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Abstract 

Phosphines are extremely important ligands in organometallic chemistry and their donor or 

acceptor ability can be measured through the Tolman electron parameter (TEP). Here we describe the 

development of a TEP machine learning model (called TEPid) that provides nearly instantaneous 

calculation of experimentally calibrated CO vibrational stretch frequencies for (R)3P-Ni0(CO)3 complexes. 

This machine learning model with an error of less than 1 cm-1 was developed using >4,000 DFT calculated 

(R)3P-Ni0(CO)3 TEP values and 19 key connectivity-based descriptors associated with SMILES strings. 

We also built a web-based interface to run the machine learning model where SMILES strings can be 

entered and TEP values returned. We applied this TEPid model to examine the donor and acceptor 

capability of phosphines in the large Kraken phosphine database. Surprisingly, this showed that the Kraken 

database is skewed towards donor phosphines. In the same spirit of the Kraken database, we generated tens 

of thousands of new experimentally based phosphines that when combined with Kraken phosphines provide 

a more electronically balanced ligand library. 
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Introduction 

Phosphines represent a ubiquitous and extremely important class of ligands in organometallic 

chemistry, and their σ-donor properties greatly affect the coordination, thermodynamic stability, and 

reactivity of transition metal complexes. Phosphines have been shown to significantly modulate the 

reactivity of many organometallic catalyzed reactions, such as hydroformylation,1-3 cross-coupling,4-9 and 

hydrogenation.10, 11 To develop new organometallic catalytic reactions where stability and reactivity is 

modulated by phosphines it would be desirable to have extremely fast methods to calculate and explore 

phosphine properties. In this general effort, Gensch, Sigman, and Aspuru-Guzik recently reported the 

Kraken database that consists of over 300,000 mostly hypothetical phosphine ligands created based on a 

combination of experimentally known phosphines.12 Along with structures, Kraken contains several 

calculated steric and electronic descriptors. Fey has demonstrated and popularized the utility of ligand 

descriptors and properties to evaluate possible catalytic activity.13-21 

One major chemical descriptor that has been used for several decades to compare the σ-donor 

capacity of phosphines is the Tolman electronic parameter (TEP). The TEP is a very sensitive measure of 

a ligand’s electron donating or electron withdrawing capacity with only minor influence from steric and 

dispersion type effects.22-24 Typically, a Tolman electronic parameter is measured by the A1 symmetric 

carbonyl stretching frequency for an L-Ni0(CO)3 complex, where L is the ligand of interest. Figure 1 

displays a 3-dimensional representation of (CH3)3P-Ni0(CO)3 with a depiction of the A1 symmetric carbonyl 

stretch. If the L-type ligand is electron donating to the Ni metal center then there will be a propagated effect 

for donation to the CO ligands through π-backbonding, which results in weakening the CO bond strength 

and decreasing the TEP value. Conversely, if the L-type ligand is electron withdrawing to the Ni metal 

center then there will be less donation to the CO ligands through π-backbonding resulting in a larger TEP 

value. 
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Figure 1. Representation of the A1 symmetric CO stretch for the (R)3P-Ni0(CO)3 system, which is the basis 

for TEP values. 

 

While several TEP values have been experimentally determined, it would be ideal if calculations 

could be used to rapidly predict accurate values for new phosphines since this information could be used 

for interpreting experiment results or as a basis for selecting a phosphine in the design of a new metal 

complex, especially in the spirit of Fey’s approach.13-17 Density functional theory (DFT) calculations have 

been used to calculate TEP values.25-27 As one representative example, Clot used B3PW91 DFT calculations 

to calculate 68 CO frequency values for L-Ni(CO)3 complexes that included both phosphine and non-

phosphine ligands.28 Importantly, this work established the ability to directly correlate and correct DFT 

calculated values with experiment. This work also demonstrated the transferability of calculated TEP values 

to other types of complexes,20 such as CpMn(CO)2L.22 Crabtree developed a bisphosphine scale that is 

related to TEP values.29 TEP values have also been interpreted using natural orbitals for chemical valence 

calculations,30 which allowed decomposition of donor and acceptor effects into specific types of orbital 

interactions. There have also been several studies showing fundamental property correlations with TEP 

values. For example, Koga used electrostatic potential values correlate with TEP values,31 and this indicates 

that relatively simple descriptors can provide understanding of donor and acceptor effects of phosphines. 

Similar to phosphine TEP values, there are several instances where CO stretching calculations were used 
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to determine donor and acceptor effects for non-phosphine ligands. For example, Liu and Ke use DFT 

calculations to determine the steric and electronic parameters of N-heterocyclic boryl type ligands32 and 

Kuzu examined carbodiphosphorane ligands.33 It is useful to note that the use of TEP values has been 

slightly criticized by Cremer because they do not correlate with bond strength.34, 35 However, regardless of 

this lack of correlation, TEP values allow comparison of phosphine electronic effects that can be potentially 

translated from the L-Ni(CO)3 complex to new complexes, and they can be used as one of many chemical 

descriptors in catalyst design. 

 Therefore, our major goal was to develop a machine learning model from descriptors derived from 

simplified molecular-input line-entry system (SMILES) representations of phosphines that can then be used 

to instantaneously (at least compared to DFT) calculate accurate TEP values. Figure 2a describes the 

approach of how this machine learning model, called TEPid, was developed. Using a combination of 

automated building and calculation tools we curated >4,000 DFT calculated (R)3P-Ni0(CO)3 TEP values. 

We then extracted dozens of connectivity-based descriptors associated with SMILES strings from the 

(R)3P-Ni0(CO)3 complexes. We then optimized regressor-type machine learning models and pruned the 

descriptors to the 19 key model features. This TEPid machine learning model is extremely fast and provides 

an error of less than 1 cm-1. Additionally, we built a web-based interface to run the machine learning model 

where SMILES strings can be entered and TEP values returned. We then applied this TEPid model to 

examine the donor and acceptor capability of phosphines in the large Kraken phosphine database. This 

revealed that the Kraken database is somewhat skewed towards donor phosphines. In the same spirit of 

Kraken, we generated new phosphines that when used with Kraken provide a ligand library that is 

electronically more balanced. 
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Figure 2. a) The general flowchart for the curation of a database consisting of >4000 calculated TEP values, 

extraction of connectivity-based chemical descriptors, and creation of a regressor machine learning model. 

b) Outline of how the machine learning model can be used to predict a TEP value for a new phosphine. 

 

Computational and Data Science Methods 

 All density functional theory (DFT) calculations were performed with the Gaussian 16 software 

using the B3LYP density functional36 with the def2-SVP basis set.37, 38 Dispersion corrections were applied 

using Grimme’s D3 dispersion method with the Becke-Johnson damping function.39, 40 Figure 2a shows that  

a core comprised of a Ni(CO)3 and PH3 phosphine system was first optimized and then AaronTools was 

used to functionalize the phosphine with the following groups: Me, Et, Pr, iPr, tBu, allyl, Ph, Bn, Cy, F, Cl, 

Br, I, CF3, CH2F, CH2Cl, 2,6-F-Ph, 3,5-F-Ph, NH2, NMe2, OH, OMe, SH, SMe, SiH3, SiMe3, CHO, COCH3, 

CONH2, COOCH3, COOH, CH2OH. All 4703 unique (R)3P-Ni0(CO)3 structures were then optimized in the 

gas-phase with B3LYP-D3(BJ)/def2-SVP. Using the SMILES string representations for each of the 
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phosphines, more than 100 cheminformatic features were calculated using the RDKit software package.41 

Permutation feature importance and SHAP feature values were used to condense the model down to 19 

descriptors. 

The LightGBM Regressor was used for the machine learning model with hyperparameters 

optimized using the Optuna algorithm.42, 43 Optuna performs automated searches for hyperparameters based 

on a chosen function to either minimize or maximize. In the case of this application, the 5-fold cross-

validation average root-mean-square error across the training set was chosen to be minimized. The 4073 

phosphines were split into a training and testing sets with a 70:30 split with 3292 training structures and 

1411 testing structures. 

 To generate a Kraken-style phosphine ligand library, we used a combination of our program 

Polyjuice and OpenBabel and our ReaLigands ligand library.44 ReaLigands was curated by detaching and 

classifying all ligands from all mononuclear transition metal complexes in the Cambridge Structure 

Database (CSD). For this work, we used 1,078 unique monodentate phosphine ligands. On these 1,078 

phosphine ligands we used our Polyjuice program, which is a modified depth-first searching algorithm, to 

detach all organic groups connected to each phosphine. To assemble the large phosphine ligand library, we 

used the same approach as Gensch et al. and built phosphines with two identical organic groups and one 

different organic group (i.e., R’R2P). To electronically balance this ligand set, we added select phosphines 

with three different organic groups as well as phosphines that have two covalent connections to a single 

organic group and a third independent organic group. OpenBabel was used for all structure conversions. 

 

Results and Discussion 

 To evaluate the performance of B3LYP-D3(BJ)/def2-SVP to calculate TEP values, we used 14 

different experimental values that provide a range of donating and accepting phosphines. Table 1 gives the 

experimental symmetric CO stretch values and the DFT calculated values. This comparison shows that the 
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DFT calculated values, as expected based on the work of Clot, have a systematic error. Therefore, a simple 

correction factor was employed to shift the DFT values to align with the experimental values. The correction 

for the DFT values was determined through creating a linear regression between the uncorrected DFT TEP 

values and the experimental values for these seven cases. This regression had a high degree of correlation 

with a R2 = 0.960.  

Table 1. B3LYP-D3(BJ)/def2-SVP calculated TEP values with and without the correction factor. 
aExperimental values obtained from reference 24. 

Phosphine 

Uncorrected CO A1 

Stretch (cm-1) 

Corrected CO A1 

Stretch (cm-1) 

Experimental CO A1 

Stretch (cm-1)a 

Error 

(cm-1) 

PH3 2185.6 2084.5 2084.1 +0.4 

PF3 2210.0 2110.8 2110.8 -2.8 

PCl3 2202.5 2100.8 2097.0 +3.8 

PMe3 2167.6 2067.2 2064.1 +3.1 

PPh3 2185.6 2084.5 2083.2 +1.3 

P(NMe2)3 2165.0 2064.7 2061.9 +2.8 

PCl2Ph 2189.9 2088.7 2092.1 -3.4 

P(OMe)3 2180.8 2079.9 2079.5 +0.4 

PClPh2 2179.2 2078.4 2080.7 -2.3 

PEt3 2210.0 2062.9 2061.7 +1.2 

PH2Ph 2179.8 2079.0 2077.0 +2.0 

PMe2CF3 2180.9 2080.0 2080.9 -0.9 

PPh2(CH=CH2) 2169.4 2068.9 2069.3 -0.4 

PPhBn2 2161.4 2061.3 2067.6 -6.3 
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 The corrected value for the CO A1 symmetric stretch frequency can be determined using Equation 

1 where vcorr is the corrected value of the Tolman electronic parameter and vuncorr is the uncorrected value. 

The corrected DFT values have an RMSE of 2.7 cm-1 from the experimental values.  

𝑣𝑐𝑜𝑟𝑟 = 0.9623 ∗ 𝑣𝑢𝑛𝑐𝑜𝑟𝑟 − 18.671 𝑐𝑚−1 Eq. (1) 

  

 Using the DFT optimized structures and vibrational frequencies, Equation 1 was used to calculate 

the TEP values for the 4703 phosphines. Figure 3 displays the distribution of DFT calculated TEP values. 

The distribution is relatively uniform with a mean of 2078.1 cm-1 and a standard deviation of 9.9 cm-1, 

showing a good spread of the overall dataset. 

 

Figure 3. Distribution of B3LYP calculated and corrected TEP values across 4703 phosphines (in cm-1). 

 We extracted more than 100 cheminformatic features for each phosphine using the RDKit41 

software package and used these feature values to build a regressor machine learning model. Importantly, 

we systematically decreased the number of model features to only 19 cheminformatic descriptors while 

keeping the same model performance as including all descriptors. SHAP and permutation feature 

importances were used to determine the top 20 most important features to the model, and then each 

2050 2060 2070 2080 2090 2100 2110

DFT Corrected Tolman Electronic Parameter (cm-1)

0

C
o

u
n

t

50

100

150

200

250

300

https://doi.org/10.26434/chemrxiv-2023-wjnpj ORCID: https://orcid.org/0000-0001-5689-9762 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-wjnpj
https://orcid.org/0000-0001-5689-9762
https://creativecommons.org/licenses/by/4.0/


 9 

combination of the 20 were employed until it was determined that only 19 were necessary for best model 

performance. The hyperparameters for the LightGBM model used for predictions can be found in the 

Supplementary Information (SI). The 5-fold cross-validation on the training set provided average training 

and validation RMSE values of 0.989 ± 0.007 cm-1 and 2.041 ± 0.002 cm-1, respectively. Therefore, on 

average, the model has an error of approximately 2 cm-1 when predicting structures outside of the training 

set. Figure 4 displays the correlation between the DFT calculated TEP values and the LightGBM model 

values. The predictions for both the training set and the testing set show good agreement with the true 

values, having R2 values of 0.992 and 0.960, respectively. 

 

Figure 4. Plot of the machine learning predicted TEP values versus the M06/def2-SVP calculated values. 

The data points for the training set are plotted in teal while the data points for the testing set are plotted in 

orange. 
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Figure 5. Plots of feature importances from a) a permutation feature method and b) the SHapley Additive 

exPlanations (SHAP) method for the training data. 

  

 Figure 5 displays two different methods for calculating the importance of features for the 

LightGBM machine learning model. Figure 5a shows permutation feature importance wherein each 

individual descriptor has its values shuffled among the different data points to test how much the error is 

introduced by the shuffling. This process was performed 20 times for each feature and is displayed as a 

box-and-whisker with regards to the increase in the RMSE. Figure 5b shows the feature importance through 

the SHapley Additive exPlanations (SHAP) method which uses a game theoretic approach to explain each 

descriptor’s effect on the model output for each individual datapoint.45 A negative SHAP value corresponds 

to a descriptor lowering the model’s predicted output value for that particular data point and vice versa for 

a positive SHAP value. The color gradient (red versus blue) describes the value of that feature, that is, a 

pure red data point equates to a larger more positive value for that descriptor associated with a data point. 

Taking the VSA_EState1 feature as an example, the red data points mainly have negative SHAP values 

while the blue data points mainly have positive SHAP values, which means that having a larger more 

positive value for the VSA_EState1 feature will result in a lower predicted value for the TEP value. 

 There are eight features out of ten that overlap from each importance methodology. The top feature 

in both sets is the BCUT2D_CHGLO. The BCUT2D descriptors represent eigenvalues of a connectivity 
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matrix with a specific property along the diagonal with the off-diagonal elements depending on the bond 

order.46, 47 The CHGLO tag refers to the lowest eigenvalue of the connectivity matrix with the diagonal 

values being the Gasteiger charges showing the electronic a direct correlation between overall charge 

distribution across the molecule with its TEP value, and this is an expected key feature for electronic effects. 

Among the top 10 features are electrotopological state (EState) index features which represent the 

combination of the electronic character and topological environment of each atom in a molecule.48-50 Most 

of the top ten features represent graph-based descriptors that focus on the electron distribution and polarity 

of molecules. Perhaps as expected, but nonetheless interesting, common descriptors that provide evaluation 

of size and steric of atoms and molecules were not found to be important, which is consistent with TEP 

values describing electronic effects without significant steric effects.  

 Figure 6 shows the learning curve for the training set using the LightGBM model. The dataset is 

further split into a set used to train the model and a separate validation set to test the model upon. At each 

training set size, 5-fold cross-validation was used to generate an average RMSE value and standard 

deviation across all five folds. At around 500 structures the model begins to learn the TEP values 

consistently with a 5-fold RMSE of approximately 4 cm-1 and a relatively small standard deviation. As 

more structures are added there is a slow but persistent decrease in the validation RMSE. 
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Figure 6. Learning curve of the LightGBM machine learning model’s 5-fold CV averaged root-mean-

square error (in cm-1) versus the number of systems in the training set. The light grey shading represents 

the standard deviation of the 5-fold CV RMSE values (in cm-1). 

 

 With the development of the TEPid machine learning model, we were then able to analyze the 

Kraken phosphine ligand library to determine the distribution of electronic effects. We then calculated the 

TEP values for 294,860 phosphine structures retrieved from the Kraken database’s application 

programming interface (API). A few of the phosphines could not be calculated with TEPid because they 

had null values for some of the 19 descriptors. Figure 7 plots the distribution of Kraken phosphine TEP 

values. Comparison of Figure 7 with Figure 3 shows that the Kraken phosphines have a significant shift to 

lower TEP values than our DFT calculated set of phosphines with a mean of 2066.8 cm-1 and a standard 

deviation of 5.7 cm-1 compared to the DFT calculated set of phosphines with a mean of 2078.1 cm-1 and a 

standard deviation of 9.9 cm-1. This suggests that the structures in the Kraken database tend to more 

electron-donating phosphine complexes that transfer more electron density to the nickel. 

R
M

S
E

 (
c
m

-1
)

2

4

6

8

10

12

Training set size

0 500 1000 1500 2000 2500 3000 3500

Training score

Cross-validation score

https://doi.org/10.26434/chemrxiv-2023-wjnpj ORCID: https://orcid.org/0000-0001-5689-9762 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-wjnpj
https://orcid.org/0000-0001-5689-9762
https://creativecommons.org/licenses/by/4.0/


 13 

 

Figure 7. Distribution of the machine learning calculated TEP values (in cm-1) for 294,860 phosphine 

structures from the Kraken database. 

 

In an effort to have access to more electron-withdrawing phosphines and an electronically balanced 

library, we decided to build our own phosphine ligand library beginning with our ReaLigands44 library that 

contains all ligands detached and classified from all transition metal complexes in the CSD. In our 

ReaLigands library there are 1,078 phosphines. The machine learning calculated TEP values for these 

experimental phosphines ranges from 2053.1 to 2107.7 cm-1 with a mean of 2068.1 cm-1 (standard deviation 

of 7.7 cm-1). We dismantled these 1,078 phosphines using our program Polyjuice51 to obtain a set of 205 

organic groups that were then used to assemble new phosphines. Like Kraken, we first generated 

phosphines with two identical organic groups and one different organic group (labeled as RR’2P). This 

generated 42,025 unique phosphines with a mean calculated TEP value of 2067.8 cm-1 with a standard 

deviation of 7.3 cm-1, which is a very similar mean and distribution to the Kraken phosphine library. To 

increase the number of electron-withdrawing phosphines we identified the 76 organic groups that provided 

TEP values of 2070 cm-1 or greater and then used these groups to generate 76,076 new phosphines where 

all three groups on the phosphine are different (labeled as RR’R’’P). This set of phosphines showed the 

Predicted Tolman Electronic Parameter (cm-1)

2060 2070 2080 2090 2100 2110

0

1000

2000

3000

4000

5000

6000

C
o

u
n

t

https://doi.org/10.26434/chemrxiv-2023-wjnpj ORCID: https://orcid.org/0000-0001-5689-9762 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-wjnpj
https://orcid.org/0000-0001-5689-9762
https://creativecommons.org/licenses/by/4.0/


 14 

expected higher mean value of 2076.3 cm-1 with a standard deviation of 7.1 cm-1. To this library, we also 

added phosphines that have two covalent connections to a single organic group and a third independent 

organic group (labeled as RR’P). This was done by using Polyjuice to identify 201 unique organic groups 

from the ReaLigand’s phosphines that provide two covalent bonds to phosphine. We then combined these 

201 organic groups with the previously mentioned 205 single connection organic groups to yield 31,666 

more phosphine structures. Figure 8a plots the TEP values for all the created phosphine ligands. The 

complete set of phosphines is available for download from GitHub. Figure 8b plots the TEP values for the 

categories for phosphines, such as RR’2P, RR’R’’P, and RR’P. 
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Figure 8. a) Distribution of machine learning calculated TEP values (cm-1) for all phosphines created by 

using the organic groups detached from phosphines in the ReaLigand library. b) Color-coded plot of 

machine learning calculated TEP values (cm-1) for ReaLigand phosphines (red) and newly created 

phosphines with the structures RR’2P (pink), RR’R’’P (orange), and RR’P (green). 
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Conclusion 

Because phosphines play a central role in organometallic chemistry, we developed TEPid, which 

is a machine learning model that provides extremely fast evaluation of TEP values that provide a measure 

of phosphine electron donating versus electronic withdrawing capability. >4,000 DFT calculated (R)3P-

Ni0(CO)3 TEP values with an experimental correction factor were used as the training data for the machine 

learning model. With only a few connectivity-based descriptors the TEPid model provides accuracy within 

1 cm-1 compared to DFT calculated values. We applied TEPid to analyze the Karken phosphine database, 

and this showed that the database contains more electron donating phosphines than electron withdrawing 

phosphines. To begin to have an electronically balanced phosphine ligand library we started with the 

phosphines from our ReaLigands library, disassembled the organic groups from the phosphine center and 

then reassembled many new combinations. This resulted in a new library that is balanced between electron 

donating phosphines and electron withdrawing phosphines. 
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Supporting Information 

 The TEPid code, Polyjuice code, phosphine ligand libraries, DFT xyz coordinates are available 

from the following GitHub repository: https://github.com/DanielEss-lab/. The web interface for using 

TEPid is at https://tepid.chem.byu.edu.  
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