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Abstract

Markov state models (MSM) are a popular statistical method for analyzing the

conformational dynamics of proteins, including protein folding. With all statistical

and machine learning (ML) models choices must be made about the modeling pipeline

that cannot be directly learned from the data. These choices, or hyperparameters, are

often evaluated by expert judgment or, in the case of MSMs, by maximizing variational

scores such as the VAMP-2 score. Modern ML and statistical pipelines often use auto-

matic hyperparameter selection techniques ranging from the simple: choosing the best

score from a random selection of hyperparameters to the complex: optimization via

e.g., Bayesian optimization. In this work, we ask whether it is possible to automatically

select MSM models this way by estimating and analysing over 16 000 000 observations

from over 280 000 estimated MSMs. We find that differences in hyperparameters can

change the physical interpretation of the optimization objective making automatic se-

lection difficult. In addition, we find that enforcing conditions of equilibrium in the

VAMP scores can result in inconsistent model selection. However, other parameters

which specify the VAMP-2 score (lag time and number of relaxation processes scored)
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have only negligible influence on model selection. We suggest that model observables

and variational scores should only be a guide to model selection and that a full inves-

tigation of the MSM properties be undertaken when selecting hyperparameters.

Introduction

Markov state models (MSMs) are a popular model for extracting kinetic information from

unbiased molecular dynamics simulations. Recent studies include a wide range of applica-

tions, such as understanding protein association kinetics,1,2 enzyme dynamics,3 ion binding

mechanisms,4,5 hydrogen bond dynamics,6 drug binding mechanisms for drug discovery,7–11

mutational effects on conformational dynamics,12–15 kinetics of intrinsically disordered pro-

teins,16 protein folding,17 and understanding allostery.18–20 Estimating an MSM proceeds21

by first collecting a data set of unbiased molecular dynamics (MD) simulations, then associ-

ating each molecular conformation with discrete states, counting transitions between states

separated by the temporal resolution of the model (the lag time, τ), and then deriving tran-

sition probabilities between states.22 The final model is summarized by the transition matrix

T, where the elements Tij are the conditional probabilities of being in state i at time t and

then transitioning to a state j at time t+τ : Tij(τ)=P (j, t=t+τ |i, t=t). The eigenvectors

of the transition matrix represent the dynamic modes of the system as they relax to the

equilibrium distribution.

The entire process of transforming MD frames into a transition matrix involves making

a number of modeling choices called hyperparameters. Hyperparameters are differentiated

from the parameters of the model because the latter are calculated from the data via the

optimization of a loss function (e.g., the negative log-likelihood), while the hyperparameters

are chosen via expert judgment, or via some summary metric of the model.23 For MSMs,

the important hyperparameters24–26 are which subset of atoms from the simulation to in-

clude (e.g., a protein loop, pocket, or other substructure of interest); the transformation of

these coordinates into important features (e.g., residue-residue distances, backbone dihedral
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angles); dimensionality reduction onto a set of important collective variables (typically time-

lagged independent component analysis, TICA,27 is used for this purpose); and finally how

to define discrete states from these collective variables (via some clustering algorithm such

as K-Means). Therefore, the parameters of an MSM are the conditional probabilities in the

transition matrix, Tij, whereas the hyperparameters are all the choices (choice of features,

clustering algorithm, etc.) that gave us the specific state definitions used in the likelihood

maximization step.

Hyperparameter optimization is an important part of modern statistical and machine

learning (ML) analysis pipelines23,28–30 as hyperparameters can have a strong impact of

the performance of a model. There are several methods to find the optimal set of hyper-

parameters, from exhaustively searching a uniformly spaced grid of choices31 or randomly

selected from a predefined search space,28 evolutionary and population algorithms32–35 to

active learning approaches such as Bayesian optimization.30,36–38

No ‘ground truth’ data exist for MSMs used for the analysis of protein MD trajectories,

so the accuracy of the eigenvectors cannot be judged absolutely. However, a family of

variational scores exist which provide a means to compare the relative accuracy of MSMs

and thus allow hyperparameter optimization to be performed. The first score to be developed

was the cross-validated generalized matrix Rayleigh quotient,39 GRMQ, which pertains to

reversible MSMs; while the variational approach to Markov processes (VAMP) scores25,40

extended these ideas to both reversible, non-reversible and non-stationary models. These

scores measure how well the eigenvectors of the transition matrix (singular vectors in the

case of non-reversible models) approximate the ‘true’ eigenvectors in a variational sense i.e.,

the higher the score, the better the approximation. Thus, optimization of eigenvectors can

proceed without the need for a ‘ground truth’ to compare to.

To use a variational score, it is necessary to specify the lag time (τ) of the MSM and the

number of slow relaxation modes to optimize (k), and then estimate the MSM with different

hyperparameters. The ‘best’ set of hyperparameters is the one with the highest variational
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score. In the case of the VAMP-E score, one may also add k to the list of hyperparameters

to optimize.

This procedure removes the need for potentially arbitrary hyperparameter selection with

the concomitant risk of findings that are not robust to changes in modeling assumptions.

This method has been used in a number of different studies.24,41–49 In addition, it has al-

lowed investigations into the roles of various hyperparameters and for other methods for

hyperparameter selection to be developed. In Husic et al.49 the authors used the GMRQ

to show that the Ward and K-means methods are optimal for clustering conformations for

MSMs. In Husic et al.24 the authors performed a sensitivity analysis of the GMRQ in order

to determine the sensitivity of hyperparameters in describing protein folding. An extension

of the VAMP score by Scherer et al.25 showed that the optimal set of features could be

selected before going through the full MSM creation and scoring pipeline.

It is tempting to think that with a single model metric and state-of-the-art ML opti-

mization software, it should be possible to form an automatic pipeline wherein simulation

data are fed in, and a single optimized MSM describing the kinetics and thermodynamics of

the system comes out. However, many detailed questions need to be answered before such a

pipeline is possible. First, do variational scores refer to the same relaxation mode across all

possible combinations of hyperparameters? It is possible that with certain combinations of

hyperparameters, the eigenvectors could describe different relaxation modes. It is therefore

possible that the variational scores do not compare the same set of processes across different

sets of hyperparameters. Second, the MSM lag time and number of scored processes inter-

est will affect the variational scores — does this have any material effect on how we rank

different sets of hyperparameters? Third, do we need variational scores to optimize models

at all? Will model observables, such as the implied timescales suffice to optimize MSMs?

Finally, does hyperparameter optimization work for MSMs compared to randomly sampling

hyperparameters? Here, we use a common method (Bayesian optimization with tree Parzen

estimators) for optimizing machine learning models to find optimal hyperparameters.
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The remainder of this work is structured as follows. In the next section, we cover the

necessary theory to understand MSMs and Bayesian optimization of hyperparameters; this

is followed by the methods; and results analysis. The paper is concluded with some recom-

mendations based on our findings.

Theory

Markov state models

Overview

What follows is a brief overview of the theory of Markov state models (MSMs), for a more

detailed picture see some of the many good references.22,26,50 MSMs describe the first-order

conformational kinetics of a system by specifying the conditional probability of transitioning

from a state i at a time t to a state j at a time t+τ later. This information is summarized in

the transition matrix Tij(τ) = P (j, t+ τ |i, t). Each state, i, is a collection of conformations

which have similar kinetic properties. The transition matrix is a finite and discrete represen-

tation of the underlying Markovian transfer operator, T (τ), which describes the dynamics

of the system. The first left eigenvector φ1 (in descending eigenvalue order λi, with λ1 = 1)

corresponds to the stationary or equilibrium distribution, which we also label π; the second

left eigenvector, φ2 corresponds to the slowest conformational relaxation process; the third is

the next slowest relaxation process and so on. The corresponding right eigenvectors, ψi are

normalized by π (so ψ2 = 1 for all states). The eigenvalues are related to the timescales of

these relaxation processes by: ti = −τ/ log λi. The transition matrix is said to be reversible

if it obeys detailed balance πiTij = πjTji.

The transition matrix is specified with respect to a set of p basis states, χ1, χ2, ..., χp

which we denote as a vector χ. In what follows, the basis states are assumed to be discrete

and orthonormal and each one corresponds to a small region of conformational space. Each
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frame of an MD trajectory can be mapped to one of these basis states and these discretized

MD trajectories form the data from which the transition matrix is estimated.

The mapping between the atomic coordinates x and the basis states we call f(x;θ) = χ

where θ is a vector of parameters of that mapping. For example, f may involve projecting

coordinates onto the backbone dihedral angles of a protein, followed by clustering into 100

discrete states using k-means clustering. The MSM is then specified with a lag time of

10 ns. The parameters of the MSM are the 100 × 100 = 10000 elements of T, while the

hyperparameters are θ = (backbone dihedrals, K-Means, 100) where the elements correspond

to the feature, clustering method, number of basis states respectively.

Estimating a reversible MSM

The first step in estimating a reversible MSM is projecting the MD trajectories onto the

proposed basis states, χ. Transitions between each basis state at time t and time t + τ are

tabulated in a count matrix, C0t (the subscript 0 and t refer to the fact that the counted

transitions are between t and t + τ). The population of each state is given by the diagonal

matrix, C00 calculated as the row-sum of the count matrix [C00]i,i =
∑

j[C0t]i,j. A non-

reversible transition matrix is then given by Tirrev = C0tC
−1
00 . It is non-reversible because of

the finite amount of simulation data will not be in perfect equilibrium. A transition matrix

and stationary vector which obey detailed balance, Trev and πrev, can be estimated from

C0t using maximum likelihood estimation with constraints.22 The constraints ensure that

detailed balance is obeyed by T and its dynamics are reversible. However, once Trev and

πrev have been estimated, they are now inconsistent with C0t and C00, as obtained from the

MD trajectory.

Variational scores

The key idea behind variational scores is that approximations to the true eigenvectors of

the transition matrix will give rise to eigenvalues which are bounded from above by the true
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eigenvalues, specifically:39,40
k∑
i=1

λ̂ri ≤
k∑
i=1

λri , (1)

where λ̂ are the eigenvalues estimated from an approximate basis set χ and λ are the true

eigenvalues. The sum runs over the first k eigenvalues, which are typically the dominant

slow relaxation processes that one is interested in approximating; while r is some arbitrary

positive integer.40

When r = 1 and the model is assumed to be stationary,39 the left-hand side of Equation 1

is known as the Generalized Matrix Rayleigh Quotient (GMRQ):

GMRQ(θ) = Tr
[
(UTC01U)(UTCU

00)
−1] , (2)

where U is the matrix of eigenvectors of T. The functional dependence of the GMRQ

on θ is to emphasize that the eigenvectors and count matrices are dependent on the hyper-

parameters.

The variational approach to Markov processes placed reversible and stationary MSMs in

a broader context of Koopman models which may or may not be reversible or stationary. In

this context there is a family of variational scores, differentiated by a positive integer r:

VAMP-r(k,θ) =
∥∥∥(UTC00U)−

1
2 (UTC0tV)(VTCttV)−

1
2

∥∥∥r
r
, (3)

where Ctt is the column-sum of the count matrix [Ctt]i,i =
∑

i[C0t]i,j; U and V are the

left and right singular vectors of the transition matrix. The functional dependence on θ

comes from its influence on the basis states which in turn determines the singular vectors; k

is the number of singular vectors being scored and determines the dimensions of U and V.

The matrix norm denotes takes the rth power of the Schatten-r norm: where,

|T |rr =
∑
i

sri (T ) (4)
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and si are the singular values of a matrix, T .

If the data are stationary, reversible and r=1 this is equivalent to the GMRQ. With r=2

this expression measures the kinetic variance51 captured by the basis sets. The VAMP scores

have also been adapted to score the models based on the type of feature alone (rather than

scoring the full MSM).25

As timescales are monotonic functions of the eigenvalues, maximizing the sum of the

timescales also maximizes the VAMP scores.

Cross-validation and bootstrapping

Hyperparameters should be chosen to maximize the performance of a model on unseen data.

Simply maximizing the variational score on the data used to fit the model (training data)

may result in eigenvectors which describe this data well but do not generalize to new data

generated by the same system. This is known as over-fitting and is a well-documented

phenomenon.52 To overcome this problem the estimated VAMP scores should be close to

those attained on unseen data. One estimation method is to withhold a portion of the data

(test set) and calculate the variational scores on this set. While accurate, it requires ignoring

a large proportion of the data for training purposes, which may be wasteful when there are

only a handful of observed transitions which we are interested in modeling.

Two other popular methods, which make more efficient use of the available data, are cross-

validation53 and bootstrapping.54 The estimators for the variational scores (Equations 2 and

3) were both adapted to be used with cross-validation:39,40 data is randomly split into two

equally sized subsets. The eigenvectors U/V are calculated on one set, while the count

matrices C00/0t/tt are calculated on the other set. This is repeated Nc times (e.g.,25 Nc = 50)

and an average of the VAMP scores is taken.

The bootstrap does not require a reformulation of estimators. Instead, a number, Nb, of

new data sets are created from the original data set (e.g.,54 Nb = 100− 1000) and the mean

or median of variational scores on each of these data sets used. To create the bootstrapped
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data sets, trajectories are split into small independent subtrajectories. The subtrajectories

are sampled with replacement to create a new bootstrapped data set of the same size as the

original.

Hyperparameter optimization

Methods for optimizing hyperparameters

Finding the best set of hyperparameters θ using either the VAMP scores or implied timescales

(we will use the term response generally), is a black-box optimization problem. It is black

box because we do not have access to the gradients, ∇θ VAMP-r(k,θ), which would facilitate

a gradient-based optimization. There are three broad classes of optimization techniques in

this case: exhaustive searching, model-based searching and population-based algorithms.

Examples of exhaustive searching are grid search where hyperparameters are taken from

a uniformly placed grid over the hyperparameter search space, and random search, where

hyperparameters are randomly sampled from the search space.

Grid search is an effective strategy when the response is sensitive to all the hyperparam-

eters. However, it has poor scaling with the number of hyperparameters (Nd, where N is

the number of grid points per hyperparameter and d is the number of hyperparameters), so

when only a small subset of hyperparameters are relevant, random search is more efficient.28

Model-based search algorithms construct surrogate models of the mapping between the

hyperparameters and the model response which are cheap to evaluate and optimize, and use

these models to guide hyperparameters to test. Examples include Bayesian optimization with

either a Gaussian process or a tree Parzen estimator (TPE) as the surrogate model.30 The

third class of optimization algorithms is population algorithms, which include evolutionary

algorithms,32,34 particle swarm optimization33,34 and covariance matrix adaption,35 these

will not be explored here further.
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Bayesian optimization with tree-structured Parzen estimators

We chose tree-structured Parzen estimators to perform optimization because they easily

handle numerical as well as categorical hyperparameters and can easily model conditional

hyperparameter search spaces (i.e., choosing hyperparameters based on the choices of other

hyperparameters) - this latter feature is the ‘tree-structure’ referred to in the name of the

method.

Bayesian Optimization with TPE optimization proceeds as follows.

1. Randomly sample a small set of hyperparameters and measure the response of the

resulting MSMs. This gives a hyperparameter trial data set Dn = {(y1,θ1), . . . (yn,θn)}

where y is the model response.

2. Construct a model of the probability of the hyperparameters, given the response, p(θ|y)

as two separate probability density functions:

p(θ | y) =


`(θ) if y > y∗

g(θ) if y ≤ y∗
, (5)

where y∗ is some user specified quantile, γ of the observations. l and g are probability

models of the ‘good’ and ‘bad’ hyperparameters respectively and are explained more

fully below.

3. To find the n + 1th value of θ we maximize the Expected Improvement : EIy∗(θ) =

Eθ [max (y(θ)− y∗, 0)] ∝
(
γ + `(x)

g(x)
(1− γ)

)−1
.

4. Evaluate θn+1 on the MSM and measure the response, yn+1, add (θn+1, yn+1) to the

hyperparameter trial data set.

5. Repeat steps 2 to 4 until convergence in the maximum value of y is reached.

The functions l and g are Parzen estimators, otherwise known as kernel density estima-

tors. These model the probability density of θ by placing truncated Gaussian distributions
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over each observation of a continuous hyperparameter, and a categorical distribution pro-

portional to the observed counts of each level for each discrete hyperparameter. More details

can be found in Bergstra et al.30,38

This method can also be extended to dual objective functions, i.e., when optimizing two

(or more) responses, yi = (y1i , y
2
i ), for the same model. In this case the ‘best’ solutions form

a Pareto set. Any member of a Pareto set, yk, has both responses superior to all other trials

(y1k > y1i , y
2
k > y2i for all i) but which are only superior to other members of the set in one

response (y1k > y1k′ or y2k > y2k′ for k and k′ in the Pareto set). For dual-objective optimization

the acquisition function was the expected hyper-volume improvement.55 This function tries

to find hyperparameters which expand the Pareto set. The splitting of observations into two

sets is complex, see Ozaki et al.55 for details on the splitting algorithm.

Methods

To answer our research questions we estimated a large number of Markov state models with

different hyperparameters, measured their observables and analysed the results. The work-

flow may be summarized as follows. We used existing molecular dynamics trajectories of

Chignolin and BBA and fit MSMs with 140 randomly sampled hyperparameters (hyperpa-

rameter trials) and recorded implied timescales, eigenvalues, and VAMP-2 scores for a range

of different lag times (τ). Each observable was estimated with confidence intervals using

bootstrapping. This data constituted our hyperparameter trial data set and was analyzed in

the first, second and last results subsections. A ‘toy’ three-state MSM model was constructed

to highlight with the VAMP-2 score, for reversible transition matrix estimation. We then

performed Bayesian optimization with a TPE surrogate function, with a variety of different

objective functions, and using the hyperparameter trial data set to initialize the surrogate

function. These results are discussed in the third part of the results.
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Molecular dynamics

We use simulation data of the fast-folding proteins Chignolin and BBA, two of the twelve fast-

folding proteins which have become the de facto benchmark data set for testing molecular

kinetics methods. The methods used to create this data are described elsewhere.56 Important

information on the data is shown in Table 1: the average folding time was calculated by the

authors;56 the sub-trajectory length and number of sub-trajectories correspond to the data

splitting used in the bootstrapping procedure.

Table 1: Description of molecular dynamics data

Name PDB Simulation
time (µs)

Average
folding
time (µs)

No.
Residues

Sub-
trajectory
length (µs)

No. sub-
trajectories

BBA 1FME 325 18 28 2 164
Chignolin 5AWL 106 0.6 10 2 53

Markov state models

MSMs were estimated using PyEMMA version 2.5.757 and used a standard pipeline when

focusing on the slow relaxation processes:21,26

1. Project molecular dynamics (MD) trajectories onto a set of features.

2. Reduce the dimension of the feature trajectories using TICA with a lag time τTICA by

projecting onto the first m TICA coordinates.

3. The frames of the TICA trajectories were clustered using the k-means algorithm into

n discrete microstates.

4. A reversible, maximum likelihood MSM was then estimated.

To save on memory and compute resources the data was subset in parts of the MSM esti-

mation. The MD trajectories were first strided so that the time between each frame was
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1 ns in line with previous analysis in the literature.[a reference here] The cluster centers were

estimated on frames separated by 10 ns, i.e. only the 0th, 10th, etc. frames were used for

estimating the cluster centers.

The uncertainty for model observables was estimated using bootstrap with 100 bootstrap

samples. The point estimate and error bars were calculated as the median, 2.5 % and 97.5 %

quantiles of the distribution from the bootstrap samples.

Hyperparameters and scoring

140 different hyperparameters were randomly sampled from the search space described by

Table 2. Each set of hyperparameters and their corresponding model observables are known

as a hyperparameter trial. Three different features, f , were used:

1. dihedrals feature (‘dihed.’): the sine and cosine of the φ, ψ and χ1−5 angles of the

amino acid residues;

2. contact distance feature (‘dist.’): the distance between all pairs of residues separated

by three or more residues;

3. logistic distance feature (‘logit(dist.)’): the same as feature 2 but with a logistic trans-

form applied to the distance (d): logit(d) = [1 + exp (s(d− c))]−1, where center, c, and

steepness s, have units of �A and �A−1 respectively.

The logistic distance feature may be described as a ‘soft’ or ‘fuzzy’ contact map: it takes on

the value 0 for d � c and a value of 1 for d � c, and varies between these two extremes

in the neighborhood of c with a steepness determined by s. The definitions of the contact

distances (d) were either the closest heavy-atom distance (X-X) or the distance between the

α-Carbons (Cα-Cα). The TICA eigenvectors were scaled by their eigenvalues (λ) so that

distances in TICA space correspond to kinetic distances.51

The number of trials was approximately proportional to the number of hyperparameters

for each feature: 20 trials for the dihedral feature, 40 for the contact distances (20 for each
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value of the contact distance scheme: X-X, Cα-Cα), and 80 for the logistic transformation

of contact distances (which, in addition to the two distance scheme values, has two other

hyperparameters, c and s).

For each trial, θ = (f, τT,m, n, c, s), an MSM was estimated using the procedure above

with a range of Markov lag-times, τ : 1 ns, 11 ns, ..., 101 ns. For each combination of θ and

τ the slowest 2 to 21 eigenvectors were scored using the VAMP-2(k,θ) (Equation 3) and

VAMP-2eq(k,θ) score (Equation 6):

VAMP-2eq(k,θ) =
k∑
i=1

λ2i , (6)

where λ are the eigenvalues of the MSM transition matrix which obey detailed balance, along

with the implied timescales, ti. Each of these observations was estimated as the median of

Nb = 100 bootstrapped samples.

VAMP-2(k,θ) and VAMP-2eq(k,θ) will be abbreviated as VAMP2(k) and VAMP2eq(k)

from here on, the dependence on θ being assumed.

Selected models were validated by:

1. inspection of structures sampled from microstates which had the most extreme values

of ψ2;

2. inspection of both ψ2 and a two-state coarse grained model in the space of the first

two TICA components;

3. a plot of the mean first passage time as a function of the lag time (as suggested in

Suarez et al.58);

4. implied timescales as a function of the lag time, τ .

This information can be found in the supplementary information.

The hyperparameter trial data set, D, consisted of 100 bootstrap samples of 140 unique

sets of hyperparameters, at 10 different lag times, with 20 measurements of the implied
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Table 2: Hyperparameter search space. X-X and Cα-Cα refer to the closest heavy
atom and α-Carbon scheme respectively, for measuring the contact distance (dist.). The
sine and cosine of dihedral angles were used as features.

Features, (f)
Dihedral angles Which

dihed. = φ, ψ, χ1, . . . , χ5 (sine and cosine transformation)

Contact distances Definition,
(d)

Transform Center (c, �A) Steepness (s,
�A−1)

• X-X
• Cα-Cα

• logit(dist.)
• dist.

3 to 15 0.01 to 5

Decomposition Eigenvectors,
(m)

Lag-time,
(τT , ns)

Scaling

TICA 1 to 20 1 to 100 λ

Clustering Clusters, (n)
k-means 10 to 1000

timescales and 20 measurements of the VAMP2(k) score and 20 measurements of the VAMP2eq(k)

score. The total number of these observations (ti, VAMP2(k), VAMP2eq(k)) is therefore

8 400 000.

Markov lag time

The Markov lag time, τ , was calculated from the total hyperparameter trial data set. For

each trial the following gradient was calculated:

g(τ, θ) =
∆ log (t2(τ, θ))

∆τ
, (7)

The selected Markov lag-time, τ ∗ was chosen as:

τ ∗ = arg min
τ,θ

[g(τ, θ)] , 0 < g < log 1.01. (8)

A graphical representation of this process is shown in Figure 1.

This codifies and extends the generally accepted process by which the implied timescales
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Figure 1: Markov lag time selection. Each blue line is the median of the gradient
defined in Equation 7 taken over the bootstrapped samples. The black horizontal line is
the threshold for convergence. The green vertical line is the selected lag time. The data
represented here is from BBA, the same method applies for Chignolin.
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ti as a function of τ are plotted on a log scale and the smallest τ for which t2 is constant is

chosen. Our extension is that we consider a range of different values of θ.

Optimization

We used Bayesian optimization to optimize the full hyperparameter feature space described

in Table 2. We used the tree-structured Parzen estimator as the surrogate function, as

implemented in the Python package Optuna version 3.0.359 which was also used to perform

the optimizations. The optimization runs were initialized with data from the randomly

sampled hyperparameter trial data set. The objective functions were estimated as the median

from 20 bootstrap samples. Four different objective functions were used for each protein,

two single objective and two dual-objective functions, these were

1. t2: the timescale dominant process,

2. VAMP2eq(2) = 1 + λ22: the ‘equilibrium’ VAMP2 score of the 2nd (dominant) process

3. t2 and t2/t3: a multi-objective function of the timescale of the dominant process and

the gap between the 2nd and 3rd timescale.

4. VAMP2eq(2) and VAMP2eq(2)/VAMPeq(3): a multi-objective function of the equilib-

rium VAMP2eq(k) score of the 2nd process and the gap between the 2nd and 3rd process.

In the case of single objective optimization the acquisition function was the expected

improvement ; in the case of multi-objective optimization the acquisition function was the

expected hyper-volume improvement .55 The quantile for splitting observations into ‘good’

and ‘bad’ trials was set at 25 %. This information is summarized in Table 3. The number

of initial observations is less than the full 140 hyperparameter trials because a) some trials

failed to converge an MSM, and b) in the case of Chignolin, some MSMs did not have a

resolvable value of t3.
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Table 3: Hyperparameter optimization tasks.

Protein Objective Functions Initial Data No. Trials

Chignolin t2 131 95
Chignolin t2, t2/t3 55 141
Chignolin VAMP2eq(2) 131 100
Chignolin VAMP2eq(2), VAMP2eq(2)/VAMP2eq(3) 55 150
BBA t2 136 100
BBA t2, t2/t3 136 100
BBA VAMP2eq(2) 136 100
BBA VAMP2eq(2), VAMP2eq(2)/VAMP2eq(3) 136 100

The code used to create the hyperparameter trial data set, D can be found at https:

//github.com/RobertArbon/msm_sensitivity and the code used to perform all other anal-

yses can be found at https://github.com/RobertArbon/msm_sensitivity_analysis.
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Results and discussion

Having created the hyperparameter trial data set we first highlight some inconsistencies

in the VAMP2 scores; then we show results for optimization using random selection and

Bayesian optimization; and finally we determine what effect the lag time and number of

scored eigenvectors makes on model selection.

VAMP2(k) scores of reversible MSMs give inconsistent results

The VAMP2(k) score40 provides a principled metric for optimizing MSM hyperparameters.

The benefits are that it can be used for stationary, non-stationary, reversible and non-

reversible MSMs. It is linked directly to the kinetic variance captured by the basis states

such that maximizing the VAMP2(k) score will maximize the timescales of pertaining to

the first k eigenvectors of the model. In addition, it can be used with bootstrapping and

cross-validation techniques for assessing generalizability.

Inspection of the VAMP2(k) and t2 values in the hyperparameter trial data set for BBA

revealed that for some subsets of the trials, VAMP2(2) was inversely proportional to t2. An

example of this is shown in Figure 2. In panel (a) the VAMP2(2) score is shown for the trials

ranked first, third, and fourth. In panel (c) the first five timescales are shown for each model.

Timescales for the third to sixth eigenvectors are similar for each trial, however t2 clearly

increases with decreasing VAMP2(2) score. The second-ranked model is omitted for clarity

because it does not follow this pattern. We suggest the reason for this behavior is due to

the fact by enforcing reversibility in the estimation of the transition matrix it is difficult to

get numerical consistency between the three count matrices (C00/0t/tt) and the eigenvectors

(U/V) in Equation 3.

To ensure that this phenomenon was not an artifact of the processing pipeline the effect

was replicated with a three-state toy model (example 1 in Trendelkamp et al.22). 10 000×20-

step trajectories were sampled from the same 3× 3 transition matrix and for each trajectory
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count matrices (C00/0t/tt) were calculated. We assert that the differences in the count ma-

trices arising from the finite sampling in this toy model are similar to the differences from

different discretization schemes in the example of BBA. From each set of count matrices t2

and VAMP2(2) scores were estimated and these are shown in Figure 3 panel (a). While t2 is

clearly rank-correlated with VAMP2(2), the rank correlation is not perfect. Many subsets of

these results form sets which are anti-correlated, three examples of this inverse relationship

are shown as black lines labeled ‘Inverse’. These subsets mirror the effect seen in the BBA

models in Figure 2. As a comparison, in panel (b) we plot the sum of the squares of the first

two eigenvalues, VAMP2eq(2), which shows perfect rank correlation (as they must).

The reason for writing the VAMP2(k) score as the product of count matrices and eigen-

vectors/singular vector matrices is to facilitate data-splitting in cross-validation. While we

used bootstrapping for this work and thus mitigated this, the effect of data splitting would

be to worsen the discrepancy between the count and transition matrices. This is because the

count matrices are now estimated on different data compared to the eigenvector matrices.

Due to the problem of consistency between the matrices in Equation 6 arising from

a) enforcing reversibility and b) data splitting for cross-validation, we recommend that

VAMP2(k) scores, either cross-validated or bootstrapped, should not used for reversible and

stationary MSMs. Instead, we recommend bootstrapping the sum of the squared eigenvalues

(VAMP2eq(k)) directly from the reversible transition matrix. This has the same theoretical

properties of the VAMP2(k) score (i.e., represents captured kinetic variance, and link to vari-

ational theorem) while not a) wasting data due to data splitting and b) perfect correlation

with the implied timescales.
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Figure 2: Models with VAMP2(k) scores inversely proportional to timescales. (a)
shows the VAMP2(2) scores and (b) shows the first five dominant timescales, for a selection
of models of BBA. The horizontal axis in both panels is the model rank as judged by
the VAMP2(2) score. The selection shows models where the slowest timescale is inversely
proportional to the VAMP2(2) score. Models which do not show this correlation are not
shown.
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Figure 3: Relationship between implied timescales, t2, VAMP2(2), VAMP2eq(2)
scores. Each of the 1000 blue points is calculated from an MSM estimated from a distinct
simulated trajectory of 20 time steps. The trajectories were generated from the same three-
state reference transition matrix (taken from Trendelkamp-Schroer et al.22). The estimated
transition matrices were all estimated ensuring reversibility. (a) shows t2 as a function of
VAMP2(2) scores while (b) shows t2 as a function of VAMP2eq(2). The black points labeled
‘Inverse’ are example subsets of MSMs where the relationship between the implied timescale
and VAMP2(2) score are inverted.
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Eigenvectors may change definition with change in hyperparame-

ters
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Figure 4: Timescales of randomly sampled hyperparameter trials. Panel (a)
refers to BBA, panel (b) refers to Chignolin. The vertical axis is the dominant timescale
(t2), the horizontal axis is the trial rank. The solid disc and error bars are the median and
95 % bootstrapped confidence intervals.

Figure 4 shows the results of the optimization through random selection: the distribution

of the timescale (t2) of the dominant process (corresponding to the 2nd right-eigenvector of

the MSM transition matrix, ψ2) for each MSM of BBA (panel (a)) and Chignolin (panel

(b)), ordered left to right with highest value of t2 on the left. Each point is colored according

to the feature used. According to previous research25 we expect in both cases that the

dominant relaxation process to correlate with the folded-to-unfolded transition. We expect

that the best model would be the model with the highest value of t2. However, implicit in

this decision is that the implied timescale represents the same underlying relaxation process.
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For Chignolin, both t2 and the corresponding relaxation process for different hyperpa-

rameters trials are similar, as can be seen by inspection of the models 1 and 2 (ranked 1 and

4 respectively in Figure 4, see Table S1 and sections S2.1 and S2.2 for more detailed infor-

mation on each model). In model 1, Figure 5(a), shows ψ2 as an unfolded-folded transition.

In model 2, Figure S6 (c) shows ψ2 as transitioning between a structure which is almost

completely unfolded with only two non-native contacts and the folded state.

In the case of BBA, the situation is different. The top two best performing models,

models 1 and 2 (ranked 1 and 2 respectively in Figure 4, see Table S1 and sections S2.4

and S2.5) show evidence of optimizing a similar relaxation mode, ψ2. Comparing models 1

and 2 we see a similar folded-unfolded transition (Figure 5 panel (a) and (b)). Model 1 is

more accurate, as the values of t2 show: 20.4 µs, 95 %C.I. [2.3—176.2 µs] cf. 9.7 µs, 95 %C.I.

[2.1—188.7 µs]. The accords with differences in the hyperparameters: model 1 and 2 use

the logistic distances feature, but model 1 has a logistic transform which is more sensitive

to changes in contact distances between 0.1�A—10�A (see Figure S1) and more discrete basis

functions (471 cf. 289, see Table S1).

However, the best-performing models with the other features have markedly different ψ2

which do not correspond to the same transition as models 1 and 2. Model 3 is the best

model with the distance feature (ranked 7 in Figure 4, see Table S1 and section S2.7) and

model 4 is the best model with the dihedrals feature (ranked 54 in Figure 4, see Table S1 and

section S2.8). Both of these show markedly different transitions for ψ2, see Figures S21(c)

and S24(c) respectively.

Thus, when optimizing MSMs the objective function (t2 in this case), ψ2 may change

definition across the search space and one is not comparing like-with-like when looking at

just the objective function.

To mitigate this problem, we advocate checking the character of the eigenvectors when

selecting appropriate hyperparameters to ensure one is optimizing at least a consistent set

of relaxation processes.
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Bayesian optimization may optimize different processes

We tested whether Bayesian optimization could increase t2 by selecting better hyperparame-

ters. We optimized the search space in Table 2 using both single-objective and dual-objective

optimization, with objectives based on the timescales, t2/3 and the VAMP2eq(2/3) scores,

see Table 3 for a list of optimization experiments. The optimization using dual objectives

of t2 with t2/t3 (and the VAMP2eq equivalent) was prompted by the observation that from

the randomly sampled hyperparameter trial data set, there were many models with similar

values of t2 but with a wide range of timescale gaps t2/t3. A large timescale gap gives rise to

models which are more accurate when truncated and coarse-grained into a two-state model.

Our hope was therefore to bias the optimization results in favor of both large t2 and a large

separation of timescales. The optimization trajectories, which show the largest value of t2

(vertical axis) in all trials up to the current trial number (horizontal axis) are shown in

Figure S32.

Single objective optimization of both t2 and VAMP2eq(2) increased t2 for Chignolin

and BBA. For Chignolin the increase was modest, between 2.4 %—5.5 % for all four ob-

jective functions. The single objective optimization of t2 had the smallest increase (Figure

S32, panel (a) red squares) while the multi-objective optimization of the VAMP2eq(2) and

VAMP2eq(2)/VAMP2eq(3) gave the largest increase in t2 (Figure S32, panel (c) blue squares),

although the increase in the gap was modest (see Figure S33 (c)).

The small t2 increase for Chignolin is unsurprising given the consistency of t2 across

the randomly sampled hyperparameter trials. However, the t2 optimized MSM, model 3

(see Table S1 and section S2.3) shows a partially folded to folded transition in Figure 5(b)

rather than the fully unfolded to folded transition in model 1 (Figure 5(b)). In terms of the

values of the hyperparameters, the optimization has changed the TICA lag-time significantly

(from 71 ns in model 1 to 3 ns in model 3 - the other hyperparameters have remained largely

unchanged). The VAMP2eq(2) and VAMP2eq(2)/VAMP2eq(3) optimized MSM, model 4

(see Table S1 and section S2.4) shows the same unfolded—folded transition as model 1 (see
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Figure 5(c). Both the dual-objective optimizations (t2 with t2/t3 and the VAMP equivalent)

increased both the t2 and the separation of timescales (see Figure S33).

For BBA the single objective optimization of t2 and VAMP2eq(2) increased t2 by 128 %

and 135 % respectively. However, these models have not optimized the same relaxation

process as the incumbent from the randomly sampled hyperparameters, model 1. The t2

optimized MSM, model 5 (see Table S1 and section S2.9), denotes a transition between

two misfolded structures (see Figure 5(f). This is perhaps surprising given that the main

difference between the two model specifications is that change in the logistic transform (see

Figure S1 for the difference between model 1 and model 5’s logistic transform). In contrast

the VAMP2eq(2) optimized model shows a similar transition to models 1 and 2 (see Figure

S30(c)). Both the dual objective optimization runs did not improve t2 significantly, although,

in the case of optimization of t2 with t2/t3, the gap increased significantly (see Figure S33(b)).

The implications for Bayesian optimization are similar to the lessons learned from random

optimization: changing hyperparameters can change the optimized process, meaning one

must analyze the character of the eigenvectors to ensure one is optimizing the same processes.
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Figure 5: MSMs with different relaxation processes. Each panel shows ψ2 in the
space of the first two TICA coordinates. Also shown are an ensemble of structures sampled
from the microstates with the extreme values of ψ2. Panel (a): Chignolin model 1, (the
largest median t2 from random sampling); panel (b): the Chignolin model 3 (the largest
median t2 from Bayesian optimization of t2); panel (c): the Chignolin model 4 (the largest t2
from Bayesian optimization of VAMP2eq(2) and VAMP2eq(2)/VAMP2eq(3)); panel (d): BBA
model 1 (the largest median t2 from random sampling); panel (e): BBA model 2 (the second
largest median t2 from random sampling); panel (f): BBA model 5 (the largest median t2
from Bayesian optimization of t2).
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The lag time and number of scored eigenvectors do not affect model

selection.

When evaluating MSMs using a variational score one must specify both the Markov lag time

(τ) and the number of eigenvectors to score (k). However, both these choices affect the

VAMP score although it is not clear whether these choices affect the model ranking. To

test how these choices affect model selection we measured the consistency in model rank for

BBA, as measured by the VAMP2eq(k), using the Spearman’s rank correlation coefficient at:

a) different lag times for given values of k and b) at different values of k at a given lag time.

Figure 6 shows the consistency between BBA model rankings at different lag times

(1 ns≤τ≤101 ns) with k=2 (panel (a)) and with k=10 (panel (b)). In addition, scatter

plots of the data used to calculate these coefficients for k=2, 3, 5,& 10 are shown in Figures

S33 - 37. Across all lags and for both small (k=2) and large (k=10) numbers of scored eigen-

vectors, the consistency in the model ranking is high (greater than 85 %). The consistency

between models with lag times τ>1 ns is much greater, with rank correlations up to 100 %.

This effect is most pronounced for k=10 scored eigenvectors. In particular, good consistency

is achieved at lag times smaller than those required for the model to be Markovian (τ=41 ns).

Figure 7 shows the consistency between model rankings at different number of scored

eigenvectors (2≤k≤21) at a lag time of 41 ns (the value used in all previous analysis for

BBA). Again, the consistency is generally high with a rank correlation between all pairs of

k of at least 80 %. The ranking is most consistent between values of k larger than 4. From

these two analyses taken together, we see that for long lag-times and a large number of

scored eigenvectors model ranking is significantly affected by the choice of τ and k.
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Figure 6: Consistency of VAMP2eq(k) rank with Markov lag time, τ for BBA.
The i, jth cell in panel (a) shows the Spearman’s rank correlation coefficient of VAMP2eq(2)
for each trial measured at the ith lag time, with VAMP2eq(2) measured at the jth lag time.
Panel (b) show the same measurements with VAMP2eq(10) score respectively.
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Figure 7: Consistency of VAMP2eq(k) rank with number of scored eigenvectors
for BBA. The ranks of trials in the row k are compared to their rank at the column k
using the Spearman’s rank correlation coefficient at a lag time of 41 ns
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Conclusions

This work has drawn a complex picture of MSM optimization which suggests that model

selection of MSM hyperparameters by inspection of a single objective measure (e.g., t2)

is not advisable as changes in hyperparameters can change the physical meaning of the

MSM eigenvectors. The commonly used VAMP2 metric when used with the assumption

of reversibility can give rise to rankings of MSMs which are inconsistent with the implied

timescales. We suggest that this is due to a numerical, rather than theoretical problem. In

its place, we suggest using the sum of the square eigenvalues, or other model observables,

e.g., t2, with bootstrapping in order to estimate uncertainty.

Bayesian optimization of MSM hyperparameters is possible using tree Parzen estimators

for the surrogate function. TPEs are able to easily model the different types of hyperparam-

eters (continuous, integer and discrete) and improve the implied timescales. Multi-objective

optimization can be used but does not give a clear advantage over optimizing a single objec-

tive. Caution must again be exercised as this can give rise to models in which the meaning

of the eigenvectors can change.

We also showed that selecting lag-times and a number of scored eigenvectors in the

objective function does not drastically change the the ranking of the hyperparameters as

long as both are sufficiently large.

Taken together these observations suggest a number of recommendations:

1. Randomly sample a range of hyper-parameters and use the VAMP2eq or t2 (or the

timescale of interest) to rank hyperparameters.

2. Use a small subset of models with different lag times (τ) and score with a range of

eigenvectors (k) and choose τ and k such that VAMP2eq is independent of both.

3. Inspect eigenvectors to check for consistency across different hyperparameters.

4. Bayesian optimization of t2 or VAMP2eq can be used to optimize hyperparameters but
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the eigenvectors must be inspected for consistency.
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(21) Noé, F.; Rosta, E. Markov Models of Molecular Kinetics. MMMK, 190401.

(22) Trendelkamp-Schroer, B.; Wu, H.; Paul, F.; Noé, F. Estimation and uncertainty of
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