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Abstract. The valuable information of catalysis for the 

past century has been the composition and structure of 

high-performing catalytic materials. But a new class of 

programmable catalysts that change the electronic 

characteristics of their active sites on the time scale of 

the surface reaction are changing the catalyst design 

process by requiring additional information describing 

the input program that directs the temporal changes in 

the catalyst surface. Catalyst programs vary in 

complexity associated with the number of combined 

waveforms required to optimize surface chemistry rates 

and selectivity to products. The path forward for writing 

and optimizing catalyst programs will combine together 

the methods of parameter screening, rational design 

based on molecular models, and machine learning. This 

new approach to catalysis will change the nature of 

catalysis science, with researchers pursuing dynamic 

catalytic programs with improved catalytic performance 

over static catalyst compositions.   

 

Secret codes, passwords, and functional 

algorithms have been part of human culture since 

ancient times providing entrance to organizations 

and buildings, benefits in commerce and 

competition, and access to information hidden from 

general society.[1] Militaries in particular have used 

passcodes and sounds to identify affiliation and 

share strategic information; for example, 

paratroopers of the allied forces invading 

Normandy in 1941 as part of Operation Overlord 

(i.e., D-Day) used a simple clicking passcode to 

identify friend from foe in the dark (two clicks for 

allied friend).[2] The complexity of methods of 

information subterfuge increased significantly with 

the use of wireless transmission, where 

cryptography has advanced through various 

technologies such as mechanical Enigma 

machines[3] to modern electronic algorithms to 

allow for private communication beyond the power 

of the advanced computer capabilities.[4]  

The growth and expansion of the internet 

combined with digital tools and services for 

entertainment, productivity, and travel have 

engrained in general society the power of secret 

information such as passcodes.[5] Passcodes are 

ubiquitously used for accessing banking 

information, uploading social media content, 

ordering groceries, or sending and receiving 

electronic mail. In entertainment, the famous 

Konami code (↑↑↓↓←→←→ B A Start) remains 

both historically relevant and ubiquitous for 

providing users significant benefits in multiple 

video games including the famous Contra video 

game on the Nintendo Entertainment System.[6] 

More recently and more seriously, secret security 

flaws in programming code allowing for breaches 

in common software such as operating systems are 
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sufficiently valuable and powerful that 

governments pay for them.[7] The capability of 

passcodes and secret inputs has embedded in 

society the power of secret information. 

Yet the secrets of the materials community 

have so far been inherently different from 

passcodes and passwords; the key insight into 

obtaining high materials performance is 

composition and structure. Metal-organic 

frameworks (MOFs) derive their benefit for 

catalysis and separations from minor variations in 

precise composition and structure surrounding 

active binding sites.[8,9] Zeolites exist in a variety of 

pore and cavity structures with active sites that can 

be modified with framework substitutions or active 

site ion exchange.[10] And just as Coca-Cola and 

Kentucky Fried Chicken (KFC) have precise 

‘secret’ formulas providing differentiable 

flavor,[11,12] catalysts such as silver metal to 

promote ethylene epoxidation have a precise 

formula of surface inhibitors and promoters (e.g., 

chlorine, alkali) that significantly improve reaction 

selectivity to ethylene oxide.[13,14] The concept of a 

secret catalyst composition is so embedded in the 

zeitgeist that it was the McGuffin of the 1980 film, 

The Formula, starring Marlon Brando and George 

C. Scott; competing interests from around the world 

are pursuing a secret coal-derived synthetic fuel 

formula that could destroy the existing oil 

economy.[15]  

The introduction of programmable catalysts 

changes the type of information input required for 

control of surface chemistry. While conventional 

heterogeneous catalysts have one or more static 

active sites for catalysis, a programmable catalyst 

has an active site that changes throughout a single 

catalytic cycle (i.e., on the time scale of the reaction 

itself). As shown in Figure 1a, a catalyst can be 

temporally modulated with light, charge or strain to 

change the nature of catalyst active sites. The 

benefit of this approach follows from the sequence 

of elementary steps on a surface; a multi-step 

reaction benefits from a catalyst that is optimized in 

time for each reaction step.[16] The ‘program’ is 

therefore the temporal sequence of catalyst inputs 

that manipulate the catalyst surface to best control 

catalytic activity and selectivity to desired products. 

As shown by the example of Figure 1b, a specific 

input sequence (states 1→3→1→2) provides the 

clearest benefit in catalytic rate for an A → B → C 

→ D generic reaction. While programmable 

catalysts have been shown to consist of mundane 

active sites (e.g., Pt nanoclusters or alumina),[17,18] 

the program of catalyst inputs can be as 

complicated as required to optimize a chemical 

reaction. A catalytic cycle with 16 surface reaction 

intermediates benefits from a catalyst active site 

that switches between 16 different electronic states 

per turnover. Modeling of these programmable 

dynamic catalysts indicate substantial new power 

for catalysis scientists and engineers such that an 

Figure 1. Programmable Catalyst Methods and Mechanism. (a) Programmable catalysts undergo change in active 

site electronic structure via the application of light of mixed wavelengths, charge via applied potential, VCAT, or 

physical strain that changes the catalyst between multiple states via an input program. (b) The reaction of A(g) to 

D(g) via surface intermediates A*, B*, C*, and D* is optimized for a repeating input program of states 1 → 3 → 1→ 

2 which provides the smallest barrier to elementary reaction or desorption at each step of the reaction sequence. 
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effective program essentially becomes a ‘cheat 

code’ for chemistry. How will these catalytic 

programs be discovered? 

Catalysts of the Past. Heterogeneous catalyst 

formulations of the past frequently have a story 

associated with their fortuitous discovery. As 

related by J.M. Berty in 1983, one of the most 

famous catalyst formulation innovations was the 

use of specific inhibitors with silver for ethylene 

epoxidation.[19] Thirty years prior, these reactors 

were air blown at a time when process emissions 

control was limited. Oxidation reactor performance 

was oddly observed to correlate with local wind 

conditions, after which it was determined that 

chlorine-containing air contaminants from the 

emissions of a nearby ethylene dichloride cracking 

facility were highly desirable relative to the air 

coming from the direction of polyethylene 

manufacturing. Ethyl chloride and vinyl chloride 

were discovered to more effectively inhibit over-

oxidation to CO2, such that it is now a preferred 

reaction co-feed over early chlorine-supplying 

molecules.[19,20,21] As with many catalysts over the 

decades, lucky accidents and attentive 

experimentalists have found formulation 

breakthroughs that were never considered or 

predicted. 

The writer and historian Horace Walpole (1717 

- 1797) recognized the importance of ‘dumb luck’ 

or chance discovery; he referred to this intellectual 

method as ‘serendipity’ after the princes of 

Serendip who made many discoveries in their 

journeys despite not looking for them in 

particular.[22] Yet serendipitous progress in 

catalysis is inherently unpredictable and unreliable, 

and new methods have been developed to prompt 

‘smart luck’ via the directed search for catalyst 

formulations with improved reaction performance. 

High-throughput screening has provided the 

technological capability to synthesize, characterize, 

and evaluate hundreds to thousands of catalysts 

formulations.[23] While a single catalyst researcher 

in the past could evaluate ~10-20 catalysts per year, 

new methods enabled the screening of orders of 

magnitude larger parameter space of composition 

and formulation that could first discover and then 

optimize improved catalysts.[24] In addition to the 

instruments and automation required for screening 

large numbers of materials, parallel efforts have 

advanced computational methods integrating 

mathematics, statistics, and machine learning 

required for: (i) designing large screening 

experiments, (ii) analysis of the data, and (iii) 

iterative decision making for selecting the next set 

of catalyst compositions for study.[25,26] 

Catalyst engineering has not relied only on 

good fortune, serendipitous or not, to discover all 

catalyst breakthroughs; the parameter space of 

catalyst composition and structure remains too 

large to stumble upon all of the required amazing 

catalyst formulations. Catalysts can alternatively be 

designed based on an understanding of the reaction 

mechanism and the relationship between surface 

chemistry with catalyst active site physical and 

electronic structure. This ‘rational catalyst design’ 

approach has motivated decades of fundamental 

effort to decompose our understanding of catalytic 

mechanisms to their elementary steps and 

associated energetics. This effort began with 

vacuum studies of simple reactions on single 

crystals and has since expanded with additional 

experimental methods to study multi-step reactions 

on complex catalyst particles integrating chemical 

kinetics and spectroscopy.  By the 1990s there was 

significant progress on building detailed surface 

chemistry models (i.e., ‘microkinetics’) based on 

independent kinetics of elementary reactions that 

could connect catalyst model behaviors to 

experimental observations.[27,28,29] A building up 

approach of combining small bits of information on 

elementary reactions appeared to be the path 

forward to understanding catalysis. 

Progress towards rational design of catalysts 

accelerated dramatically in the new millennium due 

to significant advances in computational 

heterogeneous catalysis.[30,31,32,33] While the kinetics 

of individual elementary reactions were previously 

obtained through expensive, time-consuming 

fundamental experimental studies, increasing 

computational power combined with improved 

methods of density functional theory (DFT) 

permitted the direct calculation of the energetics of 

individual molecules on surfaces and their 

transition states in elementary reactions.[34,35,36,37] 

The energies of individual elementary reactions 

could then be combined within microkinetic models 

to understand their cumulative impact on reaction 

pathways and rates.[38,39,40] When compared with 

experimental insights derived from tools such as 

kinetics or spectroscopy, DFT-derived reaction 

models provided sufficient clarity on surface 

molecular reaction behavior that catalysts could be 
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understood and rationally designed. The fastest 

catalysts could be rationally identified via 

constructed Sabatier volcanos[41,42,43], and catalytic 

pathway control could be rationally understood via 

molecular selectivity maps with regions of pathway 

dominance.[44]  

Present State of Catalysis. The last four 

decades of catalysis research have provided a 

foundation of fundamental molecular 

understanding of surface chemistry, yet many of the 

most important challenges for catalysis remain to 

be addressed.[45] A major focus of heterogeneous 

catalysis has been the design of catalysts that could 

exceed the Sabatier volcano limit via new linear 

scaling behaviors of molecules on engineered 

catalyst active sites, yet no catalytic material has yet 

been experimentally demonstrated to exist beyond 

a volcano peak.[46] The Sabatier limit has held back 

the catalysis of many of the most important 

reactions for over century; ammonia synthesis via 

heterogeneous catalysis continues to be operated at 

high pressure (200 atm) and temperature (~400 °C) 

due to a Sabatier peak scaling with the binding 

energy of N* with optimum catalysts of Fe, Ru, Co, 

and Ni.[47,48] Similarly, methanol prepared from 

synthesis gas constitutes a major commodity 

chemical process important for fuels and chemicals, 

but it still relies on copper-based catalysts near the 

reaction Sabatier peak.[49] The same Sabatier limit 

also exists for the electrocatalytic synthesis of H2 

from water, where the maximum rate on the best 

catalyst (IrOx) remains too slow for low cost energy 

storage as hydrogen gas.[50,51] All of these reactions 

operating at extreme conditions consume massive 

amounts of energy in the most energy-intensive 

manufacturing industry, chemical production.[52] 

New catalysts have also not solved some of the 

most important challenges in reaction selectivity to 

targeted chemicals. Methane is an abundant one-

carbon chemical available throughout the world 

from natural gas and decomposing organic 

materials. To upgrade methane to useful chemicals 

such as methanol, initial catalytic steam reforming 

creates synthesis gas (CO + H2), which is then 

adjusted in H2/CO ratio and reacted at significant 

pressure to form methanol, in a capital-intensive 

energy-demanding process.[53] Direct synthesis of 

methanol would instead selectively oxidize from 

methane without full combustion to CO2, but the 

direct process catalysts have struggled to achieve 

viable selectivity to methanol at any reasonable 

conversion (>10%).[54] Another critical reaction is 

the epoxidation of propylene to propylene oxide, 

which is an important large-volume chemical 

precursor for many three-carbon chemicals (e.g., 

propylene glycol) as well as a monomer in polyol 

and polyurethane plastics. While silver catalysts 

have been improved significantly for ethylene 

epoxidation, they exhibit lower selectivity for 

propylene epoxidation; a highly selective catalyst 

for propylene oxide without significant formation 

of CO, CO2, or acrolein remains a major goal of 

heterogeneous catalysis.[55] The opportunity to 

significantly improve the chemical industry still 

exists with many other major reactions including 

more selective direct synthesis of H2O2,
[56] the 

conversion of synthesis gas directly to olefins,[57] 

and the direct oxidation of benzene to phenol rather 

than the current industrial cumene process,[58] 

among many other important chemistries. Progress 

in catalyst design for these reactions and many 

more has not found a method of identifying new 

catalyst formulations with disruptive increases in 

performance. 

In the past two decades, catalyst have also been 

designed with new goals for sustainability. As the 

chemical, fuels, and energy industries transition 

away from fossil fuels, a focus on low-carbon 

processes and more sustainable products with new 

reactions and operating conditions has forced 

unique thinking about catalyst composition and 

utilization. This has included catalysts that can 

operate in liquid water,[59] solid acids that are 

weaker than conventional aluminosilicates,[60,61] 

and catalysts that can control the chemistry of 

molecules with significant oxygen.[62] The strategy 

has for the most part adapted the catalysts 

developed for fossil fuel processing to new 

feedstocks derived from renewable resources such 

as carbohydrates, natural oils, or lignin.[63] This 

adaptability approach to sustainable catalysts has 

benefited a renewable chemicals industry 

developing pathways to many key chemicals such 

as drop-in renewable molecules including p-

xylene,[64] adipic acid,[65] acrylic acid,[66] and 

butadiene[67] while also inventing entirely new 

renewable molecules with improved characteristics 

such as γ-valerolactone,[68] methyl-caprolactone,[69] 

and oleofuran sulfonate (OFS) surfactants.[70] 

While catalysts for renewable chemicals have been 

remarkably effective, they have not fundamentally 

changed the practices and methods of 
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heterogeneous catalysis; static catalytic surfaces are 

still designed to direct the flow of reactions down a 

fixed free energy gradient, with bias towards the 

downhill reaction pathways of interest. The 

fundamental problems that must be solved to 

overcome the Sabatier limitation and the selectivity 

challenge of major chemical processes remain to be 

solved by the next generation of catalyst engineers. 

Challenges for Programmable Catalysis. For 

more than a century the catalysis and reaction 

engineering community has acknowledged the 

temporal characteristics of surface chemistry and 

reactions in general. The rate of a set of elementary 

reactions that comprise a catalytic cycle is defined 

as a ‘turnover frequency’ (TOF), and a surface 

chemistry is comprised of multiple elementary 

reaction steps each defined with its own 

characteristic frequency and rate constant (with 

units of inverse time). Surface reactions can 

therefore be perceived as a combination of transient 

events, each with their own characteristic or 

‘natural’ frequencies, for which the selected 

catalyst and conditions will favor some elementary 

steps over others. The Sabatier limit is therefore a 

consequence of a many-event process; one event 

will have a dominant degree of rate control for a 

fixed catalyst and condition.[71] And the solution to 

overcoming kinetic control of any one elementary 

step is to modulate the catalyst itself during the time 

period of a single catalytic turnover, thereby 

shifting the degree of rate control between different 

elementary steps as the reaction proceeds.[16,72] 

Programmable catalysts are designed to exhibit 

tunable active sites that can change their electronic 

or physical interaction with adsorbates and 

transition states with time (Figure 1a).[73]  The 

mechanisms to modulate catalytic active sites have 

been developed using light, charge, or physical 

strain, ultimately changing the nature of the 

molecule-surface interaction. Pulses of light can 

weaken the binding of molecules such as carbon 

monoxide on Pt,[74] while electrons depleted from 

Pt nanoclusters within a catalytic condenser device 

can strengthen CO binding.[18,75,76] Physical strain in 

ruthenium surfaces can accelerate N2 

hydrogenation, even on more than one Ru catalytic 

site.[77] The many methods of applying light, 

charge, and strain open up many possibilities for 

implementing programmable catalysis, but they all 

have the consistent characteristic of changing the 

surface energy of reaction intermediates and 

transition states rather than the overall 

thermodynamics of the reaction, as occurs in 

oscillating temperature or electronic potential (i.e., 

oscillating voltage electrocatalysis) reactors.[78] 

The benefits of a programmable catalyst that 

changes over the lifetime of a single catalytic 

turnover derive from the enhanced level of control 

of molecules on surfaces. For Sabatier volcanos 

with two dominant rate-determining elementary 

steps, oscillation of the surface between two states 

can promote the overall catalytic rate orders of 

magnitude beyond the Sabatier limit as the applied 

frequency of the surface program approaches the 

natural frequencies (f ~ ki) of the rate-controlling 

steps.[16,79] Each change in state of the catalyst 

surface corresponds to changes in the heat of 

adsorption of surface molecules, therefore resulting 

in energy input (strong to weak binding shift) or 

output (weak to strong binding shift).[78] The 

implication is that surface programs, when 

combined with specific ratchet-shaped dynamic 

energy profile mechanisms, can push reactions 

away from equilibrium.[72,80] For reactions such as 

ammonia synthesis, energy input via surface-

programmed strain oscillations is predicted to 

accelerate the overall reaction and promote the 

reaction at lower pressure.[81] As reactions become 

more complex, programmed surface oscillations 

can significantly promote specific reaction 

pathways over others, providing dramatic potential 

for control of product selectivity.[82] Realizing these 

catalytic benefits will require understanding the 

new relationships that exist between molecules, 

surfaces, and complex programmed inputs. 

The challenge of programmable catalysis is 

two-fold: (1) develop the technologies to deliver 

fast (>100 Hz) and powerful energy oscillations to 

catalytic active sites, and (2) understand and write 

the input programs to control surface chemistry. 

While the techniques to modulate catalytic surfaces 

have been demonstrated,[17,73,74] the writing and 

optimizing of catalytic programs is in its infancy.[83] 

With greater control over the chemical events on a 

surface comes a larger parameter space to explore. 

While a conventional static thermocatalyst has 

design parameters of composition and structure 

along with conditional parameters (temperature, 

pressure, residence time, and gas composition), 

programmable catalysts double the number of input 

parameters for even the simplest program design 

(e.g., sinusoidal input frequency or pulses of a 
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single light wavelength). As shown in Figure 2, 

input programs must specify oscillating 

perturbations with frequency, amplitude, amplitude 

offset, and waveform type (e.g., square, trigonal), 

and recent simulations indicate that more complex 

reaction mechanisms benefit from even more 

complicated programs.[84] The dynamic catalytic 

surface is more like a machine with moving parts 

(i.e., changing energy landscapes), and 

understanding the catalytic mechanics of an 

oscillating free energy profile of a complex reaction 

network will be one of the core challenges of the 

21st century for catalysis science and engineering. 

Possibilities and Methods for Developing 

Catalytic Programs. The composition and 

structure of effective catalyst input programs 

remains the great secret of every chemistry and 

programmable catalyst combination.  Like a secret 

code or proprietary formulation, a small amount of 

knowledge can unlock capability and performance 

of dynamic surface chemistry, as demonstrated for 

even minor variations in simulated catalyst 

programs.[85] And like a person that has forgotten 

their login passcode to their email, guessing a 

catalyst program input code is unlikely to work; the 

number of design parameters is likely too great 

(Figure 2). The path forward for designing 

catalysis programs will benefit from the general 

strategies implemented for static thermocatalysis, 

albeit with a more complicated system; 

computation, theory, experiment, and 

characterization working collaboratively can 

deconstruct dynamic surface chemistries and 

programmable inputs to understand their 

mechanics. 

While complex surface reactions controlled by 

programmable catalysts are complicated, there still 

exist general design principles that can guide the 

development of catalyst input programs. For 

example, for systems with defined Sabatier volcano 

kinetics, the catalyst input program likely needs to 

oscillate between conditions that significantly 

change the degree of rate control of the two slowest 

steps of a reaction.[72,79] The Sabatier volcano 

therefore provides an approximation for the 

required amplitude of an input oscillation to the 

surface required to have a measurable impact on the 

overall catalytic rate.[16] Existing simulations also 

provide insight on the types of surface perturbations 

that could significantly modify catalytic reactions. 

As surfaces are modulated with light, charge, or 

strain, the reaction intermediates linked through a 

common transition state of relevance to the 

catalytic rate need to change in surface binding 

energy to differing degrees.[72] By the BEP linear 

scaling relationship, the transition state energy 

Figure 2. Design of catalyst programs. Three independent input waveforms are combined into a single catalyst 

program which then modulates the surface of a heterogeneous catalyst to control surface chemistry. The complexity 

arising from large waveform input parameter space provides the benefits of enhanced control and fine tuning of the 

catalyst program while also increasing the challenge of identifying the best input program. 
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changes linearly with the enthalpy change of an 

elementary reaction, and the reaction enthalpy of a 

single step only changes under perturbation if the 

linear scaling parameter, γ, between surface 

reactant and product is non-unity (γ ≠ 1).[72] This 

simple insight provides guidance on the selection of 

chemistry-catalyst-perturbation selection; select 

programmable catalytic systems with γ ≠ 1 for the 

most important elementary steps as determined by 

the degree of rate control. 

We can also consider possible future design 

principles and metrics that are still being developed 

for programmable catalysts. With energy input via 

the surface resulting from the changing of catalyst 

electronic states, program design must account for 

the deviation of each elementary step and the 

overall reaction from equilibrium. Already, 

quantitative metrics have been identified for simple 

surface reactions that have either positive or 

negative scaling, γ, such that the bias direction 

away from equilibrium can be predicted.[72,79] But 

prediction of the effect of dynamic surfaces on 

reaction bias away from equilibrium is more 

complicated for complex reaction networks. For the 

simple triangle surface reaction (A ↔ B ↔ C ↔ 

A), the influence of three interacting elementary 

reactions can result in net flow of molecules in 

either direction (clockwise or counterclockwise) 

around the reaction loop.[84] Even more complicated 

behaviors have been simulated for real chemistries 

such as ammonia synthesis on ruthenium 

undergoing dynamic strain; the reaction proceeds to 

ammonia product compositions that exist either 

above or below equilibrium dependent on the 

applied strain frequency.[77] More detailed 

understanding and quantitative metrics of these 

complex dynamic networks are needed to predict 

the interactions of individual elementary reactions 

undergoing oscillating transition state energies. 

Programmable catalysts and their input 

programs can also be rationally designed from the 

ground up via fundamental understanding of the 

relationships of surface perturbation (charge, light, 

or strain), surface energies of intermediates and 

transition states, and the interconnected kinetics of 

the reaction network. This will begin by 

understanding the impact of surface perturbation 

and quantifying the electronic and physical changes 

occurring on surfaces for varying extent and type of 

local accumulation of charge, light or strain. These 

surface modulations will then be evaluated to 

quantify their impact on molecular adsorption; 

similar to periodic linear scaling, we can anticipate 

the existence of linear scaling over some limited set 

of perturbation conditions (and likely more 

complicated scaling behavior at extreme 

perturbation).[86,87,88] These intermediate and 

transition perturbation scaling relationships can 

then be implemented within a surface reaction 

model via existing methods (e.g., mean field 

microkinetic model, kinetic Monte Carlo), such that 

the time-resolved surface behavior of molecules on 

a dynamic surface undergoing externally-applied 

oscillations can be determined. This general 

approach has already been demonstrated for 

ammonia synthesis occurring on dynamically 

strained ruthenium surfaces,[77] providing a 

prediction of the extent of surface strain and 

frequency required to accelerate NH3 synthesis and 

promote the reaction beyond equilibrium at reduced 

pressure. This method of predicting programmable 

catalysis behavior is challenging due to the 

difficulty in developing accurate descriptions of 

surface adsorption enthalpy and entropy with 

perturbation combined with the existing challenges 

of describing reaction mechanisms on multiple 

active sites with additional yet necessary 

complexities such as surface coverage dependence 

(i.e., lateral interactions) of molecular 

energies.[89,90]  However, this approach is based on 

fundamental understanding of molecular behavior 

and will continue to advance with time for each 

programmable catalytic system with improved 

computational and kinetic modeling methods. 

Finally, while the preceding methods involved 

either rudimentary or detailed understanding of the 

underlying chemistry and physics of programmable 

catalysts, there exist additional emerging methods 

for analyzing and predicting the behavior of 

complex catalytic systems.[91,92] The machine 

learning approach has already been employed to 

evaluate the structure-function relationships of 

catalysts of many types (asymmetric, 

homogeneous, and heterogeneous), with the goal of 

predicting new catalyst compositions and 

structures.[93,94] This general method of pursuing 

catalysts has many variations, but one common 

attribute is the generation of a training set of data 

based on large numbers of catalyst structures and 

characteristics that serve as the basis for future 

catalyst predictions. This training set could be 

derived from the existing literature, a campaign of 
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high throughput testing experiments, or 

computational analysis of materials including 

intensive ab initio calculations or more simple 

catalyst descriptors.[95] Applying these methods to 

programmable catalysis to identify high-

performing input programs can operate similarly. A 

training set of catalyst performance via surface 

modulation can be generated via the screening of a 

varied set of parameters distributed around the full 

parameter space of program design; thereafter 

iterative prediction and experimental evaluation of 

catalyst programs can progressively refine the 

machine learning model and advance towards 

improved surface control and catalyst performance. 

Concluding Remarks. The potential impact of 

programmable catalysts will ultimately be 

determined by the evolution of catalytic materials 

and their ability to modulate surfaces with high 

amplitude and frequency in molecular binding 

energy. But since these experimental methods 

already exist and will continue to improve,[18,73] it 

becomes possible to envision a future of 

heterogeneous catalysis that radically differs from 

our conventional approach. Catalysis scientists and 

engineers of the future might conduct laboratory 

work that feels more similar to computer 

programming or catalytic hacking. Consider the 

following scene depicted in Figure 3:   

A graduate student, fully protected from 

chemicals by a laboratory jacket, gloves and 

goggles, unwinds the heating jacket of a glass tube 

reactor, carefully setting it aside before breaking the 

reactor seal and lowering the glass reactor tube. A 

bundle of metal wires from inside the reactor spill 

out, after which the student carefully assesses and 

places the wire ends in contact with a thin metallic-

looking wafer, the programmable catalyst. After 

placing all wires and the shiny device back within 

the reactor and sealing it up, she sits down at the 

computer desk and begins typing into the 

potentiostat control software; “now let’s see what 

this catalyst can really do!” she says. 

She starts out her experiments simply by 

flowing gases over the programmable catalyst, 

periodically looking over at the output of the mass 

spectrometer, which clicks away establishing a 

baseline catalyst performance. She then leans 

forward with a determined look on her face, ready 

to explore the different programmable settings of 

her new catalyst. Every five minutes, she applies a 

new fixed voltage to the catalyst, each time 

watching the mass spectrometer rapidly change and 

then stabilize at a new reactor output composition. 

After each change she types the catalyst output 

concentration into a spreadsheet and notes its 

calculated rate in the laboratory notebook, after 

which she sits back and thinks about where to go 

next with the catalyst input.  

After a cup of coffee, she consults her 

simulation results and writes down a few predicted 

waveforms of frequencies and amplitudes before 

loading into the computer the dynamic catalyst 

conditions of interest. For the next six hours, her 

computer directs the potentiostat to send the 

catalyst a new voltage oscillation, ultimately 

changing the performance of the catalyst and 

pushing the mass spectrometer detector signal up to 

higher measured catalytic rates.  A few times, a new 

oscillation leads to a quick increase in mass 

spectrometer output, ultimately giving a brief 

moment of excitement, before the catalyst stabilizes 

about rates about an order of magnitude lower than 

the target performance. For brief periods of time, 

there are moments of frustration where the number 

of input variables of multiple overlapping input 

frequencies seems too large, and the whole pursuit 

Figure 3. Catalyst Hacking. The catalyst hacker 

examines catalyst input programs to understand the 

relationship between program structure and catalyst 

performance, ultimately identifying the catalyst program 

that maximizes catalytic rate and/or selectivity to 

targeted chemical products. 
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of improved catalyst performance feels like finding 

a needle in a haystack. But she presses on. 

At this point, she begins entering her catalyst 

performance data into a machine learning 

algorithm, which predicts the next best catalyst 

input program. With every prediction of a new 

catalyst program, she dutifully sends the new 

voltage signal to the catalyst and reports back to the 

algorithm the catalyst performance. After about two 

hours, a new trend slowly emerges; with each new 

catalyst program prediction, the mass spectrometer 

signal (and the catalyst rate) begins to climb. Every 

new program iteration is accelerating the reaction, 

and every five minutes the rate climbs a bit higher. 

Students in the laboratory begin to gather around 

the reactor; the excitement is palpable, and 

researchers start predicting how many more 

algorithm iterations will be required to break the 

catalyst rate record. Click and tap on the keyboard; 

the rate increases moving closer to the new catalytic 

rate record. Finally, after an hour, she programs into 

the potentiostat the most complicated program 

predicted so far by the machine learning algorithm 

consisting of five overlapping waveforms; loud 

clicks on the keyboard are heard before a single 

loud clack of the ‘enter’ key.  She sits back in her 

chair and sips her coffee as the mass spectrometer 

signal climbs again, now passing the dashed line on 

her computer screen for a record catalytic rate. The 

students around the computer desk clap and cheer. 

Under her breath, the catalyst hacker whispers, 

“I’m in.” 
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