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Abstract 

Rising antimicrobial resistance (AMR) and lack of innovation in the antibiotic pipeline 

necessitate novel approaches to discovering new drugs. Metal complexes have 

proven to be promising antimicrobial compounds, but the number of studied 

compounds is still low. Lately, machine learning (ML) has emerged as a valuable tool 

for guiding the design of small organic molecules, potentially even in low-data 

scenarios. For the first time, we extend the application of ML to the discovery of metal-

based medicines. Utilising 288 modularly synthesized ruthenium arene Schiff-base 

complexes and their antibacterial properties, a series of ML models were trained. The 

models perform well and are used to predict the activity of 54 new compounds. These 

displayed a 5.1x higher hit-rate (48.1%) against methicillin-resistant Staphylococcus 

aureus (MRSA) compared to the original library (9.4%), demonstrating that ML can be 

applied to improve the success-rates in the search of new metalloantibiotics. This work 

paves the way for more ambitious applications of ML in the field of metal-based drug 

discovery. 

 

Introduction 

Drug-resistant bacterial infections are already causing 1.3 million deaths per year 

world-wide.1 At the same time antibiotic use has increased during the COVID-19 

pandemic2,3 and is still on the rise in agriculture.4 Yet against this backdrop, most 

pharmaceutical companies have shut down their antibiotic development programs. 

This is reflected in a meagre clinical pipeline with only a small number of compounds 

with novel modes of action in clinical trials, even though there has been a slight but 

promising increase in recent years.5 As the conventional sources for antibiotics, i.e. 

natural products and small organic molecules are not enough to contain the worsening 

antimicrobial resistance (AMR) problem, novel approaches are urgently needed. 

Transition metal complexes have made a lasting impact in medicine with the platinum-

based anticancer drugs constituting some of the most effective chemotherapeutic 

cancer regimens in the clinic today.6,7 Over the last decade, more and more studies 

have highlighted the promising antimicrobial properties of metal complexes.8–11 The 

recent progress in this field has been highlighted in several review articles.12,13 We 

have recently shown that metal complexes have superior hit-rates against critical 
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bacteria14 and fungi15 in vitro compared to purely organic molecules. We could show 

that metal complexes did not possess higher rates of cytotoxicity or haemolysis 

against human cells compared to their organic counterparts.14 Ruthenium complexes 

in particular seemed to have promising antibacterial properties, with one compound 

family currently undergoing preclinical evaluations.9,16,17 However, at this stage the 

vast transition metal chemical space remains uncharted. 

Machine-learning (ML) approaches have been applied to different facets of the drug 

discovery process, including the prediction of bioactive compounds. In 2020, Stokes 

et al. reported the application of deep learning to the prediction of antibacterial 

compounds. The authors trained a deep neural network on Escherichia coli growth 

inhibition data of 2,335 unique compounds. The library comprised a large portion of 

US Food and Drug Administration (FDA) approved compounds as well as natural 

products. With the trained model, the authors identified halicin from the Drug 

Repurposing Hub as an antibacterial compound and verified its activity both in vitro 

and in vivo.18 A similar approach was utilized to discover the antibiotic abaucin which 

displayed narrow-spectrum activity against Acinetobacter baumanii both in vitro and 

in vivo, highlighting that ML models can be utilized to predict both broad-spectrum as 

well as narrow-spectrum antibiotics.19 Recently, Capecchi et al. have shown that ML 

can also be utilised to predict non-hemolytic antimicrobial peptides.20 Despite these 

encouraging examples, their numbers are still sparse and they rely on available 

databases such as already FDA approved drugs or collections such as the Drug 

Repurposing Hub, limiting their potential to discover entirely new compounds. 

The application of ML approaches to transition metal complexes has been even slower 

as the number of curated datasets is hitherto very limited. An additional difficulty when 

dealing with metal complexes is that standard string representations such as SMILES 

tend to not be generally applicable. However, many cheminformatics tools rely on 

these representations to translate molecules into a computer-readable format that can 

be utilised for training of ML models. 

To tackle these challenges, we have opted to utilize systematic data generated 

inhouse, maximising its robustness. Secondly, we have focused this study on a single 

metal scaffold. Herein we report the application of ML to the prediction of antibacterial 

ruthenium complexes. We present a new, yet simple fingerprint that describes these 

metal complexes sufficiently for ML models to be trained on antimicrobial activity data. 

We then use these models to predict novel active ruthenium complexes from a virtual 

library of over 70 million possible compounds. We validate the ML approach by 

acquiring and synthesizing a selection of predicted compounds showing that we could 

significantly increase our hit-rate through the ML-guided building block selection to 

discover entirely novel antibacterial ruthenium complexes. 

Results and Discussion 

In ongoing work we have prepared a combinatorial library of novel ruthenium-arene 

Schiff-based complexes and evaluated their antimicrobial properties.21 This was 

based on an combinatorial synthesis approach described by the Ang group in earlier 

work.22–25 
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Figure 1. General reaction scheme for the synthesis of combinatorial ruthenium arene Schiff-base complexes. 

By combining 6 picolinaldehydes with 12 aniline derivatives and 4 ruthenium-arene 

precursors, 288 novel compounds could be prepared (Figure 1). All 288 compound 

crudes were directly screened through the CO-ADD initiative26 for their ability to inhibit 

microbial growth against a panel of ESKAPE pathogens (Escherichia coli, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, MRSA) and two 

fungi (Cryptococcus neoformans (yeast) and Candida albicans). No significant 

inhibition was found against the Gram-negative bacteria and only three compounds 

showed some inhibition of C. neoformans. However, 27 compounds (9.4%) showed 

significant growth inhibition against Gram-positive MRSA at 20 µM. For 16 (5.6%) of 

these an MIC <20 µM could be determined (Figure 2). Further investigation of lead 

compounds is currently underway and will be reported separately. 

Figure 2. Structures of the picolinaldehydes (PA), aniline derivatives (AD) and ruthenium arenes (RA) for the 

combinatorial library and the MRSA growth inhibition-% data at 20 µM given for the 288 tested compounds (white 

dots indicate a confirmed MIC < 20 µM, for specific MICs see Table S1). 

It is evident that even though we have prepared 288 complexes with high ease and 

low costs, this is barely scratching the surface of the possible compounds that could 

be made. To construct a more robust library towards antimicrobial efforts without 
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blindly making more compounds, a more guided approach could be applied to the data 

obtained and direct future synthetic explorations.  

While ML approaches have gained widespread attention and application in organic 

drug discovery, they have not been widely applied to metal complexes yet. One reason 

is that most conventional methods to generate descriptors or feature vectors for 

molecules rely on molecular representations, such as SMILES, which cannot be easily 

extrapolated onto metal complexes with multiple coordinating ligands. While some 

solutions have been proposed, they have not been widely applied yet.27,28 In our case 

we took advantage of the fact that all 288 tested compounds and any compound of 

this class we wished to predict shared several similarities. All compounds contain 

ruthenium(II), have a chlorido ligand and in an approximation adopt the same pseudo-

‘piano stool’ geometry. We therefore hypothesized that it would be sufficient to 

represent each ruthenium complex as a linear combination of the molecular 

fingerprints of its ligand components (Figure 3). Since each component (Ru-arene, 

aniline-derivative and picolinaldehyde) is a conventional organic molecule, we were 

able to use available python libraries to generate fingerprint vectors. In our case, we 

opted for the RDKit29 implementation of the widely applied extended-connectivity 

fingerprints (ECFP430). 

 

Figure 3. Schematic illustration of how fingerprints for the ruthenium-arene Schiff-base complexes were 
generated. 

As we only had a limited dataset of 288 compounds, we converted the percentage 

inhibition data into binary classification data. Taking advantage of the more detailed 

dose-response data allowed us to exclude some false positives from the actives, 

leaving 16 compounds with confirmed activity. All compounds were either labelled 

inactive (‘0’) or active (‘1’). With the fingerprints and labels in hand, we evaluated six 

classical machine learning models in a 10-fold cross validation utilizing the sklearn 

package. The models used were: Random Forest (RF), Naïve Bayes (NB), Support 

Vector Machine (SVM), Multilayer Perceptron (MLP), Extreme Gradient Boosting 

(XGB) and k-Nearest Neighbours (kNN). As the dataset is highly unbalanced, a model 

guessing all compounds to be inactive would still be right 90% of the time. To make 

sure this is not occurring, we randomly scrambled the labels of the data and re-

attempted training.  

The best training results were obtained for the SVM and MLP algorithms, with a mean 

AUC of 0.98 (Figure 4, see Supporting Information for results and metrics on all the 

different models). At the same time, the models performed comparably to random 

when scrambled labels were used. Overall, this indicates that the utilisation of a linear 
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combination of ligand fingerprints is a suitable proxy for the entire metal complex in 

this specific use-case. 

 

Figure 4. Performance evaluation of selected models. a) AUC of SVM model for all 10 cross-validations. The mean 
AUC of all cross-validations is displayed in brown; the standard deviation interval is displayed in grey. b) AUCs for 
the SVM model with scrambled labels. c) AUC of MLP model for all 10 cross-validations. The mean AUC of all 
cross-validations is displayed in purple; the standard deviation interval is displayed in grey. d) AUCs for the MLP 
model with scrambled labels. 

To evaluate the accuracy and usefulness of these models, we created a virtual library 

of possible complexes to synthesize next. To assemble this library, we conducted 

targeted substructure searches on the curated chemistry database Reaxys. The goal 

was to generate a library of building blocks that can, in principle, be commercially 

acquired. To this end all results were filtered for ‘commercial availability’ during the 

searches. As the ruthenium arene precursor was the most difficult to synthesize and 

not much variety was available, we selected only 14 arenes for the virtual library. In 

total, 864 commercially available picolinaldehydes were included. In the case of 

aniline-derivatives, the results were further filtered for a molecular weight smaller than 

200 Da, leaving 6356 amines. The full lists of the selected building blocks are available 

in our Github repository.31 Altogether, these building blocks generated a virtual library 

containing 76,906,368 possible ruthenium complexes. We now utilized our trained 

SVM and MLP models to evaluate the virtual library, saving only compounds which 

were predicted to be active by both models (Figure S13). This left 2,299,553 possible 

ruthenium compounds that, according to our trained ML models, were likely to be 

active against MRSA.  
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Breakdown of the predicted actives into their respective building blocks showed that 

some building blocks were clearly favoured for activity over others (The ranked lists of 

building block frequencies are provided in the Github repository31). To investigate 

whether the ML might just correlate simple properties of the molecules such as logP, 

topological polar surface area (TPSA) or molecular weight with activity, we calculated 

these properties for all ranked building blocks. No correlation between rank/frequency 

and the properties logP, TPSA and molecular weight was found (Figure S7-S12). The 

feature importance was also analysed from the support vectors of SVM. Oxygen and 

chloro-substituents were shown to contribute positively to activity while sulfonyl and 

amidine groups such as the ones on AD9-12 overall contributed negatively to activity 

in the SVM model. 

For the final verification of the ML model predictions, we aimed to synthesize a small 

set of the compounds predicted to be active. As the RA4 ruthenium-arene building 

block seemed to be highly favored over the others, we kept it constant and selected 

different picolinaldehydes (PA) and aniline-derivative (AD) building blocks. Starting 

from the most frequent building blocks, commercial suppliers were searched that 

provided a given building block at a reasonable price-point (at least 250 mg at <200 

USD) and within a realistic time-period. Finally, 6 new picolinaldehydes (nPA1-nPA6) 

and 9 new aniline derivatives (nAD1-nAD9) were obtained. The new building blocks 

differ significantly from the original library in structure with a mean Tanimoto similarity 

of 0.22 ± 0.07 between the two AD groups and 0.27± 0.1 between the PAs (Figure 

S16-S17) 

With these building blocks in hand, we assembled a new small combinatorial library of 

54 novel ruthenium(II) arene Schiff-base complexes. The reaction progress was 

monitored by LC-MS, confirming that the target complexes had formed (Table S2). 

The average assembly yield was 66 ± 21%, indicating that in most crudes the putative 

complex was the major species. The crude compounds where then tested for their 

antimicrobial activity against both a methicillin-susceptible S. aureus (MSSA) as well 

as a MRSA strain. At 20 µM, 26/54 (48.1%) showed significant growth inhibition 

against MRSA, representing a 5.1x higher hit-rate compared to the initial ‘blind’ testing 

(27/288 or 9.4% active). When screened at 5 µM, 21/54 (38.9%) still showed complete 

growth inhibition. When one considers that considers that only 16 out of the 27 active 

compounds in the original library showed an MIC ≤10 µM (Table S1), the improvement 

in the predicted library is even better. The activity-levels against MSSA were the same 

(26/54, 48.1% showing growth inhibition at 20 µM). Even if one only compared the 

activity rates of compounds containing arene RA4 between the old and new library, a 

significant 2.9x improvement was evident, increasing from 12/72 (16.7%) to the 

aforementioned 26/54 (48.1%). None of the new building blocks showed any bacterial 

growth inhibition by themselves at 20 µM (Table S3) supporting the conclusion that 

any observed activity stemmed from the putative ruthenium complexes.  
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In conclusion, we have demonstrated for the first time the application of ML for the 

prediction of bioactive metal complexes. A linear combination of the building blocks’ 

ECFP fingerprints was successfully utilized as a descriptor for a library of ruthenium 

complexes. The trained ML models enabled us to screen close to 77 million possible 

compounds and narrowed our search to ~2 million which the two best models 

predicted to be active. Further filtering by building block frequency and commercial 

availability led to the acquisition of 15 new building blocks and synthesis of a small 

new library. We found a significantly improved rate of antibacterial activity in the ML-

predicted library compared to the initial one. This is but the exciting first step into the 

application of ML methods to the discovery of bioactive metal compounds. With this 

successful proof of concept, the door is open for future work with larger compound 

libraries and higher resolution models able to predict more precise activity levels but 

also other properties such as toxicity, haemolysis, solubility, stability etc. Better 

descriptors including the transition metal properties will be needed to train models that 

are able to predict molecular properties across the periodic table. 

 

 

 

 

 

 

 

Figure 5. Structures of new picolinaldehydes (nPA) and aniline derivatives (AD) utilised together with RA4 to 
prepare the ML-predicted combinatorial library with MRSA growth inhibition-% for the new library at 20 µM (white 
dots indicate confirmed complete growth inhibition at 5 µM.) 
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Methods 

Dataset preparation 

The set for training and evaluation of the machine learning models was generated starting 

from the components (anilines, picolinaldehydes, Ru-arenes) of the original combinatorial 

library. For all components, the ECFP4 fingerprints were calculated as 512-bit sized vectors 

using the RDKit (2022.3.4) implementation. All possible combinations of the obtained 

fingerprints were then generated by bit-wise addition for a total of 288 molecular fingerprints. 

Finally, the 288 molecular fingerprints were labelled based on their experimental antimicrobial 

activity (0 inactive, 1 active). 

The screening library was generated in a similar fashion by combining the ECFP4 fingerprints 

of 14 Ru-arenes, 864 picolinaldehydes and 6356 anilines, for a total of 76,906,368 

combinations.  

 

Model evaluation  

Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), Multilayer 

Perceptron (MLP), Extreme Gradient Boosting (XGB) and k-Nearest Neighbours (kNN) 

models were implemented using the python scikit-learn (0.22.1) package. All models were 

evaluated in a 10-fold cross validation with a train/test split of 0.75/0.25 and performances 

compared with scrambled labels to check for meaningful fitting. The mean area under the 

receiving operating characteristic curve (ROC-AUC) along all cross validations was used to 

evaluate and select the best models for prediction on the large screening library.  
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Library Synthesis 

All experiments were carried out without exclusion of moisture and air. All chemicals and 

solvents were obtained from commercial sources without further treatment. All chemicals and 

solvents at analytical grade or high-performance liquid chromatography (HPLC) grade were 

purchased from commercially available sources. RuCl3·xH2O precursor was purchased from 

Precious Metal Online. [(η6-1,3,5-Triisopropylbenzene)RuCl2]2 was synthesized according to 

previously reported protocols.22 

Separate stock solutions containing [(η6-1,3,5-Triisopropylbenzene)RuCl2]2 dimer (10 mM), 

picolinaldehyde PA (40 mM), and aniline derivatives AD (40 mM) were prepared in DMSO. 

The reactions were then carried out on a 96-well flat-bottom plate (Greiner) with sequential 

addition of H2O (100 μL), PA (25 μL), AD (25 μL) and RA (50 μL), added to each well in one 

portion, yielding RAS complexes (5 mM) in DMSO/H2O (1:1 v/v, 200 μL). The plates were 

sealed and incubated with shaking at room temperature for 36 h.  

To ascertain assembly efficiency, RAS complexes (50 µL) were freeze dried and reconstituted 

in 0.9 % (w/v) NaCl solution and characterized using LC-MS Thermo Scientific Vanquish 

HPLC-PDA tandem Thermo Scientific LTQ XL instrument and Thermo Xcaliber Qual Browser 

software. The acquisition method was obtained with ZORBAX Eclipse Plus C18 column (4.6 

× 150 mm, 5 μM) with flow rate of 1.0 mL/min using solvent B (MeCN with 0.1% formic acid) 

and solvent A (H2O with 0.1% formic acid). The gradient elution conditions were 20 → 80 % 

solvent B over 20 min followed by a consistent 80% solvent B for 10 min. 

 

Antibacterial Testing 

All antimicrobial susceptibility testing followed clinical laboratory standards institute (CLSI) 

guideline.32 Methicillin-susceptible Staphylococcus aureus (MSSA) RN4220, methicillin-

resistant Staphylococcus aureus (MRSA) BAA-1768 were first inoculated in Lysogency broth 

and incubated at 37 °C for 4-6 h. Afterwards, bacterial cells were inoculated into 96-well flat-

bottom plates (Greiner) with a density of 5×104 CFU/100 μL per well, followed by 5 µL addition 

of stock solution of assembled RAS complexes into 100 μL per well Mueller-Hinton II broth to 

obtain the desired corresponding concentration. 5 µL of 1:1 v/v DMSO/H2O were added for 

blank controls and Mueller-Hinton II broth was added for background subtraction. The plate 

was sealed and incubated in a shaker at 37 oC for 16 h. The viability was determined by 

absorbance at OD600 using a microplate reader. 
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