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Abstract 

The electrocatalytic oxygen reduction reaction (ORR) plays a crucial role in numerous energy and 

sustainability systems, such as fuel cells, metal-air batteries, and water electrolysers. It holds 

significant potential for renewable energy generation, transportation, and storage, heralding a 

cleaner and more sustainable future. Recent trends have shown increased use of single-atom 

catalysts (SACs), particularly metal-N4 moieties grown on graphene-based 2D materials, for 

enhancing ORR efficiency. However, the rational design of SAC for high-performance ORR faces 

challenges due to unclear structure-property relationships and the limits of conventional 

experimental trial-and-error approaches. In this study, we harnessed the power of the density 

functional theory (DFT) calculations, combined with cutting-edge machine learning (ML) 

techniques, to explore 144 SACs featuring dual interacting M1-N4 and M2-N4 moieties (M1, M2 = 

Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag Ir, Pt, Au), denoted as M1-M2, grown on graphene. Of all the 

catalysts we examined, Fe-Pd emerged as the top performer, achieving an impressive overpotential 

of 0.211 V vs. RHE in alkaline conditions — outperforming most previously reported SACs. Even 

more striking, 25 of the evaluated SACs surpassed the renowned Fe-N4 SAC in catalytic efficiency, 

including more economically viable alternatives like Fe-Ag. Venturing further, we developed three 

ML models that accurately predict the overpotentials of various M1-M2 SACs, showing their strong 

ability to capture the relationship between single-atom metal site properties and overpotential. These 

models provide useful navigation toolkits for the rational design of effective electrocatalysts. Our 

study sheds light on the path toward achieving efficient SAC-catalyzed ORR, contributing to a more 

sustainable and energy-efficient future. 
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Oxygen Reduction Reaction (ORR) is a fundamental electrochemical process that plays a 

crucial role in numerous energy conversion systems and technologies. It involves the reduction of 

oxygen molecules to form water or other oxygen-containing species.1 The significance of ORR lies 

in its direct connection to critical applications, particularly in fuel cells and metal-air batteries, 

which are considered promising alternatives to conventional combustion-based power sources due 

to their environmental benefits and higher energy efficiency.1-4 For example, in the galvanic battery 

reaction (Figure 1a), ORR occurs at the cathode, where oxygen reacts with electrons and protons 

to produce water (Figure 1b). This reaction is crucial for generating electricity in fuel cells, which 

have the potential to power various transportation modes and provide clean energy for industrial 

and residential sectors. Similarly, in metal-air batteries,5 ORR takes place during the discharge 

phase, where oxygen is reduced to form metal oxides and release electrical energy. 

 

Figure 1. Schematic illustration of (a) the galvanic battery reaction and (b) ORR on M1-M2 SACs. 

Efficient ORR is paramount for improving the overall performance and longevity of these 

energy conversion systems. However, the challenge lies in finding cost-effective catalysts that can 

enhance the kinetics of the ORR process and reduce energy losses. Researchers and engineers 

continue to explore new materials and design strategies to enhance ORR efficiency. To date, various 

materials and catalysts have been utilized in this area, including Pt-based electrocatalysts,6 carbon 

nanotubes,7 and transition metals alloys.8 Among many types of materials, single-atom catalysts 

(SACs) stand out because of their minimal metal usage, superior efficiency, and enhanced 

selectivity.9-11 Recently, Chen, Ji, et al. suggested a metal-organic framework (MOF) supported Fe 
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SAC,12 which demonstrated excellent stability and catalytic performance with a positive half-wave 

potential of 0.912 V vs. Reversible Hydrogen Electrode (RHE). Liu et al. designed carbon-

supported Pt SACs to improve the durability and efficiency of Pt SACs, achieving a positive half-

wave potential of 0.87 vs RHE.13 Rao et al. used novel “plasma bombing” strategies to design cheap 

Co single site SACs for enhanced ORR kinetics, with a Tafel slope of 79 mV dec−1.14 These 

pioneering studies highlighted the efficacy and potential of SACs in enhancing ORR. 

While researchers have made considerable progress in the development of SACs, the rational 

design of high-performance SACs for ORR remains a challenging task, primarily due to the limited 

understanding of the complex structure-property relationships governing their catalytic activity, 

especially at the atomic level.15 Conventional experimental trial-and-error approaches often suffer 

from inefficiency and high costs. The iterative nature of this method necessitates a large number of 

time-consuming experiments and extensive materials testing, resulting in significant resource 

expenditure. Moreover, without a thorough comprehension of the underlying mechanisms, the 

outcomes of these experiments may lack consistency and fail to reach their full potential. 

To address these challenges and accelerate SAC design, quantum chemistry methods, 

especially at the first-principles density functional theory (DFT) level, 16, 17 have been increasingly 

applied as powerful toolkits to enable a more systematic approach to predict and understand the 

catalytic behaviors of catalysts.18,19 These techniques empower researchers to explore a wide range 

of potential catalyst configurations and identify promising candidates for experimental synthesis, 

reducing the number of trial-and-error experiments and streamlining the design process. For 

example, Deng et al. adopted DFT to develop Co-based SACs on defective boron nitride (Co/BN) 

for efficient ORR.20 Similarly, Yang et al. employed DFT to quantify the performance of two-

dimensional conjugated aromatic networks (CAN) with a high single-metal-atom-site density that 

surpassed the performance of a conventional ORR catalyst, Pt/C SAC.21 Further, Han et al. 

conducted DFT calculations to explore the ORR reaction mechanism and to evaluate the impact of 

the modulation effect on the ORR performance of Fe-N4/Pt-N4 SACs.22 

In recent years, there has been a notable surge in the utilization of cutting-edge machine 

learning (ML) techniques for materials design.23-25 By training predictive models on data from 

theoretical simulations, researchers have rapidly and accurately screened promising catalytic 
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materials for various applications, including ORR.26,27 This innovative approach has substantially 

minimized the requirement for time-consuming DFT calculations and tedious experimental trial-

and-error processes. Furthermore, the integration of DFT and ML offers in-depth insights into the 

intricate structure-property relationships governing catalyst activity, providing essential guidance 

for the rational design of SACs. This thereby accelerates the development of efficient and 

sustainable SACs for enhanced ORR, propelling the progress of clean energy technologies and 

addressing pressing environmental challenges. 

In this study, using DFT and ML, we exhaustively investigated the ORR activity of 144 SACs 

with two M-N4 moieties, denoted as M1-M2, where M1 and M2 = Mn, Fe, Ni, Co, Cu, Ru, Rh, Pd, 

Ag, Ir, Pt, Au (Figure 1b). These late transition metals were selected due to their promising potential 

in catalytic applications, especially ORR.28-31 For each of the 144 SACs, we assessed their ORR 

performances by determining their overpotential values, denoted as η, which refers to the extra 

voltage necessary beyond the theoretical potential to drive the ORR at a desired rate. Through 

extensive overpotential calculations under alkaline conditions (pH = 13), we identified 13 highly 

active SACs that outperform a commonly used benchmark system, Fe-N4 SAC. This system is 

typically modeled with an axially coordinating *OH specie on Fe, denoted as Fe(OH)-N4, to more 

accurately replicate the experimental onset potential.32-34 We thus adopted the computed 

overpotential of Fe(OH)-N4 (0.304 V) as the criterion to identify promising dual single-metal atom 

compositions for enhanced ORR activity. Notably, we identified the Fe-Pd system as the most active 

SAC among all those investigated. Its overpotential (0.211 V) is even slightly lower than that of the 

previously discovered Fe-Pt SAC.22 Furthermore, we found economical alternatives such as Fe-Ag, 

Ag-Cu, and Ag-Ag, which exhibit comparable ORR activity with an overpotential of 0.239 V but 

at a significantly reduced cost. More intriguingly, we harnessed multiple ML methods to investigate 

the correlation between the intrinsic properties of the single-atom sites and their corresponding 

overpotentials. These ML models demonstrated high predictive power in estimating the 

overpotential, thereby effectively predicting promising SAC materials for ORR. These findings 

illuminate the ORR capabilities of various SAC materials, greatly broadening our understanding of 

material design and providing theoretical guidance for the future design and optimization of SAC 

materials, holding implications that transcend the realm of ORR. 
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This study primarily focuses on the 4-electron pathway, the most prevalent and desired pathway 

for ORR. This pathway directly produces water, avoiding the production of intermediate hydrogen 

peroxide seen in the 2-electron pathway. The overpotential was obtained using the analytical model 

developed by Nørskov35 (see details in Section S1.1 in Supporting Information). The DFT 

calculations were performed using the Vienna ab initio Simulation package (VASP) (see details in 

Figure S1–S2, and Section S1.2–1.4),36 with the Perdew-Burke-Ernzerhof (PBE)37 exchange-

correlation functional and the all-electron projector augmented wave (PAW)38 pseudopotential. To 

account for the strong on-site coulomb interactions for d-orbital electrons on the transition metal 

sites, the GGA+U approach39 was applied, with The U values and initial spin state of each transition 

metal adopted from a previous benchmark study.40 

Overpotential has been widely applied as a quantitative metric for assessing the performance 

of ORR, which is determined based on the binding free energies of the OOH*, O*, and OH* 

intermediates. Figure 2 and Table S1 summarizes the overpotentials of the 144 catalysts 

investigated in this work (refer to Figure S3-S38 for the corresponding free energy profiles). In our 

simulation study, which aims to explore the structure–properties relationships, we are aware of the 

competition between M1 and M2 sites in binding intermediates. However, we chose to focus on the 

M1 site when analyzing ORR activity. This choice is supported by two primary reasons. First, our 

findings indicate that the ORR activity is roughly equal when comparing atom A in the A-B 

configuration, where atom A is on the M1 position, to atom A in the B-A configuration, where atom 

A is on the M2 position. For example, the DFT-computed overpotential at the Pt atom in Fe-Pt is 

1.086 V,22 which is closely matched by the overpotential at the Pt atom in Pt-Fe (1.221 V)—a minor 

difference of just 0.135 V. Similarly, the overpotential at the Fe atom in Fe-Pd (0.211 V) is nearly 

equivalent to that at the Fe atom in Pd-Fe (0.320 V)—a small discrepancy of 0.109 V. These results 

suggest that a near-symmetrical relationship between the M1 site of the A-B configuration and the 

M2 site of the B-A configuration, thereby diminishing the need to consider the ORR activity of the 

M2 site. Secondly, focusing solely on the M1 site effectively halves the computational load, saving 

significant CPU time. It is worth noting that for systems where the metal atom at the M2 site exhibits 

higher affinity for binding intermediates, insights into the activity of the M1 site on structure-

property relationships can still be gleaned from these less representative models. 
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Figure 2. Overpotential of the 144 SACs. Green values indicate low overpotential (high activity), Orange/Red values 

indicate high overpotential (low activity). Promising SACs with η < 0.304 V are highlighted with red squares. 

Given this premise, we observed some distinct patterns that emerged for specific M1 metals. 

For example, the SACs with M1 metals Ir, Rh, and Fe tend to exhibit lower overpotential values for 

most M2 species, while catalysts involving Pd, Pt, and Ru generally show higher overpotentials. 

Nevertheless, we also show that the choice of M2 is not insignificant – it can impact the catalytic 

behavior of M1. This is exemplified by the different performances of Fe-Mn and Fe-Pd. Fe-Mn 

presents a high overpotential of 1.216 V, denoting poor performance, whereas Fe-Pd demonstrates 

the lowest overpotential of 0.211 V, indicating superior performance. This observation underlines 

the importance of tuning the M1-M2 composition for optimal ORR activity. 

In our exhaustive study of the 144 M1-M2 combinations, we successfully pinpointed 13 SACs 

(highlighted with red squares in Figure 2) exhibiting lower overpotential than that of the benchmark 

catalyst, pristine Fe(OH)-N4 (0.304V, Figure S39).41 This discovery is especially notable given the 

well-established efficacy of Fe(OH)-N4 for ORR. Among the promising catalysts identified, Fe-Pt 

(with an overpotential of 0.214 V) and Fe-Pd (with an overpotential of 0.211 V) have been validated 

by previous experimental studies.22,42 This congruence between computational prediction and 

experimental validation not only bolsters the reliability of our computational methodology but also 

substantiates the promising potential of these catalyst candidates. Furthermore, our exploration 

unveiled four M1-M2 combinations (Fe-Ag, Ag-Cu, Ag-Pd, Ag-Ag) that are not only close to the 
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overpotential performance of Fe-Pd but are significantly less expensive. This crucial discovery 

opens the tantalizing possibility of achieving efficient ORR catalysis at a significantly reduced cost. 

These advancements could significantly accelerate the development and commercialization of cost-

effective, high-performance ORR catalysts. 

Next, we moved on to delve deeper into the determinants of overpotential, which hinges on the 

binding free energies of the OOH*, O*, and OH* intermediates. Through a comprehensive 

assessment of the ΔGOOH*, ΔGOH*, and ΔGO* binding free energies, we successfully delineated the 

scaling relationships between these quantities, as depicted in [1]-[3]: 

𝛥𝐺𝑂𝑂𝐻∗ = 0.493 × 𝛥𝐺𝑂∗ + 1.106 [1] 

𝛥𝐺𝑂𝐻∗ = 0.557 × 𝛥𝐺𝑂∗ − 0.353 [2] 

𝛥𝐺𝑂𝑂𝐻∗ = 0.826 × 𝛥𝐺𝑂𝐻∗ + 1.445 [3] 

The strong linear relationships (Figure 3a, Figure S40) suggested that the binding energies of these 

intermediates on a given metal site tend to be intertwined, which presents a dilemma: a catalyst 

cannot simultaneously optimize the binding energy for all intermediates, leading to a trade-off 

where the optimization of the binding energy for one intermediate may result in a suboptimal 

binding energy for another intermediate. While overcoming this limitation is an ongoing research 

pursuit beyond the scope of this study, the discerned correlations offer a powerful analytical tool: 

they allow for the estimation of ΔGOOH*, ΔGO*, and ΔGOH* binding energies directly from each other, 

significantly streamlining the analysis of the interplay between binding energies and overpotential. 

 

Figure 3. (a) Plot of the relationships between ΔGOOH* and ΔGOH* for the 144 SACs. (b) Overpotential as a function 

of ΔGOOH* for the 144 SACs. The five best-performing M1-M2 SACs are highlighted in green and labeled. The apex 

of the volcano plot underscores the range of optimal binding energies for ΔGOOH* (~1.59-1.78 eV). 

Using one of the three binding free energies – in this case, ΔGOOH* – as the x-axis and plotting 
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the overpotential as the y-axis, we observed a distinctive volcano-shaped trend, also known as the 

Sabatier principle,43 shown in Figure 3b. The peak of this volcano plot, ranging from approximately 

1.59 – 1.78 eV, indicates an optimized region for catalytic activity based on catalysts whose 

overpotential is affected by ΔGOOH* and has an overpotential ≤ 0.304 V. Catalysts falling within this 

optimal range of binding energies demonstrate enhanced activity for ORR, prominently displayed 

by the five best-performing catalysts: Fe-Pd ( = 0.211 V), Fe-Pt ( = 0.214 V), Fe-Ag ( = 0.239 

V), Rh-Mn ( = 0.241 V), and Ir-Ni ( = 0.249 V). The presence of perfect linear correlations on 

the right wing of the volcano shape in the ΔGOOH* graph (Figure 3b) and on the left wing of the 

volcano shape in the ΔGOH* graph (Figure S41a) signifies that the overpotential-determining step 

for ORR is primarily contributed either by the first step of *OOH formation or the fourth step of 

*OH desorption. These findings agree well with previous reports.44,45 In comparison, the importance 

of ΔGO* in determining the overpotential is relatively less, as demonstrated in the ΔGO* volcano 

plot (Figure S41b). 

Optimizing the ΔGOOH* and/or ΔGOH* values emerge as a compelling strategy to enhance ORR 

activity. This can be achieved through various strategies, including modifying the coordination 

environment surrounding the active metal site. For instance, the introduction of ligands, such as an 

OH group46 near the active metal site, can alter its electronic structure. This could be achieved by 

the ligand either donating or withdrawing electrons from the metal center, thereby tuning the metal's 

electronic properties and enhancing its catalytic activity. Such modifications exert a direct influence 

on the strength and nature of the interactions between the metal and the adsorbate, thereby shaping 

the activity of the SACs. This emphasizes the critical significance of precise control over the 

electronic properties of catalysts, as it empowers the facilitation of efficient and targeted reactions. 

Since binding energies play a crucial role in determining the overpotential, we presented them 

in the form of three distinct heat maps for ΔGOOH* (Figure 4), ΔGOH* (Figure S42a), and ΔGO* 

(Figure S42b). Most of the Ir-M2, Fe-M2, and Rh-M2 combinations exhibit optimal binding energies 

that are neither too strong nor too weak. These metal pairings enable sufficiently strong interactions 

to facilitate the reaction while avoiding overly strong binding that could impede the desorption of 

reaction intermediates. Conversely, the heat maps indicate that Pd-M2, Pt-M2, and Au-M2 systems 

generally display relatively weak binding energies with adsorbates. This suggests that the interaction 
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between the active site and their adsorbates may not be strong enough, which could potentially slow 

down reaction kinetics. On the other hand, the Ru-M2 combinations show exceedingly strong 

binding energies with adsorbates. Such intense interactions may hamper the release of adsorbed 

intermediates, which could result in decreased reactivity and sluggish reaction rates. These findings 

emphasize the delicate balancing act required in designing efficient SACs for ORR. 

 

 

Figure 4. ΔGOOH* for 144 SACs. Optimal binding energies (~1.59 -1.78 eV) are represented in green, overly strong 

binding energies are marked in red, and excessively weak binding energies are denoted in yellow. 

To understand how varying M1-M2 combinations result in different binding free energies, we 

directed our attention toward 12 systems with Fe as the M1 site (Fe-M2). Previous work by Rosen 

et al.47 suggested a strong correlation between the binding energies of a molecule on different metal 

sites and the group number of the metal elements, which is understandable given that the number of 

outermost electrons tends to increase as one moves across the periodic table. It is therefore 

reasonable to infer that an increase in M2's group number may subtly modify M1's behavior, leading 

to a gradual change in the binding affinity of intermediates on M1. In light of this hypothesis, we 

plotted ΔGOOH* against M2's group number (Figure S43a). Contrary to expectations, a careful 

examination of the data from group 7 to group 11 yielded a pattern resembling a volcano plot rather 

than a clear linear trend. The absence of a linear correlation suggests that different M2 elements 
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interact uniquely with Fe, beyond simple electron donation or withdrawal mechanisms. Further 

complicating our understanding, no discernible pattern emerged when comparing the M2’s group 

number with overpotential (Figure S43b). These observations prompt us to look beyond intrinsic 

properties and delve into the more complex interactions between the M1 and M2 sites. More in-depth 

analysis, such as molecular orbital hybridization analysis, might offer a more nuanced perspective 

on the complex interactions between M1 and M2, and, in turn, shed more light on how these 

interactions influence the binding of intermediates on M1 sites. 

To further illuminate how binding free energies of the reaction intermediates can influence 

overpotential, we turned our focus to two extreme cases, Fe-Pd and Mn-Pd, which represent the best 

and worst-performing SACs, respectively. Their free energy profiles along the 4-electron pathway 

are shown in Figure 5a and 5b. The Mn-Pd catalyst displays a significantly higher overpotential of 

2.126 V compared to the Fe-Pd catalyst (0.211 V), demonstrating its inferior performance. Under 

U = 1.23 V, it is apparent that energy increments at each step are more smoothly transitioned in the 

Fe-Pd catalyst compared to the Mn-Pd catalyst. For the latter, the energy steps on the three binding 

configurations are significantly more stable than the former, especially for the OH* desorption step. 

In fact, Mn-Pd showcases the smallest ΔGOH* value (-1.67 eV) amongst all the 144 systems studied, 

leading to a prohibitive barrier in the OH* desorption step, leading to a notable decrease in its 

activity. Conversely, the Fe-Pd catalyst exhibits an optimal ΔGOH* value (0.35 eV), corresponding 

to an enhanced ORR activity. 
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Figure 5. Comparison of the free energy profiles of (a) the best-performing SAC (Fe-Pd) and (b) the worst-performing SAC (Mn-

Pd). Computed PDOS for (c) Fe-Pd and (d) Mn-Pd, after the binding of OH* binding. The bonding molecular orbitals, denoted as 

σ and π, correspond to bonding interactions between the d-orbitals of Fe or Mn and the p-orbitals of O. σ* and π* denote the 

antibonding molecular orbitals arising from interactions between the d orbitals of Fe or Mn and p orbitals of O. 

To rationalize the huge difference in ΔGOH* between Fe-Pd and Mn-Pd, we computed the 

projected density of states (PDOS) for the d-orbitals of M1 sites (Fe and Mn) and p-orbitals of O 

after OH* binding in both systems. Specifically, we visualized the spatial distribution of molecular 

orbitals for the electronic states with high density or those close to the Fermi level (EF). These 

electronic states are depicted in Figure 5c and 5d, as they are believed to play a critical role in 

determining the bonding strength of M1–OH*. In the case of OH* binding on Fe-Pd (Figure 5c), 

the frontier orbitals for Fe-O bonding are primarily the π* and σ* antibonding orbitals, leading to 

relatively weak Fe-OH bonding. In contrast, the orbital energy levels and spatial distributions are 

remarkably different in the Mn-Pd system (Figure 5d). Near the Fermi level, we observed σ and π 

bonding orbitals, which considerably strengthen the Mn-O bonding. This leads to a significantly 

more negative ΔGOH* value of -1.67 eV, which in turn results in a much higher overpotential of 

2.126 V (Figure 5c). This detailed analysis of molecular orbital hybridization provides further 

insight into how different M1-M2 combinations can dramatically affect the binding free energies and 
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the overall ORR activity. 

Similarly, we also emphasized the advantages of tailoring the interactions between dual metal-

N4 moieties for optimizing the binding strength toward intermediates, in contrast to a single metal-

N4 moiety. As evidence, we studied the free energy profile for ORR on single Fe-N4 moiety and 

compared it to Fe-Pd, as shown in Figures S44a and b. We observed a minor reduction in the free 

energy rise for the OOH* binding step in Fe-Pd. This suggests that OOH* binds more strongly to 

the Fe site in Fe-Pd than in Fe-N4. This behavior can be explained by the diminishing of frontier 

antibonding orbitals and an increase in bonding orbitals between Fe and O in the Fe-Pd system, as 

depicted in Figures S44c and d. Similar effects on molecular orbitals due to neighboring metal-N4 

sites have been noted in recent reports.22,48-50 

While molecular orbital analysis provides qualitative insights into the bonding strength 

between metal and intermediate reactants, quantitatively predicting overpotential from the readily 

available intrinsic atomic properties or easy-to-compute electronic properties of single-atom 

catalysts (SACs) remains a formidable task. This necessitates an in-depth, quantitative grasp of the 

structure-property relationship, a challenge intensified by the intricate interplay among, in our 

context, M1-M2, and M1-intermediates. Although DFT is invaluable in analyzing these relationships, 

its usage is constrained by its time-consuming nature. Consequently, we turn to employing data-

driven methodologies like machine learning (ML), as a potentially efficient and accurate alternative 

for overpotential prediction. As illustrated in Figure 6a, we considered 16 intrinsic or electronic 

features, including inherent properties such as electronegativity (χ), atomic radius (ra), atomic mass 

(ma), ionization energy (EI) of M1 and M2 metal atoms (denoted by subscripts 1 and 2), alongside 

DFT-derived electronic properties like spin-up and spin-down d-band centers (εd↑ and εd↓), partial 

charge (q), spin density (ρ) on M1 and M2, and the HOMO-LUMO gap (Eg) of the M1-M2 systems. 

We employed two types of ML algorithms - Sure Independence Screening and Sparsity 

Optimization (SISSO)51 for feature space dimensional reduction (see details in Section S1.5), and 

the Extra Trees Regressor (ETR)52, a decision-tree-based regression approach (see details in Section 

S1.6). These algorithms were trained using 80% of the dataset comprising of 144 SACs and tested 

on the remaining 20% of the data. 
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Figure 6. (a) Workflow of the ML process for predicting overpotential from intrinsic atomic properties and DFT-

computed electronic properties. Prediction performance of the (b) ASPM SISSO, (c) RSPM SISSO, and (d) ETR 

models for the training (80%) and testing (20%) datasets. (e) Illustration of the incremental improvement in the 

predictive ability of the ETR model with increasing size of training datasets. 

Firstly, we employed the SISSO method51 to bridge the input features – namely, the intrinsic 

atomic properties and DFT-computed electronic properties – and the target property (ORR 

overpotential). Using all the above-mentioned features, we name the resultant model as the all-

features-trained SISSO prediction model (ASPM), with the best-performing mathematical 

expression (eq. [4]) shown below: 

𝜂𝐴𝑆𝑃𝑀−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = −0.381 × [cos (
𝑚𝑎1

𝜒1

)] − 0.238 × 𝑐𝑜𝑠(𝐸𝐼2 × 𝑞1) + 0.199 × [
𝜒1 − 𝜒2

𝜀𝑑↓1

] +  0.886 [4] 

This equation demonstrated statistically significant accuracy in predicting overpotential, with a 

significant correlation coefficient (r) of 0.848 for the training datasets (Figure 6b). The root mean 

square error (RMSE) value of 0.204 V falls within the computational error of DFT, signifying a 
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strong agreement between SISSO-predicted and DFT-computed values. When predicting for the 

testing datasets, the performance slightly deteriorated (r = 0.798, RMSE = 0.208 V, Figure 6b), 

hinting at possible overfitting. This may be attributed to including too many unrelated or interrelated 

features or a lack of sufficient datasets (in this instance, 144). Despite comprehensive attempts to 

improve the prediction accuracy of the SISSO model — such as incorporating more informative 

features (refer to Section S2.1 for more details) and exploring alternative approaches to 

overpotential prediction (refer to Section S2.2 for more details) — we failed to achieve significant 

improvement. This outcome underscores the complexity of the problem and invites further 

investigation into novel predictive methodologies, particularly in the approach to minimize the 

RMSE value. Nevertheless, the results emphasize the relative precision of the descriptors generated 

by SISSO in capturing the quantitative relationship between features and overpotential. 

More interestingly, upon closer inspection, eq. [4] is mainly comprised of M1 properties, which 

is expected since M1 is the site directly bonding with the reaction intermediates and should, therefore, 

govern the overpotential. The equation includes three key terms. The first term, cos(
𝑚𝑎1

𝜒1
), relates to 

M1's intrinsic properties, i.e., mass and electronegativity, which naturally influence the catalytic 

properties of the M1 site. The second term, 𝑐𝑜𝑠(𝐸𝐼2 × 𝑞1), captures the ionization energy of M2 atom 

and the M1 site’s partial charge. This offers descriptions of M2’s electron donation capability and 

M1’s atomic charge, hinting at charge exchange dynamics between M1 and M2. The third term's 

numerator, 𝜒1 − 𝜒2 , is the electronegativity difference between M1 and M2, also conveying the 

information of charge transfer between the metal sites, while the denominator, 𝜀𝑑↓1 , carries 

molecular orbital information of M1. These terms validate our hypothesis that the catalytic 

properties of M1-M2 are impacted by the interactions between the M1-N4 and M2-N4 sites. This 

happens even though the M1-N4 and M2-N4 sites are not directly connected, and extends beyond 

simple electron donation or withdrawal mechanisms. Importantly, these complex interactions can 

be quantified using the SISSO-generated descriptors. 

To mitigate the overfitting resulting from the small data problem, it is potentially beneficial to 

evaluate the relevance and significance of each feature. Less important features may introduce noise 

or bias, potentially leading to inaccurate predictions. Consequently, we refined the initial sixteen 

features used for training the model. The importance analysis for each feature was performed using 
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the ETR algorithm, a commonly utilized decision tree-based ML method. This allowed us to assess 

the relative importance of each feature in determining the overpotential (Table 1). The refined 

features were selected based on a mean importance cutoff of 0.05, ensuring only the most 

informative and impactful features were retained. The refined feature set included the ionization 

energy of M1 (EI1), d-band centers (εd↑ and εd↓), partial charge of M1 (q1), electronegativity of M1 

(χ1), and atomic mass of M1 (ma1). Using these features, another SISSO model, namely the refined-

feature-trained SISSO prediction model (RSPM), was produced, with the best-performing 

expression as follows: 

𝜂𝑅𝑆𝑃𝑀−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = −0.322 × [cos (
𝑚𝑎1

𝜒1

)] +  0.165 × 𝑐𝑜𝑠(𝜀𝑑↑1 + 𝜀𝑑↓1) − 0.199 × 𝑐𝑜𝑠(𝐸𝐼1 × 𝑞1) + 0.878 [5] 

The prediction performance of RSPM is comparable to that of ASPM, achieving r = 0.841 and 

RMSE = 0.209 V on training datasets, and r = 0.768 and RMSE = 0.231 V on test datasets, as 

illustrated in Figure 6c. This suggests that the dimensionality reduction feature of SISSO could 

have eliminated less important features in ASPM, leading RSPM to exhibit almost equivalent 

predictive accuracy as ASPM. 

 

Table 1. Evaluation of the mean importance for sixteen input features using the ETR Algorithm. Features with mean 

importance greater than 0.05 (bolded) were selected for the RSPM. 

Features Feature Mean Importance 

M1-Partial-charge (q1) 0.404 

M1- Ionization (EI1) 0.214 

M1- Electronegativity (χ1) 0.152 

Band-Up (εd↑) 0.110 

M1- Radius (ra1) 0.061 

Band-Down (εd↓) 0.051 

M1-Spin-density (ρ1) 0.025 

Gap Up (Eg↑) 0.024 

M1-Mass (ma1) 0.023 

M2-Mass (ma2) 0.019 

M2-Electronegativity (χ2) 0.016 
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Gap Down (Eg↓) 0.014 

M2-Radius (ra2) 0.012 

M2- Partial-charge (q2) 0.012 

M2-Spin-density (ρ2) 0.006 

M2-Ionization (EI2) 0.004 

 

Subsequently, we utilized the ETR algorithm to predict overpotential based on the 16 features. 

A significant disparity was noted when comparing the performance of the ETR-based model on the 

training data (80%) and the testing data (20%). The model performed perfectly on the training data, 

showing an ideal correlation coefficient of r = 1.000 and an RMSE value of 0.000 V (Figure 6d). 

However, its performance declined when applied to the testing data, producing a correlation 

coefficient of r = 0.788 and an RMSE value of 0.233 V (Figure 6d). This divergence is reflective 

of overfitting, a classic challenge encountered with smaller datasets, where the model could 

excessively adapt to the training data at the expense of generalization. We see a clear path for the 

future advancement of our ETR model. We can expect an improvement in the model prediction 

power with an increase in the size of the training datasets. Figure 6e depicts that as the training 

dataset size grows, there is a marked increase in prediction accuracy. This suggests that expanding 

the training data could be a fruitful direction for the continued refinement and evolution of our 

model. 

Table 2 outlines the performance of the above-mentioned three ML models – the ASPM and 

RSPM SISSO models, and the ETR model. These models exhibit sufficient performance, 

demonstrating the utility and effectiveness of ML in material design. Particularly, we applied these 

three models to predict promising M1-M2 combinations, using pristine Fe(OH)-N4 (η = 0.304 V) as 

a benchmark. As detailed in Table 3 and Table 4, the ASPM, RSPM, and ETR models predicted 

10, 10, and 13 promising materials, respectively. DFT validations of these predictions highlighted 

5, 5, and 13 successful matches, translating to success rates of 50%, 50%, and a stellar 100%, 

respectively, demonstrating the robust predictive capabilities of these models. 

Notably, considering the potential error margin in DFT calculations, which usually falls 

between ±0.153 and ±0.5 V.54 Using ±0.1 V as an illustrative point, the benchmark overpotential for 
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Fe(OH)-N4, originally at 0.304 V, is adjusted to 0.404 V. When factoring in this adjustment, the 

accuracy of the ML models in predicting promising M1-M2 compositions improves substantially. 

Specifically, the success rates rise to 74% for ASPM and 69% for RSPM, as detailed in Table 4 

(see Section S2.3 and Table S4 for more details), underscoring the effectiveness of the ML models 

in reducing time-consuming DFT calculations and costly experimental trial-and-error. 

These findings affirm that while ML models may not be flawless, they can significantly 

alleviate the burden of time-consuming DFT computations and expensive experimental procedures. 

The enhanced performance of the RSPM model in predicting top catalysts underscores the potential 

of refining such models to improve prediction accuracy, thus driving the field of materials science 

toward more efficient and precise discovery and development. 

 

Table 2. Performance comparison of ASPM, RSPM, and ETR in predicting overpotentials for the 144 M1-M2 SACs. 

Models Coefficient (𝒓) 𝒓𝟐 RMSE MAE 

ASPM (Training) 0.848 0.720 0.204 0.583 

ASPM (Testing) 0.798 0.637 0.208 0.573 

RSPM (Training) 0.841 0.707 0.209 0.783 

RSPM (Testing) 0.768 0.589 0.231 0.627 

ETR (Training) 1.000 1.000 0.000 0.000 

ETR (Testing) 0.788 0.621 0.232 0.776 

 

Table 3. Comparison between DFT-computed overpotentials and those predicted by ASPM, RSPM, and ETR for 

the top 13 SACs against the criterion overpotential of 0.304 V. * denotes the data points sourced from the test dataset 

for ETR. 

M1-M2 DFT-computed η ASPM Predicted η RSPM Predicted η ETR Predicted η 

Fe-Pd 0.211    0.211  

Fe-Pt 0.214  0.202  0.214  

Fe-Ag 0.238  -0.017  0.238  

Rh-Mn 0.241    0.298* 

Ir-Ni 0.249  0.286 0.292 0.249  

Ir-Pt 0.251   0.289 0.251  
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Ir-Fe 0.258  0.274 0.290  0.258  

Rh-Pt 0.260    0.260 

Rh-Ni 0.260    0.260 

Ir-Mn 0.268  0.227 0.288 0.268  

Rh-Fe 0.269    0.269  

Ir-Pd 0.270   0.295 0.270  

Rh-Pd 0.275    0.275 

 

Table 4. Performance comparison of ASPM, RSPM, and ETR in predicting promising SACs. SACs are deemed 

promising when their overpotentials fall below the specified criterion. The first three rows display results without 

an error bar, while rows 4–6 present results with an error bar of 0.1 V in the criterion of overpotential. 

 
Criterion of 

overpotential 

(V) 

Total # of good catalysts 

predicted 

(A) 

# of good catalysts 

confirmed by DFT 

(B) 

% of good catalysts 

confirmed by DFT  

(C) = (B)/(A) 

ASPM 0.304 10 5 50% 

RSPM 0.304 10 5 50% 

ETR 0.304 13 13 100% 

ASPM 0.404 19 14 74% 

RSPM 0.404 13 9 69% 

ETR 0.404 19 19 100% 

 

Furthermore, we delved into the performance of the ML models in predicting overpotential for 

SACs containing metal sites that have never been learned, termed as ‘extrapolation’. While 

extrapolation allows predictions beyond known data, it is inherently challenging in ML due to the 

assumptions made about unencountered behavior. It is contrasted with ‘interpolation’, where 

predictions occur within known data boundaries, as highlighted previously. In our tests on the M1-

Zn and Re-M2 systems, the extrapolation predictions were subpar, further detailed in Section 2.4 in 

the Supporting Information. This difficulty predominantly stems from our limited training data. To 

illustrate, using the ASPM model as an example, its predictability improves similarly to the ETR 

model (Figure 6e) as the dataset grows (Figure S45). The correlation coefficient r stabilizes when 

the data reaches a certain volume. Such behavior suggests that the SISSO algorithm excels in 

interpolation when given sufficient training data. It is thus reasonable to expect that enriching the 
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training data will consistently boost the predictive power of ML models. Hence, we aspire for this 

paper to act as a spark, encouraging further ventures into data augmentation, thus progressively 

improving the predictive efficacy of ML models and, in the long run, encompassing the majority of 

metals in the periodic table. 

In summary, we applied a synergistic approach of DFT calculations and ML techniques to 

explore the ORR performance of 144 SACs. We discovered 13 materials that outperformed the 

pristine Fe(OH)-N4 benchmark (η = 0.304 V), offering superior catalytic activity. Of particular 

interest, the Fe-Pd, Fe-Pt, and Fe-Ag catalysts emerged as top performers, delivering impressive 

overpotentials of 0.211 V, 0.214 V, and 0.238 V respectively, under alkaline conditions (pH = 13). 

This surpasses the performance of most, if not all, previously reported materials, and sets a 

promising precedent for the field. Especially noteworthy is the economic feasibility of Fe-Ag, given 

the abundant availability and cost-effectiveness of both iron (Fe) and silver (Ag). Additional 

catalysts, such as Ag-Cu, Ag-Pd, and Ag-Ag, showed promising performance alongside economic 

efficiency. 

Our comprehensive analysis of adsorbate binding energies helped us pinpoint an optimal range 

for ΔGOOH* (~1.59-1.78 eV) and ΔGOH* (~0.15-0.37 eV). This range correlates with high catalytic 

performance, thereby providing valuable insight for future experimental optimization. Therefore, 

the potential to enhance overall catalyst performance through structural modifications that optimize 

active site binding energies is notable. To further delve into these insights, we conducted an orbital 

analysis on our best performing catalyst (Fe-Pd) and the least effective one (Mn-Pd). The analysis 

highlighted that the ideal binding strength of reaction intermediates arises from a balanced 

interaction between the bonding and anti-bonding orbitals in the frontier orbitals. 

We trained ML models using a suite of atomic and electronic properties pertaining to the 

single-atom metal sites as input features to predict the overpotential of the SACs. Impressively, 

these models demonstrated satisfying predictive accuracy: 50% of the SACs identified as top 

performers by the SISSO models were validated through DFT calculations. When accounting for 

possible DFT errors, the success rate could climb to 74%. These results highlighted the potential of 

ML as a tool to reduce the need for costly DFT computations and to streamline experimental trial-

and-error processes. 

https://doi.org/10.26434/chemrxiv-2023-cxfm5-v4 ORCID: https://orcid.org/0000-0001-9155-7653 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-cxfm5-v4
https://orcid.org/0000-0001-9155-7653
https://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Collectively, our research lays a firm foundation for the intelligent design and discovery of 

SACs. We have not only illuminated the possibilities for a more sustainable and eco-friendly future 

but also set a foundation for further exploration of ORR performance and the application of ML in 

material design. This opens up the possibility for the development of highly efficient, cost-effective 

catalysts that could revolutionize energy conversion and storage applications, extending far beyond 

catalysis. 
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