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Abstract 
The expanded prevalence of resistant bacteria and the inherent challenges of complicated infections 
highlight the urgent need to develop credible antibiotic options. Through conventional screening 
approaches, the discovery of new antibiotics has proven to be challenging. Anti-infective drugs, including 
antibacterials, antivirals, antifungals, and antiparasitics, have become less effective due to the spread of 
drug resistance. In this work we help define the design of next-generation antibiotic analogs based on metal 
complexes. The primary direction is based on the application of artificial intelligence (AI) methods, which 
demonstrated superior ability in tackling resistance in Gram-positive and Gram-negative bacteria, including 
multidrug-resistant strains. The bottleneck of the existing AI approaches relies on the structure similarities 
of the current antibiotics. The question of discovering and developing new unconventional antibiotic classes 
has challenged preconceptions about the scope and applicability of the existing methods. Herein, we 
developed a machine learning approach that predicts the minimum inhibitory concentration (MIC) of Re-
complexes towards two S. aureus strains (ATCC 43300 - MRSA and ATCC 25923 - MSSA). Multi-layer 
Perceptron (MLP) was tailored with the structure features of the Re-complexes to develop the prediction 
model. Although our approach is demonstrated with a specific example, based on the rhenium carbonyl 
complexes, the predictive model can be readily adjusted to other candidate metal complexes. The model 
emphasizes applying a developed approach in the de novo design of a metal-based antibiotic with targeted 
activity against a challenging pathogen. 

Introduction  
It has been recognized that the emergence of antibiotic-resistant microbes represents a "clear and present 
danger" with a global impact, and, therefore, an effective response should be facilitated by adopting a novel 
approach for the de-novo design of novel classes of new antibiotics candidates. It has become increasingly 
demanding to treat infections that threaten global health due to the emergence and spread of pathogens that 
are resistant to conventional antibiotics. Some of the problematic pathogens are carbapenem-resistant 
Enterobacteriaceae (CRE), methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant 
tuberculosis (MDR-TB), vancomycin-resistant Enterococcus (VRE), extended-spectrum beta-lactamase 
(ESBL)–producing bacteria, and drug-resistant Candida auris, Neisseria gonorrhoeae, P. falciparum, and 
Toxoplasma gondii. Challenges include antimicrobial stewardship (the appropriate and responsible use of 
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anti-infective drugs), developing new anti-infective drugs, increasing existing drugs against resistant 
infections, and understanding the drug mechanism. The UN 2023 report 'Bracing for Superbugs: 
Strengthening Environmental Action in the One Health Response to Antimicrobial Resistance,' which 
predicts that deaths resulting from drug-resistant infections will increase dramatically by 2050. Moreover, 
the problem could potentially lead to a $3.4 trillion shortfall in GDP over the next decade and push 24 
million more people into extreme poverty unless drastic action is taken to address it. Approximately 1.27 
million deaths worldwide were directly related to drug-resistant infections in 2019, while 4.95 million 
deaths were directly related to bacterial antimicrobial resistance (AMR). For comparison, in the same year, 
860,000 deaths were attributed to HIV/AIDS and 640,000 to malaria, respectively, according to the World 
Health Organization (WHO) statistics.  

How does resistance develop? Resistance develops due to genetic modification, mutations, or transmission 
of antibiotic-resistant genes from other microbes, unnecessary prescriptions, or the wrong combination of 
antibiotics1,2. Drug resistance has led to a decrease in the effectiveness of anti-infective drugs, such as 
antibacterials, antivirals, antifungals, and antiparasitics.  An additional issue that must be addressed is the 
development of superbugs which are strains of bacteria that are resistant to several types of antibiotics. 
There is a lack of fast and accurate detection of infections, as well as an increase in antimicrobial resistance, 
which exacerbates these problems. To combat infectious diseases, new anti-infective therapies are urgently 
required, especially those that offer novel chemical spaces or therapeutic modalities. A major application 
of AI, and in particular machine learning (ML), a subfield of AI that uses data to train machines to make 
predictions, has been the facilitation of searches of small molecule databases, such as ZINC153. The 
application of machine learning to the discovery of anti-infective drugs has centered on training models to 
identify potential new drugs or new uses for existing drugs. Since the number of drug-like small molecules 
is virtually infinite, 1060 and possibly greater4, most antibiotics are not considered drug-like5. ML 
approaches provide a major advantage in that they enable the screening of compound libraries, and chemical 
spaces of drug-like compounds. The development of the first antibiotic designed by a computer with proven 
efficacy in preclinical animal models demonstrates that machines and AI could be used to develop 
therapeutic molecules6.  The new avenues for ML-facilitated antibiotic discovery are envisioned to trickle 
in from algorithmic theory, AI, and molecular design. Creative integration of diverse studies from DL, 
computer-aided drug design, and ML research will play essential roles in accelerating the urgent task of 
novel antibiotic discovery and implementing new concepts towards the desired pharmacological activity 
discovery7,8.   

Conventional organic medicinal chemistry has faced difficulties and obstacles to replace the depleted 
antimicrobial pipeline. The data based on new antibiotics discoveries from 2022 revealed that, as of June 
2021, there were only 45 ‘traditional’ antibiotics in clinical development. Hence, new approaches for 
designing the next generation of antibiotics are urgently ought. Inorganic or organometallic metal 
complexes have a pivotal role as an option for new antimicrobial alternatives.  However, only recently have 
metals and metalloantibiotics gained considerable attention as potential antimicrobials, in response to the 
rapid rise of AMR in the past decade. Organometallic compounds hold promise thanks to the flexibility of 
their chemistry that allows one to change their structure and the nature of their ligands9,10. Amongst such 
species, rhenium-based complexes11-17 hold great potential. Their mechanism of action is not fully 
understood, but current evidence points to the bacterial membranes as the target of compounds18-20. One of 
the first detailed mechanism-of-action investigations for metalloantibiotics was undertaken by the groups 
of Bandow and Metzler-Nolte21. They revealed that the trimetallic complex containing rhenium, iron and 
manganese with a peptide nucleic acid backbone showed good activity against a range of Gram-positive 
bacteria including MRSA, vancomycin-intermediate S. aureus and Bacillus subtilis. Unfortunately, the 
reported results about the activity against the tested Gram-negative pathogens were not with the same 
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measured response. In addition to in-depth mechanistic studies, a structure–activity relationship was carried 
out, which demonstrated that the Re-containing [(dpa)Re(CO)3] moiety was crucial for the activity 
responses, and  ferrocenyl and CpMn(CO)3 units could be replaced by non-metal moieties, such as a phenyl 
ring11.  

The discovery of new antimicrobial agents is a pivotal necessity, and the abilities of metal-based complexes 
as drugs, more specifically, as antibiotics should be explored, and we should address the challenges outlined 
earlier, about how to boost the development in the field. It is critically important to prescribe appropriate 
antimicrobial therapy as quickly as possible. Whole genome sequencing approaches for quickly identifying 
pathogens and predicting antibiotic resistance phenotypes are becoming increasingly feasible. They may 
effectively reduce turnaround times for clinical tests relative to traditional culture-based methods, thereby 
improving patient outcomes. Using whole genome sequencing data from 1668 clinical isolates of Klebsiella 
pneumoniae, Nguyen et al. developed a machine learning model based on XGBoost that accurately 
predicted antibiotic MICs22. The obtained MICs predicted by the model correlate with recognized 
antimicrobial resistance genes. Pataki et al. used 704 Escherichia coli genomes combined with measured 
MIC for ciprofloxacin collected from different countries for MIC prediction model based on Random 
Forest23. The model was developed to identify the genomic features that determine susceptibility. The recent 
progress in whole genome sequencing technology in combination with machine learning analysis 
approaches indicates that soon such an approach might become cheaper and faster than a MIC 
measurement24-26.   

As we have seen, in the last years ML could deliver an alternative approach to streamline the development 
process of de novo antibiotics by identifying the key motif in the molecular structure associated with 
antibiotic activity. The application of ML to drug discovery, specifically antibiotic discovery, has been 
greatly facilitated by the public availability of empirical datasets27-30, such as the Open Antimicrobial Drug 
Discovery (CO-ADD) for metal-containing compounds with antimicrobial activity9,31. Antibacterial 
screening approaches still do not have efficient tools and strategies for rapidly increasing the number of 
new chemotypes. Implementing the ML methods for novel compounds acting against Gram-negative 
bacteria is scarcely used32,33. An ML-guided approach based on descriptor space search and selection has 
already been used to predict antimicrobial activity34-37.  The way of representing molecules is a crucial step. 
Numeric vectors consisting of molecular descriptor values (features) have already been utilized before the 
widespread applicability of ML in QSAR (quantitative structure−activity relationship) modeling.  
Molecular graph networks are another way of describing molecules where a node represents each atom, 
and an edge represents each atom's bond. There is a close relationship between ML models and molecular 
representations. Depending on how the chemical structures are presented, the chemical space can be defined 
as the union of all possible chemical compounds that can be used to find new antibiotic candidates that 
resemble existing ones.    

Herein, we present an application of the ML approach for the prediction of the antibacterial activity of new 
antibiotic candidates based on Re-metal complexes towards two S. aureus strains (namely ATCC  43300, 
MRSA, and ATCC 25923, MSSA), using molecular descriptors and neural network architectures. Our 
framework provides a rapid method for developing a model to predict the metal complexes' minimum 
inhibitory concentrations (MIC). It consists of the following elements: (1) molecular representation based 
on the structure of the complexes, (2) feature reduction space, (3) ML algorithm, and (4) molecular 
descriptor specificity analysis (featuring importance scores). By leveraging the physicochemical properties 
captured by the molecular structures of 119 Re-complexes, measured data points (minimum inhibitory 
concentration) towards the activity of S. aureus ATCC  43300 and S. aureus ATCC 25923 strains were 
used for the antimicrobial activity prediction of previously untested complexes. 
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Experimental section 
The Multi-layer Perceptron (MLP) was used for the neural network model. MLP is a supervised learning 
algorithm, the most straightforward feed-forward network, as shown in Figure 5. In the architecture of the 
feed-forward neural networks, the units (or nodes) are arranged into a graph without any sequential loops. 
This contrasts with recurrent neural networks38, where the graph can have loops, so the network feeds into 
itself from the loops. The MLP learns a function by training on a dataset and, consequently, the number of 
dimensions of input and the number of dimensions of output. It is different from logistic regression in that, 
between the input and the output layer, there can be one or more non-linear layers, called hidden layers. 
For the training of the model, MLP regressor trains using backpropagation with no activation function in 
the output layer, which can also be seen as using the identity function as an activation function. The model 
was trained on the provided data set having 119 data rows (input objects), 92 feature columns, and 2 output 
classes. This set was subdivided into 75% for the training set (89 data rows) and 25% for the validation set 
(30 data rows). The code used for the model, along with the training and test set, is provided in this 
repository: https://github.com/mici345/MIC-prediction-model 

 

 

  

Figure 5.  Multilayer perceptron with two hidden layers. Left picture: input layer, input feature values are 
used for the input units. The output layer has one unit per each value of the network outputs. Hidden 
layers: the layers between in and out units. Right picture:  layers presented as boxes.  

Structure of the dataset, descriptors generation space, and descriptors importance. We initially used 5666 
descriptors for building the model, which are representations of Re-compounds. The AlvaDesc software 
was used to generate descriptors space from the 3D structures of each Re-complex. The set of used 
descriptors includes 0D (with no relation to shape, e.g., molecular weight), 1D (e.g., presence of certain 
active substructures within the molecule), 2D (e.g., molecular graph representations involving bonds 
between atoms but not bond lengths), and 3D (e.g., distances between specific atomic pairs in the molecule) 
ones (details in the Supporting Information). The descriptors contain information that could correlate to a 
given Re-complex's antimicrobial action.  The structure of the input matrix for the ML models often leads 
to decreasing predictive accuracy. The reduction techniques are usually performed to decrease the noise in 
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the data structure, but at the same time, the loss of information should be presumed. The data sets were 
reduced with Principal Component Analysis (PCA) for reducing the descriptor space. PCA is an orthogonal 
linear transformation that transforms the data into a new coordinate system where the first direction of the 
most significant variance becomes the new coordinate axis39. The optimal parameter selection within the 
descriptors space resulted in highly converged accuracies for the trained model. Construction of the initial 
matrix from the explored chemical database is crucial for developing and validating the model. The final 
reduced set was based on 119 data points (Re-complex), 91 features, and 2 output classes for the bacterial 
strains.  

Reagents and chemicals. All reagents were obtained from standard sources and utilized without any further 
purifications. The compounds Re(CO)5Br and Re(CO)5Cl was purchased from Sigma-Aldrich. For the 
validation set, complexes 1a40, 1b41, 1c42, 2a40, 2b43, 2c44, 3b45, 4b46, 7a40 and 7b47 were synthesized 
according to published procedures. Complexes 5d, 6d, 8d, and 9d were prepared according to Cortat et al.17 
Complexes 3a, 3c, 4a, 4c, 8a, and 9a were prepared with similar procedures.17  All complexes were 
synthesized under an inert (Ar) atmosphere.  

Instruments and Analysis. IR spectra were recorded on a Bruker TENSOR II with the following parameters: 
16 scans for the background and 32 scans for the sample with a resolution of 4 cm-1 in the 4000 to 600 cm-

1 regions. UV-Vis spectra of the complexes were measured on a Jasco V730 spectrophotometer. A Bruker 
Advance III 400 MHz was used to measure the complexes' NMR spectra. The corresponding 1H chemical 
shifts were reported relative to the residual solvent protons. A Bruker FTMS 4.7-T Apex II in positive mode 
was used to perform the mass analyses.  

Synthetic procedures. Ligands for complexes 2a-c and 7a-b were synthesized using published procedures48-

51. For the preparation of the complexes in the validation set, Re(CO)5Br and Re(CO)5Cl were used. 
Rhenium precursors and ligands were generally reacted in equimolar ratios and refluxed overnight. After 
the reactions, products were filtered and washed with the reaction solvent and diethyl ether. The purity of 
the complexes (Br or Cl species 3a, 4a, 8a, and 9a) was confirmed as >95%. Compounds 3c and 4c were 
prepared by suspending 3a or 4a in MeOH (HPLC grade) with 1-mole equiv. of pyridine and AgOTf (1.2 
mole equiv.) and refluxing in the dark overnight. After the mixture had cooled to room temperature, it was 
filtered to discard AgBr and dried in a vacuum oven. The compounds were purified by washing with water, 
followed by centrifugation. Crystals of 4c suitable for X-ray diffraction analysis were grown by slow 
evaporation of a dichloromethane solution at room temperature. Spectrochemical characterization of the 
complexes is in the Supporting Information. Crystallographic data, CCDC number 2296107, have been 
deposited at the Cambridge Crystallographic Data Centre. 

Antimicrobial study. The antimicrobial activity of  the complexes was assessed against S. aureus ATCC 
25923 (wild type, MSSA) and S. aureus ATCC 43300 (methicillin-resistant, MRSA) strains following 
published protocols52. Briefly, each complex was prepared as a 6.4 mM stock solution in DMSO and diluted 
to 256 µM with PBS. They were sterilized for 20 min under UV light before use. Then, stock samples were 
diluted with PBS to 128 µM, and 50 µL of each dilution was transferred to 96-well plates. In parallel, S. 
aureus in Mueller–Hinton Broth (non-cation-adjusted, MHB), cultured one day before injection, was used 
to prepare bacterial suspensions at 1 x 106 CFU/mL in MHB 2X. Then, 50 µL of S. aureus suspensions 
were mixed in the 50 µL of serially diluted sample wells, leading to a final bacterial concentration of 5 x 
105 and the complexes concentrations ranging from 64 µM to 0.5 µM. The plates were incubated at 37 °C 
for 24 h. The minimum inhibitory concentration (MIC) values were determined by measuring the optical 
density at 600 nm (OD600). The assay was conducted in triplicate. Tecan-Spark 10M with SparkControl 
program was used to determine the antimicrobial activities.  

https://doi.org/10.26434/chemrxiv-2023-6hngt-v2 ORCID: https://orcid.org/0000-0002-9077-7184 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-6hngt-v2
https://orcid.org/0000-0002-9077-7184
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Results and Discussion 
Synthesis of metal complexes. A dataset of 119 rhenium tricarbonyl complexes was compiled for this 
work. Of these, 20 complexes, not previously evaluated for their antibiotic activity, were synthesized and 
used as the validation set for the model (Figure 1). Complexes shown in Figure 1 were prepared according 
to well-established procedures employed in the chemistry of this metal core. [Re(CO)3(NN)X] species 
(where NN = diimine ligand and X = halide; Br or Cl) were obtained by reacting commercially available 
Re(CO)5X with one equivalent of NN in refluxing toluene. The desired compounds precipitate upon cooling 
and are filtered and washed with a cold solvent to yield the molecules with a purity ≥ 95%.  Pyridine (py) 
and clotrimazole (ctz) derivatives of the compounds were prepared by reaction of [Re(CO)3(NN)X] with 
AgOTf in the presence of py or ctz, followed by precipitation and HPLC purification if required. 
Characterization of the new compounds is given in SI. In addition to standard characterization techniques, 
the x-ray structure of 4c was determined (SI). 

 

  

Figure 1. Structures of validation complexes tested for antimicrobial activity against S. aureus ATCC 
25923 (MSSA) and S. aureus ATCC 43300 (MRSA) strains. 

 

Multi-layer Perceptron (MLP) model. The pipeline for leveraging the prediction model based on 
antimicrobial data is presented in Figure 2. Using the MLP, we predicted the antimicrobial activity, 
quantified in the MIC values Re-complexes. We trained the MLP architecture on the whole set. The 
obtained scores were computed based on the validation set and showed how the model performs by 
comparing the model's predictions to the experimental validation values. The prediction performance was 
evaluated using the following parameters: accuracy, precision, and recall. Accuracy estimates how often 
the model predictions were correct. As such, it is the ratio of the true cases to all the cases, defined as (TP 
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+ TN) / (TP + FP + TN + FN) where TP is the number of true positives, FP is the number of false positives, 
TN is the number of true negatives, FN is the number of false negatives. The set of labels predicted for a 
sample must match the corresponding labels in the validation set. Precision indicates how often the model 
predicted the sample to be positive when true. It is defined as the ratio of the True Positive to the predicted 
positive cases. The precision is equal to TP / (TP + FP). It is intuitively the ability of the classifier not to 
label as positive a sample that is negative. Recall quantifies the number of positive predictions made from 
all positive cases in the dataset, equal to TP / (TP + FN). The classifier intuitively can find all the positive 
samples. The obtained scores are shown in Table 1 and Figure 3.  

 Figure 2. Schematic representation of the workflow. We started from experimentally obtained data to 
compile the input matrix for training and testing the model. For validating the model, the new synthesized 
Rе-complexes were used. The descriptors were extracted from the AlvaDesc software, and the MLP was 
used to predict the antimicrobial activity. The last box shows the scoring of the molecular features by 
recursive feature elimination based on bootstrap-aggregated decision trees.   

Table 1. Model prediction performance evaluated by Accuracy, Precision, and Recall criteria.  

Target Accuracy Precision Recall 
MRSAa – MIC b 4 0.9 0.85 0.92 

MRSA - MIC 8 0.83 0.78 0.93 
MRSA - MIC 16 0.87 0.81 1 
MRSA - MIC 32 0.9 0.94 0.89 
MSSAc - MIC 4 0.8 0.64 0.9 
MSSA - MIC 8 0.83 0.75 0.92 

MSSA - MIC 16 0.87 0.84 0.94 
MSSA - MIC 32 0.73 0.74 0.82 

a MRSA refers to the S. aureus ATCC 43300 strain. b MIC # indicates the target minimum inhibitory 
concentration in mM. c MSSA refers to the S. aureus ATCC 25923 strain. 
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Figure 3.  Model prediction performance evaluated by Accuracy, Precision, and Recall criteria. For all 
these scores, the best value is 1, and the worst is 0. 
In practical terms, with overall good accuracy, the model can predict whether a metal complex may be 
active against the MRSA S. aureus strain. Indeed, a good agreement between expected and experimental 
MIC values is found when considering the methicillin-resistant S. aureus ATCC 43300. The complete 
statistical metrics are presented in Table S4 in the SI section for the validation set. In this case, in 14 out of 
20 instances (Table 2), the model correctly predicted whether a metal complex showed no activity (MIC > 
32 µg/mL, 7 out of 10 experimentally inactive compounds) or if a complex had potential antibacterial 
activity (MIC < 32 µg/mL, 7 out of 10 experimentally active compounds). In this latter case, in 6 out of 7 
instances, the MIC value was correctly predicted within 2x of the experimentally determined MIC value. 
The model revealed more limitations when considering the wild-type S. aureus ATCC 25923 (MSSA) 
strain. However, in the case of experimentally active molecules, not only did the model always correctly 
identify these complexes (8 out of 8 instances within 2x the experimentally determined MIC value), but in 
3 cases, it was able to indicate the correct MIC value of the compounds (1c, 4a and 4c, Figure 4).  
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Figure 4. The accuracy of the model for the MIC values (µg/mL) of the tested complexes against MRSA 
and MSSA S. aureus strains.  

Feature ranking analysis. The effect of features and network architectures on the quality of the predictions 
was tested, and the distribution of the final scores for the features is presented in Figure 5. After evaluating 
the model performance, we examined the feature importance in the prediction model. The Neural Network 
is not a straightforward method to assess the intrinsic feature importance. For example, it is hard to interpret 
how these weights contribute to the resulting decisions just by analyzing the weights between the neurons 
in the model. The feature ranking of the set of used descriptors (presented as an additional file in the SI) 
was calculated based on their relative contributions to predictions made by the model. Below, we try to 
assess the significance of feature j as follows: 

𝑓𝑓𝑗𝑗 = 𝑠𝑠 −
1
𝑛𝑛

 �𝑠𝑠𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

where s – is the baseline score computed for the non-permuted input data set; basically, it is equal to 1; sij 
– is the score obtained by permuting the corresponding feature column of the data set. By permuting, we 
mean that the values of the feature are randomly permuted between various data rows (molecules). In this 
way, the importance of a feature is the difference between the baseline score s and the average score 
obtained by permuting the corresponding column of the test set. If the difference is small, then the model 
is insensitive to permutations of the feature, so its importance is low. On the contrary, the features’ 
importance is high if the difference is significant. The parameter n controls the number of permutations per 
feature — more permutations yield better estimates (we used n=100). 
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Figure 5. Molecular descriptor scoring.  

This assessment with the low scores does not necessarily mean that the feature is not important at all but 
rather that most of its values are close to each other and possibly that when training. The top descriptor with 
the highest average effect in the prediction model is listed in Table 3. The Kier benzene-likeliness index 
(BLI) descriptors, which are calculated by dividing the first-order valence connectivity index by the number 
of non-H bonds (nBO) of the molecule and then normalizing on the benzene molecule proposed to measure 
the molecule aromaticity, were defined as a top-ranked feature of importance. This is true for all cases 
except the last case (S. aureus ATCC25923 (target) MIC 32).   

 

Table 3. Top-scored descriptors for each of the target cases.  

 

 

A second method for the feature assessment was applied to investigate the effect and robustness of the 
obtained BLI descriptor as the top ranked. The ranking was performed using Random Forest (RF, Bootstrap-
aggregated (bagged) decision trees)55, trained on a random forest of 200 classification trees, and stored the 
out-of-bag information for predictor importance estimation. The critical values are sorted and reported in 
the Excel file (S2 in the SI) in the SI. BLI aromaticity index was the top-ranked. The relationship between 
the antimicrobial activity and the impact of the BLI, indicates that the BLI is a crucial descriptor in the 

Target Categories of descriptors Description 

S. aureus MRSA MIC 4 BLI - Topological indices53  
Kier benzene-likeliness index is an 
aromaticity index calculated from 

molecular topology. 

S. aureus MRSA MIC 8 BLI - Topological indices53   
S. aureus MRSA MIC 16 BLI - Topological indices53   
S. aureus MRSA MIC 32 BLI - Topological indices53   
S. aureus MSSA MIC 4 BLI - Topological indices53   
S. aureus MSSA MIC 8 BLI - Topological indices53   

S. aureus MSSA MIC 16 BLI - Topological indices53   

S. aureus MSSA MIC 32 Edge adjacency indices54 

Spectral moment of order 13 from 
augmented edge adjacency mat. 
weighted by resonance integral 

(structural properties of the graph) 
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prediction models. The effect of the BLI descriptor could be connected to the lipophilicity of the molecules. 
Other features of high relevance are edge adjacency indices (e.g., eigenvalue or spectral mean absolute 
deviation indices such as Eig05_EA (ri), Eig05_AEA (ed) or SpMAD_EA (dm) and SM13_AEA (ri)).   

The correlation between aromaticity, hydrophobicity and antimicrobial activity is well known for the 
antimicrobial peptides56-58 and was also shown for antimicrobial polymers59. In this last study, the logarithm 
of the partition coefficient of compounds between n-octanol (C logP) and water was used to represent 
hydrophobicity. The authors showed that the elevated responses from the antimicrobial activity required 
hydrophobicity that was neither too high nor too low. The obtained values suggest that C logP values 
between 0 and 2 have the best balance of high antimicrobial activity.  Then, the obtained relations between 
the identified descriptors in the MLP model were explainable. The nature of the target should be tested as 
a limiting factor for the sparser application of the obtained results about the activity towards different 
bacterial cells. Still, it might display highly synergistic effects based on the selectivity of the descriptor.  

Conclusion 

This study presents a model based on supervised learning methods to predict the antibacterial properties of 
Re-metals complexes. This machine-learning-guided descriptor model was developed on Re-metals 
complexes and was proven able to predict the antimicrobial activity of the metal complexes against the 
methicillin-resistant S. aureus ATCC 43300 strain with good accuracy and precision. It may thus serve as 
an advisory tool to guide the synthesis of new complexes. The MLP model makes use of (1) molecular 
representation based on the structure of the complexes, (2) feature reduction space, (3) ML algorithm, and 
(4) molecular descriptor specificity analysis (features importance scores). When applied to the prediction 
of 20 previously untested molecules, in 70% of cases, it could predict whether (a) the metal complex may 
be active or (b) inactive. Moreover, in >80% of correctly predicted active molecules, their minimum 
inhibitory concentration was predicted within 2x the experimentally determined values. The proposed ML-
based antibiotic development approach revealed the main descriptors responsible for the antimicrobial 
activity. Therefore, the model may predict the activity of new unconventional antibacterial candidates based 
on Re-complexes with the selected molecular descriptors. 
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