidization of tiron. Unfortunately, more than 60% of the initial capacity was lost after the first cycle due to the instability of the oxidized tiron molecule, which undergoes Michael addition and subsequent polymerization. To our knowledge, aqueous quinone flow chemistry-enabled electrochemical CO₂ capture and release has not previously been demonstrated.

Theoretically, to utilize a quinone for PCET-mediated electrochemical CO₂ capture cycle in aqueous electrolyte, the initial pH of the quinone electrolytes should be somewhat below pKa₁ of H₂CO₃ (~6), so that bicarbonate and carbonate concentrations are negligible compared to that of CO₂(aq). Upon electrochemical reduction, the quinone undergoes a PCET process, increasing the electrolyte pH until it reaches pKa₂ of the corresponding H₂Q; upon further reduction of the electrolyte, the quinone undergoes zero-proton, two-electron transfer, generating Q²⁻ dianions without further altering the electrolyte pH.^{9,24} Because H₂Qs are weak acids and their pKa values are usually less than 13, ^{9,24,25} concentrated quinone electrolytes, when reduced, are expected to be predominantly in dianionic form rather than H₂Q form, favoring nucleophilicity-swing carbon capture. The two OH⁻ ions generated from the formation of hydroquinones would capture 1 or 2 CO₂ molecules via carbonate (2OH⁻ + CO₂ \rightarrow H₂O + CO₃²⁻) or bicarbonate (OH⁻ + CO₂ \rightarrow HCO₃⁻) formation. The two oxygen sites on the dianionic form of the reduced quinone can each bind one CO₂ molecule, yielding QCO₂²⁻ or Q(CO₂)₂²⁻. Therefore, the CO₂ capture capacity of aqueous quinones is expected to range up to 2 CO₂ per quinone.

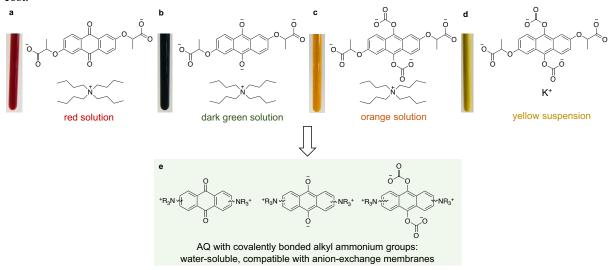

In general, aqueous quinones should meet several major criteria if used for electrochemical CO_2 capture. First, quinones should have high aqueous solubility in all states within their operational pH range. Second, the CO_2 -reactive reduced species, including H_2Q , HQ^- , Q^{2-} , and $HQ(CO_2)^-$, $Q(CO_2)2^{2-}$, should resist reaction with O_2 long enough for most of the CO_2 capture capacity to be realized. Additionally, for the adduct formation mechanism, rate constants should be reasonably high and the binding constants should be high enough for most of the maximum capture capacity of 2 CO_2 per quinone to be attained, but not so high as to lead to unnecessarily large adduct oxidation potentials.

Figure 1 | (a) Aqueous anthraquinone electrochemical CO₂ capture mechanisms. (b) Six anthraquinone candidates that are soluble at neutral pH.

Aqueous soluble quinones

Informed by a decade of endeavors in developing aqueous anthraquinone flow batteries, 26-32 we selected three anthraquinone derivatives that are aqueous-soluble at neutral pH: 2,7-disulfonated anthraquinone (AQDS), 1,8-bis(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)anthracene-9.10-dione (AO-1.8-3E-OH),²⁴ and 2.2'-((9.10-dioxo-9.10dihydroanthracene-2,6-diyl)bis(oxy))-dipropionic acid (2,6-D2PEAQ)³³ (Figure 1b). Although those quinones show decent aqueous solubility in both oxidized and reduced states, bright yellow precipitates formed when CO2 was introduced to the reduced electrolytes. The yellow precipitates did not form, and clear solutions were afforded when tetra-alkyl ammonium chlorides were used as the supporting salts (Figure 2, Table S1). Specifically, substituting 1 M NaCl with 1 M tetramethylammonium chloride (TMACl) as the supporting salt in 0.1 M AQDS electrolyte (Figure S1), replacing 1 M KCl with 1 M tetrabutylammonium chloride (TBACl) as the supporting salt in 0.1 M 2,6-D2PEAQ (Figure 2) or in 0.1 M AQ-1,8-3E-OH electrolytes produce transparent bright yellow solutions. One plausible explanation is that the bulky, amphiphilic tetra-alkyl ammonium cations and Q(CO₂)2²⁻ can form loose ion pairs rather than the tight ion pairs between alkali metal cations and Q(CO₂)₂²⁻, thus drastically altering the solubility behavior.³⁴ However, the bulkiness of tetra-alkyl ammonium cations cause extremely high cell resistance (Figure S2a) in the flow cell systems because, in such cells, cation-exchange membranes must be used, resulting in prohibitively high energetic cost.

Figure 2 | **Affect of supporting salt cations on solubility of Q(CO₂)₂².** (a) 0.1 M 2,6-D2PEAQ in 1 M TBACl; (b) 0.1 M reduced 2,6-D2PEAQ in 1 M TBACl; (c) 0.1 M reduced 2,6-D2PEAQ with saturated CO₂ in 1 M TBACl. (d) 0.1 M reduced 2,6-D2PEAQ with saturated CO₂ in 1 M KCl. (e) AQ possessing alkyl ammonium ending groups connected via covalent bonds, enhancing aqueous solubility and affording compatibility with anion-exchange membranes.

Inspired by the observation of dramatic change in aqueous solubility of reduced AQs in the presence of CO₂ caused by tetra-alkyl ammonium salts (Figure 2, Table S1), we hypothesized that anthraquinone derivatives tethered with bulky alkyl ammonium cations via covalent bonds might not only have high aqueous solubility in all states, but also be compatible with anion exchange membranes: the oxidized forms are positively charged and the reduced forms are charge-neutral but large in size, with correspondingly low expected cross-over rates. We designed and synthesized 1,4-, 1,5-, 1,8-,³⁵ and 2,6-bis[3-(trimethylammonio)propyl]-anthraquinone (BTMAPAQs) in which the numbers represent the positions of water-solubilizing chains (TMAP) bonded to anthraquinone (AQ) core. Of the four isomers, 2,6-BTMAPAQ exhibits very limited solubility (< 0.1 M) even in its oxidized state (Table S1); 1,8-BTMAPAQ(CO₂)₂²⁻ becomes soluble when TBA⁺ is used as the supporting salt cation (Figure S3); 1,4-, and 1,5-BTMAPAQs are soluble in all states even if KCl is used as the supporting salt. Therefore, 1,4-, 1,5-, and 1,8-BTMAPAQs (Figure 1b) were investigated for electrochemical CO₂ capture.

CO₂ capture mechanism verification

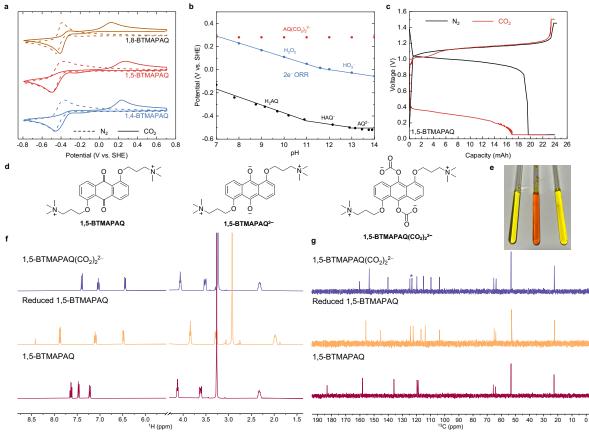


Figure 3 | Electrochemical and physiochemical characterization of BTMAPAQ in N_2 and CO_2 . (a) Cyclic voltammogram (CV) of 10 mL, 5 mM 1,4-, (1,5-)BTMAPAQs in 1 M KCl, 5 mM 1,8-BTMAPAQ in 1 M KCl under streams of pure N_2 (dashed) or CO_2 (solid) at a scan rate of 100 mV s⁻¹. (b) Pourbaix diagram of 1,5-BTMAPAQ (AQ + 2e⁻ + 2H₂O \rightarrow H₂AQ + 2OH⁻; AQ + 2e⁻ + H₂O \rightarrow HAQ⁻ + OH⁻; AQ + 2e⁻ \rightarrow AQ²⁻) and 2-electron oxygen reduction reaction (${}^{1}\!_{2}O_2 + 2e^- + H_2O \rightarrow$ H₂O₂; ${}^{1}\!_{2}O_2 + 2e^- + H_2O \rightarrow$ HO₂⁻ + H⁺). (c) Voltage profiles of 1,5-BTMAPAQ | FcNCl in 100% N_2 (black) and 10% $CO_2 + 90\%$ N_2 for (red). (d) Structure of 1,5-BTMAPAQ, 1,5-BTMAPAQ²⁻, and 1,5-BTMAPAQ(CO_2)₂²⁻. (e) NMR specimens, from left to right in the same order as the molecular structures in (d), and their ${}^{1}\!$ H NMR (f) and ${}^{13}\!$ C NMR (g) spectra. Note that ${}^{1}\!$ H NMR peak broadening was initially observed from the electrochemically reduced aqueous quinone due to the occurrence of residual radicals, but addition of a tiny amount of HCl afforded well-defined peak splitting in the aromatic region (Figure 3f, orange). The chemical shift at 124.6 ppm in 1,5-BTMAPAQ(CO_2)₂²⁻ (Figure 3g, purple, identified with asterisk) is from the dissolved CO_2 .

Cyclic voltammetry (CV) was employed to investigate BTMAPAQs in buffered and unbuffered solutions. As shown in Figure 3a, at pH 7 in N₂, 1,5-BTMAPAQ exhibits a redox potential of -0.465 V vs. SHE with a peak separation of 90 mV. When the solution was constantly purged with CO₂, the major cathodic peak appears at -0.51 V along with a minor cathodic peak at -0.28 V (Figure 3a), which might be caused by a CO₂ buffering effect, enabling 1,5-BTMAPAQ to partially undergo a PCET process. The anodic peak of 1,5-BTMAPAQ largely shifts to +0.28 V, suggesting that extra energy is required to trigger the electrochemical oxidation: 1,5-BTMAPAQ(CO₂) $_2^2 \rightarrow 1$,5-BTMAPAQ + 2CO₂ + 2e⁻. Similar electrochemical behaviors were also shown by 1,4- and 1,8-BTMAPAQs.

To extract the relationship between redox potentials of 1,5-BTMAPAQ and electrolyte pH, we ran CVs in a series of buffered electrolytes to plot its Pourbaix diagram (Figure 3b). The p Ka_1 and p Ka_2 of 1,5-BTMAPH₂AQ are estimated at 10.9 and 12.8, consistent with other aqueous soluble anthrahydroquinones (H₂AQ).^{24,25,33} Because of the dominance of the nucleophilicity-swing mechanism in concentrated solutions, hereafter the oxidized, reduced, and CO₂ bonded states of quinones are abbreviated as Q, Q²⁻, and Q(CO₂)₂²⁻.

We assembled BTMAPAQs | (ferrocenylmethyl)trimethylammonium Chloride (FcNCl)³⁷ flow cells separated by anion-exchange membranes. Thanks to the compatibility between membrane and electrolytes, the alternating current area-specific resistance of the cells, measured via high-frequency electrochemical impedance spectroscopy, is as low as $\sim 1.5~\Omega~cm^2$ (Figure S4). While operating in 0.1 bar CO₂ and 0.9 bar N₂, we noticed a distinct discharge voltage decrease (Figure 3c, Figure S5), consistent with the anodic peak shifts in CVs (Figure 3a), confirming that $Q(CO_2)_2^{2-}$ is the major product when the reduced form is exposed to CO₂. Interestingly, the color of BTMAPAQ solution changed dramatically in different states. For instance, 1,5-BTMAPAQ solution turned from bright yellow to light orange to pale yellow, corresponding to 1,5-BTMAPAQ, 1,5-BTMAPAQ²⁻, and 1,5-BTMAPAQ(CO₂)₂²⁻ (Figure 3e); the structure change was reflected by the distinct chemical shifts in both ¹H and ¹³C NMR spectra (Figure 3f, 3g). Dramatic color changes as well as distinct chemical shifts were also exhibited by AQDS and 1,8-BTMAPAQ in their corresponding three states (Figure S1, S3).

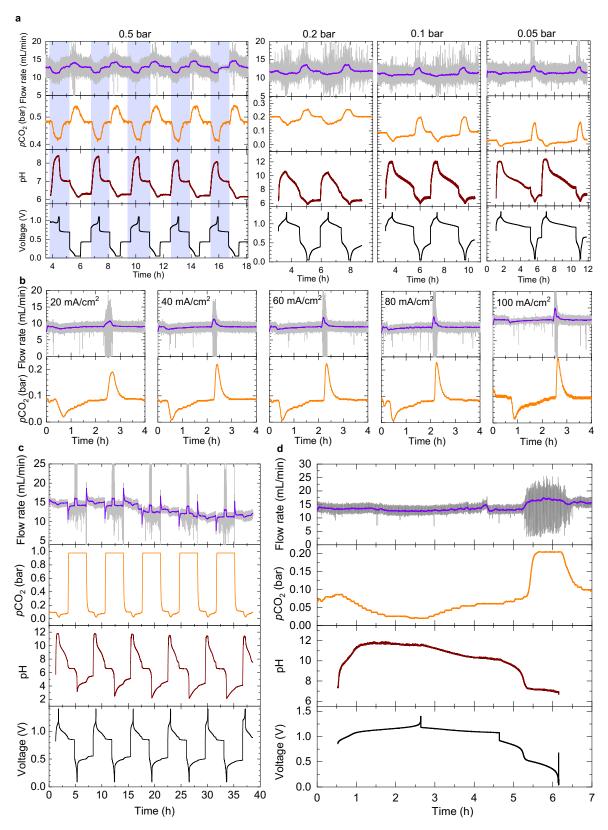
Electrochemical CO₂ capture and release

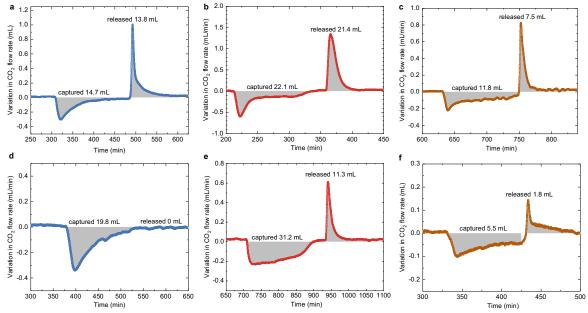
To examine the CO₂ capture capability of BTMAPAQs, we first conducted chemically induced CO₂ capture from pure, flowing CO₂, release into N₂, and sequestration as BaCO₃(s), from which we validated the CO₂ capture capacity of two CO₂ per quinone (Figure S6). Subsequently, we investigated the electrochemically induced CO₂ capture performance of 1,5-BTMAPAQ at 0.5 bar CO₂ and 0.5 bar N₂. (Figure 4a). The electrochemical reduction and oxidation were accompanied by CO₂ capture and release, which were reflected by the periodic oscillation of downstream CO₂ partial pressure and downstream gas flow rate, as well as the pH swing of 1,5-BTMAPAQ electrolyte. A 45-min. interval between reduction and oxidation was chosen as the minimum rest time to complete the gas-liquid reaction, which is the rate-limiting step (Figure S7). Integrating the downstream gas flow rate change during the CO₂ release indicates that the measured volume of released CO₂ is almost the same as the theoretical value (Figure S8), suggesting that each 1,5-BTMAPAQ can capture and release two CO₂ molecules. Through analyzing the round-trip voltage efficiency and coulombic efficiency over five cycles of the electrochemical reduction and oxidation, we found the energetic cost ranges from 65 to 80 kJ/molCO₂ at 20 mA/cm² at a fixed inlet CO₂ partial pressure of 0.5 bar. The close correspondence between the coulombic efficiency and the CO₂ release/capture efficiency in Figure S8e, defined as the ratio of the amount of CO₂ released to the amount captured in the immediately preceding half-cycle, indicates that CO₂ capture/release is triggered by the electrochemical reactions and mirrored by coulombic efficiencies.

In real applications, the partial pressure of CO₂ in feed gas varies over a broad range; hence we performed a series of tests in feed gas with varied partial pressure of CO₂ at 0.05, 0.1, 0.2, and 0.5 bars. To increase the CO₂ capture capacity, we adjusted the corresponding rest time intervals as 210, 105, 52, and 45 min., respectively (Figure 4a, Figure S9). During the electrochemical reduction of 1,5-BTMAPAQ, the pH range went from wide to narrow while the CO₂ partial pressure was adjusted from 0.05 to 0.5 bar. For instance, the pH swung from near neutral to ~12 at 0.05 bar CO₂, but to only ~9 at 0.5 bar CO₂. According to Henry's law, a higher partial pressure of CO₂ can lead to a higher CO₂ solubility in solution, thus enabling the prompt buffering of pH increase induced by electrochemical reduction. Despite of the variation in CO₂ partial pressure, two CO₂ molecules were captured by one 1,5-BTMAPAQ with energetic cost of 48 to 50 kJ/molCO₂ at 20 mA/cm².

One advantage of aqueous flow chemistry is the capability to operate electrochemical reactions at high current densities. Although extremely diluted CO₂ essentially limits the CO₂ capture heterogeneous chemical reaction rate regardless of technology, CO₂ release in our system is coupled with electrochemical oxidation; thus the CO₂ release rate can be readily accelerated by applying high current densities. We electrochemically reduced and oxidized 1,5-BTMAPAQ at 20, 40, 60, 80, and 100 mA/cm² in the presence of 0.1 bar CO₂ (Figure 4b, Figure S10). The depression of downstream CO₂ partial pressure and gas flow rate caused by CO₂ capture was almost the same at different current

densities, indicating that CO₂ capture reaction rate is limited by mass transport of 0.1 bar CO₂ rather than by the electrochemical reduction rate, i.e. the applied current density. However, the peaks of downstream CO₂ partial pressure and gas flow rate caused by CO₂ release became sharper and narrower with the increase of current density, suggesting that the CO₂ release rate can be accelerated with increased current density, thus shortening the CO₂ release time. It is worth noting that the calculated volumes of the released CO₂ reach the theoretical values at different current densities (Figure S10). The mid-point voltage difference between charge and discharge curves increases with current density, which is caused by internal cell resistance, resulting in a broad energetic cost range of 65 to 140 kJ/molCO₂.




Figure 4 | 1,5-BTMAPAQ electrochemical CO₂ capture capability in CO₂-N₂ mixtures. (a) CO₂ capture and release cycling at 20 mA/cm². The partial pressure of CO₂ is set to \approx 0.05, 0.1, 0.2, and 0.5 bar for the experiments,

separately. Flow cells comprising 10–12 mL of 0.115 M 1,5-BTMAPAQ in 1 M KCl and 40 mL of 0.2 M FcNCl in 1 M KCl were used for the experiments at 0.05, 0.1 and 0.2 bar. A flow cell comprising 10 mL of 0.115 M 1,5-BTMAPAQ in 1 M KCl and 40 mL of 0.2 M BTMAPFc (bis((3-trimethylammonio)propyl)ferrocene dichloride)³⁸ in 1 M KCl was used for the experiment at 0.5 bar. (b) Plot presents the downstream CO₂ partial pressure and the downstream total gas flow rates when the electrochemical redox reactions were triggered at 20, 40, 60, 80, and 100 mA/cm². A flow cell comprises 10 mL of 0.057 M 1,5-BTMAPAQ in 1 M KCl and 40 mL of 0.1 M FcNCl in 1 M KCl. (c) CO₂ capture and release cycling where the capture occurred in an inlet CO₂ partial pressure of 0.1 bar and the release occurred in an inlet CO₂ partial pressure of 1 bar. A flow cell comprises 12 mL of 0.115 M 1,5-BTMAPAQ in 1 M KCl and 40 mL of 0.2 M FcNCl in 1 M KCl at 20 mA/cm². (d) CO₂ capture and release in inlet CO₂ partial pressure of 0.1 bar in a flow cell comprising 10 mL of 0.4 M 1,5-BTMAPAQ DI water and 30 mL of 0.9 M FcNCl in DI water at 20 mA/cm². Plots present current density, voltage, pH, downstream CO₂ partial pressure, and the downstream total gas flow rate of 1,5-BTMAPAQ electrolyte. The initial gas flow rate is set to 11.76 mL/min.

It is important to evaluate the CO₂ capture capacity and energetic cost when a system is used to capture CO₂ from a diluted source and release pure CO₂. Hence, we performed our experiment using 1,5-BTMAPAQ with 0.1 bar inlet CO₂ and 1.0 bar pure CO₂ exit stream (Figure 4c). The volume of released CO₂ approaches the theoretical value over five cycles (Figure S11). The energetic cost and coulombic efficiency are either comparable to or slightly higher than those measured under previous conditions (Figure S9, S10).

A concentrated quinone flow system comprising 0.4 M 1,5-BTMAPAQ was set up to demonstrate high volumetric CO₂ capture capacity (Figure 4d). Because of the low pKa values (<13) of 1,5-BTMAPH₂AQ (Figure 3b), the pH swing for 0.4 M 1,5-BTMAPAQ is the same as that for 0.1 M 1,5-BTMAPAQ, further supporting our interpretation of the results as the formation of Q(CO₂)2²⁻. Although the increased concentration of 1,5-BTMAPAQ took a longer time to complete the capture, it still reaches the theoretical capacity at the energetic cost of 90 kJ/molCO₂.

O₂ sensitivity evaluation

Figure 5 | **CO₂** capture and release of 1,4-, 1,5-, 1,8-BTMAPAQs with and without **O₂**. Calculated volumes of captured and released CO₂ by (a) 1,4-, (b) 1,5-, (c) 1,8-BTMAPAQs in a feed gas stream of 90% N₂ and 10% CO₂ at 1.0 bar. Calculated volumes of captured and released CO₂ by (d) 1,4-, (e) 1,5-, (f) 1,8-BTMAPAQs in a feed gas stream of 87% N₂, 10% CO₂, and 3% O₂ (simulated flue gas) at 1.0 bar. 5 mL 0.1 M 1,4-, 1,5-BTMAPAQs, 1 M KCl solutions were paired with 40 mL 0.1 M FcNCl, 1 M KCl solution. 5 mL 0.1 M 1,8-BTMAPAQ 1 M TBACl solution was paired with 40 mL 0.1 M FcNCl, 1 M TBACl solution. The BTMAPAQs were electrochemically reduced and oxidized at 40 mA/cm² and followed by potential holds to complete the reactions. The theoretical CO₂ capture & release capacity for the BTMAPAQ electrolytes is 22.4 mL. Electrochemical reduction/oxidation were followed by rest time that was adjusted to approach the maximum CO₂ capture/release capacity while minimizing the O₂ induced side reactions. The durations of CO₂ capture/release for 1,4-BTMPAQ are 175/125 min. without O₂ and 170/100 min.

in the simulated gas, respectively. The durations of CO₂ capture/release for 1,5-BTMPAQ are 145/80 min. without O₂ and 226/160 min. in the simulated gas, respectively. The durations of CO₂ capture/release for 1,8-BTMPAQ are 120/90 min. without O₂ and 100/70 min. in the simulated gas, respectively. The addition of 1 M TBACl to 0.1 M 1,8-BTMAPAQ increased the viscosity of solution, slowing the dissolution of CO₂ and O₂ from gas phase to liquid phase.

In real applications, CO_2 always coexists with O_2 at varying partial pressures depending on CO_2 sources. It has been reported that reduced quinones are susceptible to O_2 , 17,39,40 which can reversibly chemically oxidize the reduced quinones to their oxidized states. These reduced quinones are the species of interest for binding CO_2 . Hence, we investigated the oxygen sensitivity of the reduced quinones including H_2Q , HQ^- , Q^{2-} , $HQ(CO_2)^-$, and $Q(CO_2)_2^{2-}$, as capture will become practical only if the reduced quinones become oxidized by O_2 sufficiently slowly in an atmosphere with a relatively high O_2 partial pressure.

The reduced quinones are oxygen-sensitive because their oxidation potentials are much lower than the O₂ reduction potential. Whereas the oxidation potentials of Q(CO₂)₂²⁻ can positively shift by at least 500 mV compared to those of the reduced quinones (Figure 3a), approaching the reduction potential of O₂ (Figure 3b), which may make Q(CO₂)₂²- more O₂-tolerant. Through tracking ¹H NMR of the reduced quinones with and without captured CO₂ during air exposure (Figure S13-S18), we observed the reduced quinones gradually converted to the oxidized forms over days with different conversion rates. After operating BTMAPAQ flow cells in atmospheres with fixed CO2 partial pressure but varied O₂ partial pressure (Table S2), we analyzed their coulombic efficiency to compare the oxygen sensitivity of BTMAPAO isomers. We also performed chemically induced CO₂ capture, release, and sequestration with air exposure (Figure S19) and found that 1.7 equivalents of CO₂ were released when the solution with captured CO₂ was vigorously stirred in air for 15 min. The detailed information is reported in the Oxygen sensitivity section of Supplementary Information. Those measurements inspired us to further evaluate BTMAPAQs-based electrochemical CO₂ capture from simulated flue gases with an upgraded system setup (Figure S20-S22). By integrating the peak area of CO₂ flow rate deviation over CO₂ capture and release cycles (Figure 5), we evaluated the CO₂ capture and release volumes from 1,4-, 1,5-, and 1,8-BTMAPAQs in the absence and presence of O2. When 1,4- and 1,5-BTMAPAQ were exposed to 1.0 bar feed gas composed of 10% CO₂ and 90% N₂, the CO₂ release/capture volume ratio is close to 1 (Figure 5a, 5b), suggesting the reversibility of CO₂ capture and release. When exposed to 1.0 bar simulated flue gas composed of 3% O2, 10% CO2, and 87% N2, the volumes of released CO2 greatly decrease, which we attribute to the oxygen-induced side reactions shown in Eqns. 10 and 11 in Table 1. Compared to the CO₂ capture volumes from 1,4and 1,5-BTMAPAQs in the absence of O2, their CO2 capture volumes in the presence of O2 become significantly larger, which we attribute to additional CO₂ irreversibly trapped by the hydroxide ions converted from oxygen (Eqns. 7, 8, 10, and 11 in Table 1). The CO₂ capture volumes from 1,8-BTMAPAQ are much smaller than those from 1,4and 1,5-BTMAPAQ, which we tentatively attribute to the increased electrolyte viscosity caused by the addition of 1 M TBA⁺, which slows down the dissolution of CO₂ to the electrolyte, lowering the capture capacity.

Among the three BTMAPAQ isomers, 1,5-BTMAPAQ shows the highest CO₂ capture capacity of 21.4 mL in the absence of O₂, which is close to the theoretical value of 22.4 mL assuming one 1,5-BTMAPAQ captures two CO₂ molecules. Under 3% O₂ exposure for 226 min. during CO₂ capture and 160 min. during the release, 1,5-BTMAPAQ still released 11.3 mL CO₂, which is ~50% of the theoretical capacity. It is worth noting that the CO₂ capture/release capacity can be further improved by optimizing the CO₂ capture time duration, as with decreased exposure time there should be fewer O₂-induced side reactions, and more captured CO₂ will be released. However, if the CO₂ capture duration is too short, both captured and released CO₂ volumes will become small, lowering the faradaic efficiency, defined in this context as the ratio of the amount of CO₂ reversibly captured and released to the theoretical capacity. Thus, a trade-off is apparent between the CO₂ release/capture volume ratio and faradic efficiency. Nevertheless, the O₂ resistance and CO₂ capture capability shown by 1,5-BTMAPAQ in Figure 4e demonstrates that reduced quinones are not necessarily too oxygen-sensitive to be useful for CO2 capture. The BTMAPAQ-based electrochemical CO2 capture-release behavior in a simulated flue gas atmosphere over multiple cycles (Figure S23-S26) illustrates that there is still room for improvement of long-term O₂-tolerance of reduced quinones through judicious molecular design. The distinct O₂ reactivity difference among the isomers implies that a substituent position effect plays a major role in governing their oxygen tolerance. This may be significantly improved via molecular engineering with the incorporation of steric and electronic effects, intra-, inter-molecular interactions, etc. induced by quinone cores or covalently bonded functional groups.

Table 1 | Electrochemical and chemical reactions during CO₂ capture & release when oxygen is involved. The hydroxide ions produced from Eqns. 7 and 8 can irreversibly capture CO₂ via Eqn 6.

Stage 1	Electrochemical reduction	Eqn. 1	$AQ + 2e^- \rightarrow AQ^{2-}$
		Eqn. 2	AQ + 2e ⁻ + 2H ₂ O \rightarrow H ₂ AQ + 2OH ⁻
		Eqn. 3	$AQ + 2e^- + H_2O \rightarrow HAQ^- + OH^-$
Stage 2	Electrochemically induced CO ₂ capture	Eqn. 4	$AQ^{2-} + CO_2 \rightarrow AQ(CO_2)_2^{2-}$
		Eqn. 5	$HAQ^- + CO_2 \rightarrow HAQ(CO_2)^-$
		Eqn. 6	$OH^- + CO_2 \rightarrow HCO_3^-$
	O ₂ -induced chemical reactions and irreversible CO ₂ capture	Eqn. 7	$AQ^{2-} + H_2O + 1/2O_2 \rightarrow AQ + 2OH^-$
		Eqn. 8	$HAQ^- + 1/2O_2 \rightarrow AQ + OH^-$
		Eqn. 9	$H_2AQ + 1/2O_2 \rightarrow AQ + H_2O$
		Eqn. 10	$HAQ(CO_2)^- + 1/2O_2 \rightarrow AQ + OH^- + CO_2$
		Eqn. 11	$AQ(CO_2)_2^{2-} + H_2O + 1/2O_2 \rightarrow AQ + 2OH^- + 2CO_2$
Stage 3	Electrochemically induced CO ₂ release	Eqn. 12	$AQ(CO_2)_2^{2-} - 2e^- \rightarrow AQ + 2CO_2$
		Eqn. 13	$H_2AQ - 2e^- + 2HCO_3^- \rightarrow AQ + 2H_2O + 2CO_2$
		Eqn. 14	$HAQ(CO_2)^ 2e^- + HCO_3^- \rightarrow AQ + H_2O + 2CO_2$

Conclusions

Through molecular screening and modification, we developed three water-soluble and anion-exchange membrane compatible bis[3-(trimethylammonio)propyl]-anthraquinone (BTMAPAQ) isomers that can be used for electrochemical CO₂ capture. With a series of characterizations including cyclic voltammetry, Pourbaix diagram analysis, ¹H and ¹³C NMR, electrochemical charge–discharge voltage–capacity profiles, and *in situ* monitoring of pH, p_{CO2}, and gas flow rate, we showed that aqueous quinone flow chemistry-enabled electrochemical CO₂ capture proceeds via pH-swing and nucleophilicity-swing mechanisms. The latter is more dominant because of low pKa values of hydroquinones. 1,5-BTMAPAQ electrolyte can capture and release the theoretical limit of two equivalents of CO₂ molecules per quinone from 1-bar CO₂-N₂ mixtures for which the CO₂ partial pressure is as low as 0.05 bar, or the applied current density is as high as 100 mA/cm², or the organic concentration is as high as 0.4 M, with an energetic cost ranging from 48 to 140 kJ/molCO₂. When exposed to a simulated flue gas comprising 3% O₂, 10% CO₂, and 87% N₂ at 1.0 bar total pressure for over 4 hr., 1,5-BTMAPAQ reversibly captured and released 50% of the theoretical capacity. The distinct position effect on O₂ reactivity exhibited by BTMAPAQ isomers illustrates the opportunity for molecular engineering for further improvement of molecular properties. This may stimulate the progress of oxygentolerant, low-cost, scalable aqueous quinone flow chemistry enabled electrochemical CO₂ capture.

Acknowledgments

Research at Harvard was supported by the Harvard Climate Change Solutions Fund. K.A. was supported in part by U.S.DOE award DE-AC05-76RL01830 through PNNL subcontract 654799 and in part through the Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship (PDF) program [application number PDF-557232-2021]. We acknowledge Alex Forse from Univ. of Cambridge for useful discussions. We thank Prof. Theodore A. Betley, Dr. Thomas Cochard, Andrew Bergman, Toly Rinberg, Eric M. Fell, Thomas Y. George, Maia Alberts, Michael Emanuel, Dr. Jinxu Gao for useful discussions.

Author contributions

M.J.A. and R.G.G. supervised the project. Y.J., K.A., and M.J.A. conceived the idea. Y.J. and K.A. designed the experiment. K.A. performed the electrochemical CO₂ capture experiments in the absence of O₂ and analyzed the data. Y.J. designed and synthesized the molecules, performed the chemical characterizations, and ran electrochemical CO₂ capture experiments in the presence of O₂, and analyzed the data. D.X. and S.J. built the CO₂ capture setup and compiled the Arduino code for sensor control and data collection. A.A. collected the Pourbaix diagram data. E.F.K. synthesized the 2,6-D2PEAQ molecule. All authors contributed to the discussion. Y.J., K.A. and M.J.A. wrote the manuscript with input from all co-authors.

Experiments and methods

Synthesis of BTMAPAQs

To a 1 L of flame dried Schlenk flask, 40 mmol of dihydroxyanthraquinone, 88 mmol of anhydrous K₂CO₃, and 9.5 mmol of KI were suspended in 160 mL of anhydrous DMF. After being stirred under nitrogen for 20 min., 88 mmol of 3-bromopropyl trimethylammonium bromide was added to the dark suspension. The dark suspension was sealed to prevent ambient moisture, then was vigorously stirred at 100 °C for 16 hours to afford a brownish slurry.

After being cooling down, the slurry was added with 150 mL of ethyl acetate, stirred at room temperature for 30 min., then filtered to collect the brown cake. The washing procedure was repeated for few times until the filtrate became colorless. The cake was dissolved into methanol, and the solution was filtered to remove insoluble inorganic salts. The filtrate was condensed under vacuo to remove methanol and collect the dark red solid, which was then redissolved in deionized water.

The aqueous quinone solution was then transferred to an anion-exchange resin column prepared in advance to replace bromide with chloride ions. The dark red (bright yellow depending on the concentration) solution was condensed under vacuo to remove water and collect the red solid.

The red solid was re-dissolved in methanol to get the saturated solution, which was then drop-wise added to 200 mL of ethyl acetate and afford precipitates. The precipitates were collected by filtration to get final orange to yellow cakes. The yields range from 85% to 95%.

Characterization

 1 H, 13 C NMR spectra were recorded on Varian INOVA 500 spectrometers at 500 MHz. Aliquots were prepared in deuterated water (D₂O), corresponding NMR spectra were recorded in D₂O with the residual H₂O (δ 4.79 ppm for 1 H NMR). Electrochemical characterizations

Cyclic voltammetry measurements

Glassy carbon was used as the working electrode for all three-electrode CV tests with a 5 mm diameter glassy carbon working electrode, an Ag/AgCl reference electrode (BASi, pre-soaked in 3 M NaCl solution), and a graphite counter electrode. All cyclic voltammetry, linear sweep voltammetry, and chronoamperometry measurements were conducted on Gamry Instruments and CHI Instrument electrochemical analysers.

Flow cell assembly

Flow cell experiments were constructed with cell hardware from Fuel Cell Tech (Albuquerque, NM). The flow cell was assembled into a zero-gap flow cell configuration using pyrosealed POCO graphite flow plates with identical interdigitated flow fields. Each electrode was composed of 1 layer of AvCarb HCBA carbon cloth with a 5 cm² geometric surface area. Selemion DSV-N was used as the anion exchange membrane. The flow rate was set at 50–70 mL/min. Biologic SP-150e and Gamry Reference 3000 potentiostat was used as our electrochemical workstation. KNF diaphragm pumps were used to circulate electrolytes through the flow fields and electrodes in the cell stack. For some tests, a Cole-Parmer Digital gear pump was used.

Bis((3-trimethylammonio)propyl)ferrocene dichloride (BTMAPFc) and (ferrocenylmethyl)trimethylammonium Chloride (FcNCl) were purchased from TCI-America chemical company. Tetramethyl ammonium chloride, tetrabutylammonium chloride were purchased from Sigma Aldrich. All those chemicals were directly used without further purification.

Electrochemical CO₂ capture and release

Flow cells were charged at constant current, followed by voltage holds until current hits the background current values. Then the flow cells were set in rest mode for certain time to complete carbon capture. The cells were discharged at constant current, followed by a voltage hold. After the voltage hold, the battery was set in rest mode to complete CO₂ release.

A stream of feed gas composed of N₂, CO₂, and O₂ was introduced to the anthraquinone electrolytes and kept flowing constantly with pre-set partial pressure. The total pressure is 1 bar, and the total flow rate is 11.76 mL/min. FS4001 MEMS Mass Flow Sensor, LuminOX O₂ sensor (CM-42990), SprintIR CO₂ sensor (GC-0018) were used in our tests.

References

¹K.Z. House, A.C. Baclig, M. Ranjan, E.A. van Nierop, J. Wilcox, and H.J. Herzog, "Economic and energetic analysis of capturing CO₂ from ambient air", *Proc. Natl. Acad. Sci. U S A* **108**, 20428 (2011). https://doi.org/10.1073/pnas.1012253108

- ²P.J. O'Brien, "Molecular mechanisms of quinone cytotoxicity", *Chem.-Biol. Interactions* **80**, 41 (1991). https://doi.org/10.1016/0009-2797(91)90029-7
- ³B. Nowicka and J. Kruk, "Occurrence, biosynthesis and function of isoprenoid quinones", *Biochim Biophys Acta* **1797**, 1587 (2010). https://doi.org/10.1016/j.bbabio.2010.06.007
- ⁴B. Dulo, K. Phan, J. Githaiga, K. Raes, and S. De Meester, "Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential", *Waste and Biomass Valorization* **12**, 6339 (2021). https://doi.org/10.1007/s12649-021-01443-9
- ⁵J.M. Campos-Martin, G. Blanco-Brieva, and J.L. Fierro, "Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process", *Angew. Chem. Int. Ed. Engl.* **45**, 6962 (2006). https://doi.org/10.1002/anie.200503779
- ⁶Y. Jing, R.G. Gordon, and M.J. Aziz, "Aqueous organic flow batteries.", Weinheim: Wiley-VCH 3, (2023).
- ⁷M.B. Mizen and M.S. Wrighton, "Reductive addition of CO₂ to 9,10-phenanthrenequinone", *Journal of the Electrochemical Society* **136**, 7 (1989). https://doi.org/https://doi.org/10.1149/1.2096891
- ⁸P. Scovazzo, J. Poshusta, D. DuBois, C. Koval, and R. Noble, "Electrochemical separation and concentration of 1% CO₂ from nitrogen", *Journal of the Electrochemical Society* **150**, 8 (2003). https://doi.org/10.1149/1.1566962
- ⁹M. Quan, D. Sanchez, M.F. Wasylkiw, and D.K. Smith, "Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones", *J. Am. Chem. Soc.* **129**, 12847 (2007). https://doi.org/10.1021/ja0743083
- ¹⁰S. Jin, M. Wu, R.G. Gordon, M.J. Aziz, and D.G. Kwabi, "pH swing cycle for CO₂ capture electrochemically driven through proton-coupled electron transfer", *Energy & Environmental Science* **13**, 3706 (2020). https://doi.org/10.1039/d0ee01834a
- ¹¹H. Xie, W. Jiang, T. Liu, Y. Wu, Y. Wang, B. Chen, D. Niu, and B. Liang, "Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier", *Cell Reports Physical Science* 1, (2020). https://doi.org/10.1016/j.xcrp.2020.100046
- ¹²B. Gurkan, F. Simeon, and T.A. Hatton, "Quinone reduction in ionic liquids for electrochemical CO₂ separation", *ACS Sustainable Chemistry & Engineering* **3**, 1394 (2015). https://doi.org/10.1021/acssuschemeng.5b00116
- ¹³D. Wielend, D.H. Apaydin, and N.S. Sariciftci, "Anthraquinone thin-film electrodes for reversible CO₂ capture and release", *Journal of Materials Chemistry A* **6**, 15095 (2018). https://doi.org/10.1039/c8ta04817g
- ¹⁴S. Voskian and T.A. Hatton, "Faradaic electro-swing reactive adsorption for CO₂ capture", *Energy & Environmental Science* **12**, 3530 (2019). https://doi.org/10.1039/c9ee02412c
- ¹⁵Y. Liu, H.Z. Ye, K.M. Diederichsen, T. Van Voorhis, and T.A. Hatton, "Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media", *Nat. Commun.* **11**, 2278 (2020). https://doi.org/10.1038/s41467-020-16150-7
- ¹⁶K.M. Diederichsen, Y. Liu, N. Ozbek, H. Seo, and T.A. Hatton, "Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry", *Joule* 6, 221 (2022). https://doi.org/10.1016/j.joule.2021.12.001
- ¹⁷J.M. Barlow and J.Y. Yang, "Oxygen-stable electrochemical CO₂ capture and concentration with quinones using alcohol additives", *J. Am. Chem. Soc.* **144**, 14161 (2022). https://doi.org/10.1021/jacs.2c04044
- ¹⁸X. Li, X. Zhao, Y. Liu, T.A. Hatton, and Y. Liu, "Redox-tunable Lewis bases for electrochemical carbon dioxide capture", *Nature Energy* 7, 1065 (2022). https://doi.org/10.1038/s41560-022-01137-z
- ¹⁹S. Jin, M. Wu, Y. Jing, R.G. Gordon, and M.J. Aziz, "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing", *Nat. Commun.* **13**, 2140 (2022). https://doi.org/10.1038/s41467-022-29791-7
- ²⁰H. Seo and T.A. Hatton, "Electrochemical direct air capture of CO₂ using neutral red as reversible redox-active material", *Nat. Commun.* **14**, 313 (2023). https://doi.org/10.1038/s41467-023-35866-w
- ²¹S. Pang, S. Jin, F. Yang, M. Alberts, L. Li, D. Xi, R.G. Gordon, P. Wang, M.J. Aziz, and Y. Ji, "A phenazine-based high-capacity and high-stability electrochemical CO₂ capture cell with coupled electricity storage", *Nature Energy* (2023). https://doi.org/10.1038/s41560-023-01347-z
- ²²C.L. Huang, C.J. Liu, K.J. Wu, H.R. Yue, S.Y. Tang, H.F. Lu, and B. Liang, "CO₂ capture from flue gas using an electrochemically reversible hydroquinone/quinone solution", *Energy & Fuels* **33**, 3380 (2019). https://doi.org/10.1021/acs.energyfuels.8b04419
- ²³L. Luo, L. Hou, Y. Liu, K. Wu, Y. Zhu, H. Lu, and B. Liang, "Regeneration of Na₂Q in an electrochemical CO₂ capture system", *Energy & Fuels* **35**, 12260 (2021). https://doi.org/10.1021/acs.energyfuels.1c00960
- ²⁴S. Jin, Y. Jing, D.G. Kwabi, Y. Ji, L. Tong, D. De Porcellinis, M.A. Goulet, D.A. Pollack, R.G. Gordon, and M.J. Aziz, "A water-miscible quinone flow battery with high volumetric capacity and energy density", *ACS Energy Letters* **4**, 1342 (2019). https://doi.org/10.1021/acsenergylett.9b00739

- ²⁵Y. Ji, M.A. Goulet, D.A. Pollack, D.G. Kwabi, S. Jin, D. Porcellinis, E.F. Kerr, R.G. Gordon, and M.J. Aziz, "A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate", *Advanced Energy Materials* **9**, 1900039 (2019), https://doi.org/10.1002/aenm.201900039
- ²⁶B.T. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, and M.J. Aziz, "A metal-free organic–inorganic aqueous flow battery", *Nature* **505**, 195 (2014). https://doi.org/10.1038/nature12909
- ²⁷K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, and M.P. Marshak, "Alkaline quinone flow battery", *Science* **349**, 1529 (2015). https://doi.org/10.1126/science.aab3033
- ²⁸D.G. Kwabi, K. Lin, Y. Ji, E.F. Kerr, M.-A. Goulet, D. De Porcellinis, D.P. Tabor, D.A. Pollack, A. Aspuru-Guzik, R.G. Gordon, and M.J. Aziz, "Alkaline quinone flow battery with long lifetime at pH 12", *Joule* **2**, 1907 (2018). https://doi.org/10.1016/j.joule.2018.08.013
- ²⁹M. Wu, Y. Jing, A.A. Wong, E.M. Fell, S. Jin, Z. Tang, R.G. Gordon, and M.J. Aziz, "Extremely stable anthraquinone negolytes synthesized from common precursors", *Chem* **6**, 11 (2020). https://doi.org/10.1016/j.chempr.2020.03.021.
- ³⁰Y. Jing, E.W. Zhao, M.A. Goulet, M. Bahari, E.M. Fell, S. Jin, A. Davoodi, E. Jonsson, M. Wu, C.P. Grey, R.G. Gordon, and M.J. Aziz, "In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries", *Nat. Chem.* **14**, 1103 (2022). https://doi.org/10.1038/s41557-022-00967-4
- ³¹D.G. Kwabi, Y. Ji, and M.J. Aziz, "Electrolyte lifetime in aqueous organic redox flow batteries: A critical review", *Chem. Rev.* **120**, 6467 (2020). https://doi.org/10.1021/acs.chemrev.9b00599
- ³²M. Wu, M. Bahari, E. Fell, R.G. Gordon, and M.J. Aziz, "High-performance anthraquinone with potentially low cost for aqueous redox flow batteries", *Journal of Materials Chemistry A* (2021). https://doi.org/10.1039/d1ta08900e
- ³³E.F. Kerr, Z. Tang, T.Y. George, S. Jin, E.M. Fell, K. Amini, Y. Jing, M. Wu, R.G. Gordon, and M.J. Aziz, "High energy density aqueous flow battery utilizing extremely stable, branching-induced high-solubility anthraquinone near neutral pH", *ACS Energy Letters* **8**, 8 (2023). https://doi.org/https://doi.org/10.1021/acsenergylett.2c01691
- ³⁴Y. Marcus, "Tetraalkylammonium ions in aqueous and non-aqueous solutions", *Journal of Solution Chemistry* **37**, 1071 (2008). https://doi.org/10.1007/s10953-008-9291-1
- ³⁵Y. Zhu, Y. Li, Y. Qian, L. Zhang, J. Ye, X. Zhang, and Y. Zhao, "Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere", *Journal of Power Sources* **501**, (2021). https://doi.org/10.1016/j.jpowsour.2021.229984
- ³⁶J. Seravalli and S.W. Ragsdale, "¹³C NMR characterization of an exchange reaction between CO and CO₂ catalyzed by carbon monoxide dehydrogenase", *Biochemistry* **47**, 12 (2008). https://doi.org/https://doi.org/10.1021/bi8004522 ³⁷B. Hu, C. DeBruler, Z. Rhodes, and T.L. Liu, "Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage", *J. Am. Chem. Soc.* **139**, 1207 (2017). https://doi.org/10.1021/jacs.6b10984
- ³⁸E.S. Beh, D. De Porcellinis, R.L. Gracia, K.T. Xia, R.G. Gordon, and M.J. Aziz, "A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention", *ACS Energy Letters* **2**, 639 (2017). https://doi.org/10.1021/acsenergylett.7b00019
- ³⁹A.T. Bui, N.A. Hartley, A.J.W. Thom, and A.C. Forse, "Trade-off between redox potential and the strength of electrochemical CO₂ capture in quinones", *J. Phys. Chem. C Nanomater. Interfaces* **126**, 14163 (2022). https://doi.org/10.1021/acs.jpcc.2c03752
- ⁴⁰A.M. Zito, D. Bím, S. Vargas, A.N. Alexandrova, and J.Y. Yang, "computational and experimental design of quinones for electrochemical CO₂ capture and concentration", *ACS Sustainable Chemistry & Engineering* **10**, 11387 (2022). https://doi.org/10.1021/acssuschemeng.2c03463