Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones

Victor J. Mayerhofer,* Martina Lippolis,* and Christopher J. Teskey*

Institute of Organic Chemistry, RWTH Aachen University, Landoldtweg 1, 52074 Aachen, Germany

⁺These authors contributed equally.

1 Abstract

- 2 We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes
- 3 with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron-
- 4 reduction of ketones. Subsequent selective hydrogen-atom-transfer from the cobalt hydride generates an
- 5 allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical
- 6 coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy-radical of
- 7 previous radical olefin-carbonyl couplings which were limited, as a result, to aldehydes. Applications of this
- 8 novel and straightforward approach include the efficient synthesis of drug-molecules, key-intermediates in
- 9 drug synthesis and site-selective late-stage-functionalisation.

10 Introduction

- 11 Tertiary alcohols containing two aryl groups and their ether derivatives feature across a number of
- 12 pharmaceutical classes (Scheme 1a).¹ As such, the efficient synthesis of this motif draws wide-spread
- 13 interest. Traditional approaches rely on nucleophilic addition of stoichiometric organometallic reagents to
- 14 ketones.² However, these intermediates can be difficult to prepare and are frequently air and moisture
- 15 sensitive. An alternative, streamlined strategy for construction of this motif from widely-available feedstocks
- 16 would be the catalytic intermolecular hydrofunctionalisation of 1,3-dienes with carbonyl compounds.^{3,4}
- 17 Beyond minimizing stoichiometric metallic waste, this strategy can offer increased functional group tolerance
- 18 with the products featuring a useful C=C bond in close proximity, poised for further functionalisation. A range
- 19 of such reactivity has been investigated with aldehyde (or masked-aldehyde) coupling partners, initially by
- 20 Mori⁵ and Le Gendre and Moïse⁶ before being extensively developed by the groups of Krische^{7–13} and
- 21 others^{14,15} as a contemporary revolution of classical allylation chemistry. However, ketones remain
- challenging in all but a few limited cases (see below),¹⁶ likely due to their lower electrophilicity and increased
- 23 steric demands relative to aldehydes.
- 24 Two notable solutions to this problem have been developed. Buchwald and co-workers, 17-20 and also later 25 Xiong and co-workers,²¹ reported the copper-catalysed, enantioselective allylation of ketones with 1,3-dienes 26 which proceeds through a Zimmerman-Traxler type transition state (Scheme 1b). As a result, branched rather than linear products are obtained. Krische and co-workers reported an alternative strategy that instead 27 28 yields the linear product.²² Relying on ruthenium-catalysis, this direct allylation of tertiary alcohols requires a 29 coordinating Lewis-basic heterocycle to stabilize the intermediate metallocycle (Scheme 1c). Therefore, it is 30 evident that a new tactic to allow entry to linear products with simple ketone coupling partners would be an 31 attractive development for the field as an efficient approach to tertiary allylic alcohols which can be mapped 32 onto key structures with linear carbon chains such as those in Scheme 1a.

1

2 Scheme 1| Tertiary alcohol synthesis through catalytic hydrofunctionalisation of dienes.

3 We became interested in developing a solution to this problem using metal-catalysed hydrogen atom transfer (MHAT) catalysis.^{23–26} Previous methods have been reported in this area by Bradshaw and Bonjoch which 4 rely on iron catalysis to couple olefins and carbonyl compounds.²⁷⁻³¹ However, the intermolecular examples 5 are restricted to aldehyde carbonyls due to the propensity of the alkoxy-radical intermediate from ketone to 6 undergo reversible β -fragmentation and revert to the more stable C-centred radical.^{32–35} Shenvi and co-7 8 workers have reported an alternative approach which proceeds via transmetallation to chromium to generate 9 an anion-equivalent species.³⁶ However, similar to examples discussed earlier, this intermediate is only able 10 to react with aldehydes and aldimines.

Our group^{37,38} and others^{39–46} have recently exploited a reductive route to generating the key cobalt hydride which performs hydrogen atom transfer (HAT). This proceeds *via* sequential single electron reduction of Co(II) to Co(I) and subsequent protonation. We recognized that this – in contrast to traditionally used oxidative conditions^{47–53} – might enable us to also reduce ketone coupling partners under the same conditions to their corresponding radical anion.^{54,55} Following HAT to a diene to generate an allylic radical, radical-radical coupling *via* the persistent radical effect⁵⁶ could then occur, bypassing the unproductive Ocentred radical that was problematic in previous approaches (Scheme 1d).

18 Herein, we report the realisation of this approach and the development of a methodology that enables the

19 mild, reductive coupling of dienes and styrenes with ketones and imines. Using this platform, we showcase a

20 streamlined and practical route for the construction of molecular complexity from abundant starting-materials

21 through applications in the synthesis and late-stage-functionalisation of drug molecules.

1 Results

2 Reaction design and optimisation. Our investigation began with the examination of the reaction between 1,3-cyclohexadiene **1a** and benzophenone **2a**. We hypothesized that Hantzsch Ester (HEH), upon visible 3 light irradiation, could function both as a sacrificial reductant and proton donor.^{37,57} With three equivalents, 5 4 5 mol% of commercially available [Co(salentBu,tBu)] as the catalyst, and pyridine as the base, product was 6 formed in a range of solvents. DMSO was found to be optimal, however, without addition of 4-CzIPN as a 7 photocatalyst, efficiency of the reaction was low (Scheme 2a, entries 1 and 2), though this could be 8 increased by lowering the wavelength of light (entry 3). Notably, the reaction did not proceed in the absence 9 of the cobalt catalyst (Scheme 2a, entry 4), HEH (entry 5), or light (entry 6). Additionally, excluding pyridine 10 led to lower yields (entry 7). Interestingly, the reaction could also be conducted under aerobic conditions 11 using DMSO from a bottle without any membrane seal (entry 8), albeit with moderate yields, demonstrating 12 the potential utility of this method.

13

14 **Scheme 2** Reaction optimisation and proposed mechanism.

15 Based on previous work and on our investigations, we propose the following mechanism (Scheme 2b):

16 photoexcitation of the photocatalyst, 4CzIPN, at 450 nm results in energy transfer to HEH. Irradiation at a

17 lower wavelength where HEH absorbs (Scheme 2a, entry 3) also results in product formation which is

18 consistent with an energy transfer step in preference to electron transfer from 4CzIPN. Alternatively,

19 quenching could occur from a cage complex, formed between the photocatalyst and HEH.⁵⁸ Notably, Stern-

- 1 Volmer quenching experiments have revealed that 4CzIPN* is quenched by HEH⁵⁹ but not by
- 2 benzophenone. The resulting excited state Hantzsch Ester, HEH^{*}, is a highly reducing species ($E_{ox}^* = -2.28$
- 3 V vs SCE in DMF)⁶⁰ that can be quenched by benzophenone, **2a** (E_{red} = -1.83 V vs SCE in DMF)⁶¹ and
- 4 subsequently protonated^{58,62} to generate the corresponding persistent radical, **2a**[•]. At the same time, Co(II)
- 5 can be reduced to Co(I) ($E_{red} = -1.60 \text{ V vs SCE}$)⁴¹ via SET from HEH*. Subsequent protonation from the
- 6 reaction media will form the Co(III)-H species which notably undergoes selective HAT to cyclohexadiene
- 7 (1a) rather than reacting with the benzophenone. The resulting allylic radical can couple with 2a[•] at the
- 8 carbon center^{63,64} yielding product **3a**. We consider reduction of the allylic radical **1a**[•] to the corresponding
- 9 anion ($E_{red} = -2.3 \text{ V vs SCE}$) and subsequent addition to the ketone to be less likely due to the more

10 negative reduction potential.⁶⁵

- 11 Based on previous work and on our investigations, we propose the following mechanism (Scheme 2b):
- 12 photoexcitation of the photocatalyst, 4CzIPN, at 450 nm results in energy transfer to HEH. Irradiation at a
- 13 lower wavelength where HEH absorbs (Scheme 2a, entry 3) also results in product formation which is
- 14 consistent with an energy transfer step in preference to electron transfer from 4CzIPN. Alternatively,
- 15 quenching could occur from a cage complex, formed between the photocatalyst and HEH.⁵⁸ Notably, Stern-
- 16 Volmer quenching experiments have revealed that 4CzIPN* is quenched by HEH⁵⁹ but not by
- benzophenone. The resulting excited state Hantzsch Ester, HEH^{*}, is a highly reducing species ($E_{ox}^* = -2.28$
- 18 V vs SCE in DMF)⁶⁰ that can be quenched by benzophenone, **2a** (E_{red} = -1.83 V vs SCE in DMF)⁶¹ and
- 19 subsequently protonated^{58,62} to generate the corresponding persistent radical, **2a**[•]. At the same time, Co(II)
- 20 can be reduced to Co(I) ($E_{red} = -1.60 \text{ V vs SCE}$)⁴¹ via SET from HEH*. Subsequent protonation from the
- 21 reaction media will form the Co(III)–H species which notably undergoes selective HAT to cyclohexadiene
- 22 (1a) rather than reacting with the benzophenone. The resulting allylic radical can couple with 2a[•] at the
- carbon center^{63,64} yielding product **3a**. We consider reduction of the allylic radical **1a** to the corresponding anion ($E_{red} = -2.3$ V vs SCE) and subsequent addition to the ketone to be less likely due to the more negative
- 25 reduction potential.⁶⁵
- 26 Substrate scope. Next, we explored the substrate scope of the reaction (Scheme 3) beginning first with 27 evaluation of different unsaturated C=C bonds with benzophenone. Linear dienes such as 2,3-dimethyl-1,3-28 butadiene and feedstocks isoprene, myrcene and 1,3-butadiene all functioned well under our reaction 29 conditions to form products 3b, 3c, 3d and 3e. Notably, the regioselectivity of the reaction is excellent and follows a predictable pattern as we have recently reported, ascribed to selective HAT at the more electron-30 31 rich and less hindered terminus of the diene.⁵⁷ As such, regioconvergence is observed in the case of two 32 differently substituted cyclohexadiene starting materials to form a single product 3g/3h. Interestingly, allyl-33 substituted cyclohexadiene reacts to form product 3f without any notable functionalisation or isomerisation of the terminal alkene, consistent with our previous reports of photoinduced MHAT catalysis.^{37,38} The lack of 34 35 reactivity of unstabilised olefins is another notable point of this reaction platform that enables selective functionalisation of complex polyolefins (see 3d). On this basis, we next investigated styrenes, believing they 36 37 too might work under these conditions. Styrene itself and the para-Bu substituted example both yielded the corresponding branched product in good yield (**3i** and **3i**). Using α -substituted styrenes, we were able to 38 construct congested quaternary centres - a motif that still challenges synthetic chemists - adjacent to the 39 tertiary alcohol in one straightforward step (3k to 3o). Finally, β-methyl styrene and indene yielded the 40 41 corresponding products, **3p** and **3q**, in moderate yields.

Scheme 3 Substrate scope of diene and styrene substrates. Conditions: diene (0.1 mmol, 1 equiv.), ketone (2 equiv.), 4CzIPN(1 mol %), [Co(salen^{fBu,fBu})] (5 mol %), Hantzsch ester (3 equiv), pyridine (2 equiv), DMSO (0.1 M). Diastereomeric ratio

4 is 1:1 unless otherwise stated.

1

2

3

5 Investigation of the structural diversity of ketone coupling partners followed (Scheme 4). Unsymmetrical 6 benzophenone derivatives with para-hydroxy or ortho-bromo substitution gave products 3r and 3s, 7 respectively. Similarly, fluoro, chloro and methoxy substitution were all tolerated on the aromatic rings of the 8 benzophenone derivatives (3t to 3u), as was an extended aromatic in the case of 3v. Replacing 1,3-9 cyclohexadiene with β-methyl styrene and carrying out the reaction with an iodo-substituted benzophenone 10 yielded product 3w which is a reported precursor of Tamoxifen, a hormone therapy used to treat breast 11 cancer.⁶⁶ Encouragingly, tricyclic aromatic ketones, anthrone, thioxanthone (which yields a motif found in 12 Meprotixol, a cough suppressant) and dibenzosuberenone, also performed well in the reaction yielding 13 products 3x to 3z.

14 Based on these promising results, we expanded our exploration to include imines in place of ketones

15 allowing formation of amines in a straightforward manner. Slight adjustments to the reaction conditions were

16 required to obtain satisfactory: Co(salen^{OMe,Br}) (5 mol%) and (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (1 mol%) were

17 used. Aldimines substituted at the 4-position of the *N*-phenyl with methyl, bromo, methoxy and ethyl alcohol

- 1 groups were all good substrates for the reaction (4a to 4d). However, alkyl substitution on the nitrogen
- 2 resulted in a lower yield (4e). Different substitution patterns on the aryl group all resulted in good yields (4f -
- 3 **4h**) and it was possible to vary the diene used as a coupling partner (**4k**, Scheme 5). Interestingly, ketimines
- 4 also functioned as substrates under our reaction conditions, enabling formation of congested quaternary
- 5 centres adjacent to an amine (**4i** and **4j**).

6

Scheme 4| Scope of ketones and imines. ^aConditions used for imines: imine (0.1 mmol, 1 equiv.), diene (3 equiv.),
 (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆ (1 mol %), [Co(salen^{OMe,Br})] (5 mol %), Hantzsch ester (3 equiv), pyridine (2 equiv), DMSO (0.2 M).
 Diastereomeric ratio is 1:1 unless otherwise stated.

- 10 Encouraged by the functional group tolerance of our method, we then sought to apply our method to more
- 11 complex molecules (Scheme 5a). The diarylketone motif is frequently found in drug molecules⁶⁷ and so we
- 12 sought to demonstrate the reactivity of some examples under our developed conditions. Both Ketoprofen (an
- 13 anti-inflammatory medication) and Fenofibrate (a treatment for abnormal lipid levels) successfully underwent
- 14 late-stage-functionalisation to yield **5** and **6** demonstrating excellent functional group tolerance, for instance,
- 15 of carboxylic acids. Dienes can also be found in drug molecules and Simvastatin, a commercial lipid-lowering

1 medicine, could undergo selective hydrofunctionalisation with benzophenone to yield product **7**. Although the 2 yield is low, the selectivity of the reaction is excellent.

3 One advantage of using dienes, beyond their wide-availability, is the resulting C=C bond in proximity to the

4 newly formed C–C bond. To demonstrate the utility of the products that we had synthesized, we further

5 reacted two examples (Scheme 5b). We were able to form the highly-substituted 5-membered heterocycle 8

6 upon bromonium-induced cyclisation.⁶⁸ It was also possible to form the seven-membered heterocycle **9**

- through an acid-promoted intramolecular Friedel-Crafts type mechanism from 4k (itself formed on 1 mmol
 scale).⁶⁹
- 9 Finally, we noted the potential to transform the products which we had formed into drug-molecules in a
- 10 concise manner. **3c** and **3aa** could be formed in good yields on 1 mmol scale by increasing the duration of
- 11 the reaction.⁷⁰ Subsequent oxidative cleavage of these two molecules using the photocatalytic procedure of
- 12 the Leonori group⁷¹ led to **10** and **11**, respectively. Reductive amination⁷² with either piperidine or
- dimethylamine formed two drug molecules, each in just three steps: Pridinol (a treatment for Parkinson's)
- 14 and Clofedanol (a cough suppressant). Not only are these syntheses short in number of steps but they avoid
- 15 all use of stoichiometric organometallic intermediates, minimizing waste streams and thus showcasing the
- 16 utility of our method in developing modern, streamlined routes to key chemicals. Additionally, this same route
- 17 could easily be adapted for analogue synthesis by changing the benzophenone and secondary amine in the
- 18 final step.

19

20 Scheme 5| Applications to late-stage-functionalisation and synthesis of drug molecules.

21 Conclusions

- 22 To conclude, we have presented a dual-catalysed method that enables, for the first time, the linear-selective
- 23 reductive intermolecular coupling of dienes with ketones. This approach has successfully been extended to
- 24 styrenes and imines. The mild reaction conditions and broad functional group tolerance allows swift

- 1 construction of complex molecules and the practical utility has been showcased both in the de novo
- 2 synthesis and for the late-stage-functionalisation of drug molecules.

3 Data availability

4 All of the data are available within the main text or Supporting Information.

5 References

- Ameen, D. & Snape, T. J. Chiral 1,1-diaryl compounds as important pharmacophores. *Med. Chem. Commun.* 4, 893–907 (2013).
- Denmark, S. E. & Fu, J. Catalytic Enantioselective Addition of Allylic Organometallic Reagents to
 Aldehydes and Ketones. *Chem. Rev.* 103, 2763–2794 (2003).
- Bower, J. F., Kim, I. S., Patman, R. L. & Krische, M. J. Catalytic Carbonyl Addition through Transfer
 Hydrogenation: A Departure from Preformed Organometallic Reagents. *Angewandte Chemie International Edition* 48, 34–46 (2009).
- Xiang, M., Pfaffinger, D. E. & Krische, M. J. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in
 Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. *Chemistry A European Journal* 27, 13107–13116 (2021).
- Takimoto, M., Hiraga, Y., Sato, Y. & Mori, M. Nickel-catalyzed regio- and stereoselective synthesis of
 homoallylic alcohol derivatives from dienes and aldehydes. *Tetrahedron Letters* 39, 4543–4546 (1998).
- Bareille, L., Gendre, P. L. & Moïse, C. First catalytic allyltitanation reactions. *Chem. Commun.* 775–777
 (2005) doi:10.1039/B414322A.
- Bower, J. F., Patman, R. L. & Krische, M. J. Iridium-Catalyzed C-C Coupling via Transfer
 Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level Employing 1,3 Cyclohexadiene. *Org. Lett.* **10**, 1033–1035 (2008).
- Shibahara, F., Bower, J. F. & Krische, M. J. Ruthenium-Catalyzed C–C Bond Forming Transfer
 Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3 Dienes as Surrogates to Preformed Allyl Metal Reagents. *J. Am. Chem. Soc.* 130, 6338–6339 (2008).
- Zbieg, J. R., Moran, J. & Krische, M. J. Diastereo- and Enantioselective Ruthenium-Catalyzed
 Hydrohydroxyalkylation of 2-Silyl-butadienes: Carbonyl syn-Crotylation from the Alcohol Oxidation Level.
 J. Am. Chem. Soc. 133, 10582–10586 (2011).
- Zbieg, J. R., Yamaguchi, E., McInturff, E. L. & Krische, M. J. Enantioselective C-H Crotylation of Primary
 Alcohols via Hydrohydroxyalkylation of Butadiene. *Science* 336, 324–327 (2012).
- Leung, J. C., Geary, L. M., Chen, T.-Y., Zbieg, J. R. & Krische, M. J. Direct, Redox-Neutral Prenylation
 and Geranylation of Secondary Carbinol C–H Bonds: C4-Regioselectivity in Ruthenium-Catalyzed C–C
 Couplings of Dienes to α-Hydroxy Esters. *J. Am. Chem. Soc.* **134**, 15700–15703 (2012).
- McInturff, E. L., Yamaguchi, E. & Krische, M. J. Chiral-Anion-Dependent Inversion of Diastereo- and
 Enantioselectivity in Carbonyl Crotylation via Ruthenium-Catalyzed Butadiene Hydrohydroxyalkylation.
 J. Am. Chem. Soc. 134, 20628–20631 (2012).
- 13. Köpfer, A., Sam, B., Breit, B. & Krische, M. J. Regiodivergent reductive coupling of 2-substituted dienes
 to formaldehyde employing ruthenium or nickel catalyst: hydrohydroxymethylation via transfer
 hydrogenation. *Chem. Sci.* 4, 1876–1880 (2013).
- 40 14. Sato, Y., Hinata, Y., Seki, R., Oonishi, Y. & Saito, N. Nickel-Catalyzed Enantio- and Diastereoselective
- 41 Three-Component Coupling of 1,3-Dienes, Aldehydes, and Silanes Using Chiral N-Heterocyclic
- 42 Carbenes as Ligands. *Org. Lett.* **9**, 5597–5599 (2007).

- Kimura, M. *et al.* Rh-Catalyzed Reductive Coupling Reaction of Aldehydes with Conjugated Dienes
 Promoted by Triethylborane. *Org. Lett.* **11**, 3794–3797 (2009).
- Suzuki, I., Yagi, K., Miyamoto, S. & Shibata, I. Direct use of 1,3-dienes for the allylation of ketones via
 catalytic hydroindation. *RSC Adv.* 10, 6030–6034 (2020).
- Yang, Y., Perry, I. B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed asymmetric addition of olefin derived nucleophiles to ketones. *Science* 353, 144–150 (2016).
- Tsai, E. Y., Liu, R. Y., Yang, Y. & Buchwald, S. L. A Regio- and Enantioselective CuH-Catalyzed Ketone
 Allylation with Terminal Allenes. *J. Am. Chem. Soc.* 140, 2007–2011 (2018).
- 19. Liu, R. Y., Zhou, Y., Yang, Y. & Buchwald, S. L. Enantioselective Allylation Using Allene, a Petroleum
 Cracking Byproduct. *J. Am. Chem. Soc.* 141, 2251–2256 (2019).
- Li, C. *et al.* CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and
 Applications. *J. Am. Chem. Soc.* 141, 5062–5070 (2019).
- 13 21. Fu, B. *et al.* Copper-Catalyzed Asymmetric Reductive Allylation of Ketones with 1,3-Dienes. *Org. Lett.* 21, 3576–3580 (2019).
- Park, B. Y., Montgomery, T. P., Garza, V. J. & Krische, M. J. Ruthenium Catalyzed
 Hydrohydroxyalkylation of Isoprene with Heteroaromatic Secondary Alcohols: Isolation and Reversible
 Formation of the Putative Metallacycle Intermediate. *J. Am. Chem. Soc.* 135, 16320–16323 (2013).
- Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-Catalyzed Radical
 Hydrofunctionalizations of Olefins. *Chem. Rev.* **116**, 8912–9000 (2016).
- 24. Green, S. A. *et al.* The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. *Acc. Chem. Res.* 51, 2628–2640 (2018).
- 25. Shevick, S. L. *et al.* Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and
 radicals. *Chem. Sci.* 11, 12401–12422 (2020).
- 26. Jana, S., Mayerhofer, V. J. & Teskey, C. Photo- and Electrochemical Cobalt Catalysed Hydrogen Atom
 Transfer for the Hydrofunctionalisation of Alkenes. *Angewandte Chemie (International ed. in English)*e202304882 (2023) doi:10.1002/anie.202304882.
- 27. Saladrigas, M., Bosch, C., Saborit, G. V., Bonjoch, J. & Bradshaw, B. Radical Cyclization of Alkene Tethered Ketones Initiated by Hydrogen-Atom Transfer. *Angewandte Chemie International Edition* 57, 182–186 (2018).
- Saladrigas, M., Loren, G., Bonjoch, J. & Bradshaw, B. Hydrogen Atom Transfer (HAT)-Triggered Iron Catalyzed Intra- and Intermolecular Coupling of Alkenes with Hydrazones: Access to Complex Amines.
 ACS Catal. 8, 11699–11703 (2018).
- Saladrigas, M., Bonjoch, J. & Bradshaw, B. Iron Hydride Radical Reductive Alkylation of Unactivated
 Alkenes. *Org. Lett.* 22, 684–688 (2020).
- 35 30. Saladrigas, M., Puig, J., Bonjoch, J. & Bradshaw, B. Iron-Catalyzed Radical Intermolecular Addition of
 36 Unbiased Alkenes to Aldehydes. *Org. Lett.* 22, 8111–8115 (2020).
- 37 31. Saladrigas, M., Gómez-Bengoa, E., Bonjoch, J. & Bradshaw, B. Four-Step Synthesis of (-)-4-epi 38 Presilphiperfolan-8α-ol by Intramolecular Iron Hydride Atom Transfer-Mediated Ketone-Alkene Coupling
 39 and Studies to Access trans-Hydrindanols with a Botryane Scaffold. *Chemistry A European Journal* 40 29, e202203286 (2023).
- 32. Gray, P. & Williams, A. The Thermochemistry And Reactivity Of Alkoxyl Radicals. *Chemical reviews* 59, 239–328 (1959).
- 33. Beckwith, A. L. J. & Hay, B. P. Kinetics of the reversible .beta.-scission of the cyclopentyloxy radical. *Journal of the American Chemical Society* 111, 230–234 (1989).
- 45 34. Wilsey, S., Dowd, P. & Houk, K. N. Effect of Alkyl Substituents and Ring Size on Alkoxy Radical
 46 Cleavage Reactions. *The Journal of organic chemistry* 64, 8801–8811 (1999).

- 35. Hioe, J. & Zipse, H. Radical stability and its role in synthesis and catalysis. Organic & biomolecular
 chemistry 8, 3609–3617 (2010).
- 36. Matos, J. L. M., Vásquez-Céspedes, S., Gu, J., Oguma, T. & Shenvi, R. A. Branch-Selective Addition of
 Unactivated Olefins into Imines and Aldehydes. *J. Am. Chem. Soc.* 140, 16976–16981 (2018).
- 37. Bergamaschi, E., Mayerhofer, V. J. & Teskey, C. J. Light-Driven Cobalt Hydride Catalyzed
 Hydroarylation of Styrenes. ACS Catal. 14806–14811 (2022) doi:10.1021/acscatal.2c05109.
- 38. Qin, J. *et al.* Photoinduced Cobalt Catalysis for the Reductive Coupling of Pyridines and Dienes Enabled
 by Paired Single-Electron Transfer**. *Angewandte Chemie International Edition* 62, e202310639 (2023).
- 39. Kamei, Y. *et al.* Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and
 cobalt-photoredox dual catalysis. *Nat Commun* **12**, 966 (2021).
- 40. van der Puyl, V., McCourt, R. O. & Shenvi, R. A. Cobalt-catalyzed alkene hydrogenation by reductive
 turnover. *Tetrahedron Letters* **72**, 153047 (2021).
- 41. Nakagawa, M., Matsuki, Y., Nagao, K. & Ohmiya, H. A Triple Photoredox/Cobalt/Brønsted Acid
 Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes. *J. Am. Chem. Soc.* 144,
 7953–7959 (2022).
- 42. Gnaim, S. *et al.* Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. *Nature* 605,
 687–695 (2022).
- 43. Wu, X. *et al.* Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated
 Hydrofunctionalization of Alkenes. *J. Am. Chem. Soc.* **144**, 17783–17791 (2022).
- 44. Tao, X. *et al.* Branched-Selective Hydroacylation of Alkenes via Photoredox Cobalt and N-Heterocyclic
 Carbene Cooperative Triple Catalysis. *ACS Catal.* 15241–15248 (2022) doi:10.1021/acscatal.2c04970.
- 45. Suzuki, A. *et al.* Photocatalytic Deuterium Atom Transfer Deuteration of Electron-Deficient Alkenes with
 High Functional Group Tolerance. *Angewandte Chemie International Edition* 62, e202214433 (2023).
- 46. Takekawa, Y., Nakagawa, M., Nagao, K. & Ohmiya, H. A Quadruple Catalysis Enabling Intermolecular
 Branch-Selective Hydroacylation of Styrenes. *Chemistry A European Journal* 29, e202301484 (2023).
- 47. Wilson, C. V. *et al.* Cobalt–Carbon Bonding in a Salen-Supported Cobalt(IV) Alkyl Complex Postulated
 in Oxidative MHAT Catalysis. *J. Am. Chem. Soc.* 144, 10361–10367 (2022).
- 48. Qin, T. *et al.* Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides.
 Angewandte Chemie International Edition 60, 25949–25957 (2021).
- 49. Ebisawa, K. *et al.* Catalyst- and Silane-Controlled Enantioselective Hydrofunctionalization of Alkenes by
 Cobalt-Catalyzed Hydrogen Atom Transfer and Radical-Polar Crossover. *J. Am. Chem. Soc.* 142,
 13481–13490 (2020).
- So. Yang, F. *et al.* Electrocatalytic Oxidative Hydrofunctionalization Reactions of Alkenes via Co(II/III/IV)
 Cycle. *ACS Catal.* 12, 2132–2137 (2022).
- 51. Park, S. H., Jang, J., Shin, K. & Kim, H. Electrocatalytic Radical-Polar Crossover Hydroetherification of
 Alkenes with Phenols. ACS Catal. 12, 10572–10580 (2022).
- 52. Park, S. H. *et al.* Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination:
 Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. *J. Am. Chem. Soc.* (2023)
 doi:10.1021/jacs.3c03172.
- 40 53. Gan, X. *et al.* Iron-Catalyzed Hydrobenzylation: Stereoselective Synthesis of (-)-Eugenial C. *J. Am.*41 *Chem. Soc.* 145, 15714–15720 (2023).
- 42 54. Pitzer, L., Sandfort, F., Strieth-Kalthoff, F. & Glorius, F. Intermolecular Radical Addition to Carbonyls
 43 Enabled by Visible Light Photoredox Initiated Hole Catalysis. *J. Am. Chem. Soc.* 139, 13652–13655
 44 (2017).
- 45 55. Huang, H.-M., Bellotti, P. & Glorius, F. Merging Carbonyl Addition with Photocatalysis. *Acc. Chem. Res.*46 55, 1135–1147 (2022).

- 56. Leifert, D. & Studer, A. The Persistent Radical Effect in Organic Synthesis. *Angewandte Chemie International Edition* 59, 74–108 (2020).
- 3 57. Qin, J. *et al.* Photoinduced cobalt catalysis for the reductive coupling of pyridines and dienes enabled by
 4 paired single-electron transfer. Preprint at https://doi.org/10.26434/chemrxiv-2023-3rshq (2023).

58. Limburg, B., Cristòfol, À. & Kleij, A. W. Decoding Key Transient Inter-Catalyst Interactions in a Reductive
Metallaphotoredox-Catalyzed Allylation Reaction. *J. Am. Chem. Soc.* 144, 10912–10920 (2022).

- 59. Meng, Q.-Y., Wang, S. & König, B. Carboxylation of Aromatic and Aliphatic Bromides and Triflates with
 CO2 by Dual Visible-Light–Nickel Catalysis. *Angewandte Chemie International Edition* 56, 13426–13430
 (2017).
- 40. Jung, J., Kim, J., Park, G., You, Y. & Cho, E. J. Selective Debromination and α-Hydroxylation of α Bromo Ketones Using Hantzsch Esters as Photoreductants. *Advanced Synthesis & Catalysis* 358, 74–
 80 (2016).
- 61. Wagner, P. J., Truman, R. J., Puchalski, A. E. & Wake, R. Extent of charge transfer in the
 photoreduction of phenyl ketones by alkylbenzenes. *Journal of the American Chemical Society* **108**,
 7727–7738 (1986).
- Yayla, H. G. & Knowles, R. R. Proton-Coupled Electron Transfer in Organic Synthesis: Novel Homolytic
 Bond Activations and Catalytic Asymmetric Reactions with Free Radicals. *Synlett* 25, 2819–2826 (2014).
- 63. Shi, S., Kuo, J. L., Chen, T. & Norton, J. R. Catalytic Cycloisomerization onto a Carbonyl Oxygen.
 Organic letters 22, 6171–6176 (2020).
- 64. Nie, Y.-C., Yang, F., Li, Y.-H. & Zhu, R. Aldehydes as O-Nucleophiles in Cobalt Hydride Hydrogen Atom
 Transfer Catalysis: Overriding the Innate Somophilicity. *Organic letters* 25, 889–894 (2023).
- Bard, A. J. & Merz, A. Electrochemical reduction of allyl halides in nonaqueous solvents a
 reinvestigation. *J. Am. Chem. Soc.* **101**, 2959–2965 (1979).
- 24 66. Lim, N.-K. *et al.* Synthesis of Highly Stereodefined Tetrasubstituted Acyclic All-Carbon Olefins via a Syn 25 Elimination Approach. *Org. Lett.* **19**, 6212–6215 (2017).
- Surana, K., Chaudhary, B., Diwaker, M. & Sharma, S. Benzophenone: a ubiquitous scaffold in medicinal
 chemistry. *MedChemComm* 9, 1803–1817 (2018).
- Snyder, S. A., Brucks, A. P., Treitler, D. S. & Moga, I. Concise synthetic approaches for the Laurencia
 family: formal total syntheses of (\pm)-laurefucin and (\pm)-E- and (\pm)-Z-pinnatifidenyne. *Journal of the American Chemical Society* 134, 17714–17721 (2012).
- 69. Gao, H.-S., Dou, F., Zhang, A.-L., Sun, R. & Zhao, L.-M. H2SO4-Mediated Intramolecular Cyclization of
 N-Arylated Homoallylamines: A Solvent-Free, Atom- and Step-Economical Synthesis of Tetrahydro-1 benzazepines. *Synthesis* 49, 1597–1602 (2017).
- 34 70. González-Esguevillas, M. *et al.* Rapid Optimization of Photoredox Reactions for Continuous-Flow
 35 Systems Using Microscale Batch Technology. *ACS central science* 7, 1126–1134 (2021).
- Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative
 cleavage of alkenes. *Nature* 610, 81–86 (2022).
- Katayama, K. *et al.* Discovery and structure-activity relationships of spiroindolines as novel inducers of
 oligodendrocyte progenitor cell differentiation. *Bioorganic & medicinal chemistry* 28, 115348 (2020).

40 Acknowledgements

- 41 C.J.T. thanks the Fonds der Chemischen Industrie (Liebig Fellowship) and the DFG (Grant number
- 42 497336511) for funding of this research. We are grateful to Franziska Schoenebeck for her on-going support.

43 **Competing interests**

- 1 The authors declare no competing interest.
- 2 Additional information
- 3 **Correspondence** should be addressed to <u>christopher.teskey@rwth-aachen.de</u>
- 4 **Supporting information** contains all data and information required to verify and repeat the conclusions
- 5 reported in the text.

Table of Contents

