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Abstract

Nonequilibrium Fermi’s golden rule (NE-FGR) approach is developed to simulate the

electronic transitions between multiple excited states in complex condensed-phase systems

described by the recently proposed multi-state harmonic (MSH) model Hamiltonian. The MSH

models were constructed for faithfully capturing the photoinduced charge transfer dynamics

in a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad dissolved

in tetrahydrofuran. A general expression of the fully quantum-mechanical NE-FGR rate

coefficients for transitions between all pairs of states in the MSH model is obtained with the

path-integral formalism. Besides, the linearized semiclassical NE-FGR formula and a series

of semiclassical approximations featuring Wigner and classical nuclear sampling choices and

different dynamics during the quantum coherence period for the MSH model are derived. The
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current approach enables all the possible population transfer pathways between the excited

states of the triad, in contrast to the previous applications that only addressed donor-to-

acceptor transition. Our simulations for two triad conformations serve as a demonstration

for benchmarking different NE-FGR approximations and show that the difference between all

levels of approximation is small for the current system, especially at room temperature. By

comparing with nonadiabatic semiclassical dynamics, we observe similar timescales of the

electronic population transfer predicted by NE-FGR. It is believed that the general formulation

of NE-FGR for the MSH Hamiltonian enables a variety of applications in realistic systems.

1 Introduction

Electronic transitions occur in many fundamental processes such as charge transfer (CT) in

oxidation-reduction and photochemical reactions in solutions, photovoltaic solar cells, as well

as excitation energy transfer (EET) in photosynthetic light-harvesting complexes.1–15 Routine

calculations based on the Born-Oppenheimer approximation such as molecular dynamics (MD)

simulations and ground-state electronic structure calculations could not treat this type of problem

due to its nonadiabatic nature, i.e., the motions of the electrons and the nuclei cannot be separated.

Therefore, computational methods for modeling electronic transition between multiple electronic

states are necessary.16–18

The most crucial feature of such electronic transitions in the nonadiabatic regime with weak

interstate couplings is arguably the kinetic rate constant for transitions between electronic states,

which may be described by the equilibrium Fermi’s golden rule (FGR).19,20 The FGR theory

describes the rate constant for electronic transition between the donor (initial) and the acceptor

(final) electronic states on the level of the second-order time-dependent perturbation theory of

quantum mechanics and assumes that the system starts out at the thermal equilibrium with

respect to the potential energy surface (PES) of the initial electronic state. The FGR rate theory

has been applied in many gas-phase molecular applications, where vibronic eigenstates can be

obtained.21–24 Recently, Heller and Richardson developed the instanton formula for the FGR rate
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constant.25 Saller et al. proposed cavity-modified FGR expressions for CT in the optical cavity.26

Liu et al. proposed an imaginary-time open-chain path integral approach for calculating FGR rate

constant and demonstrated it in a spin-boson model.27 For complex condensed-phase systems,

however, obtaining the eigenstates of nuclear Hamiltonian is difficult. In order to address this issue

for condensed-phase systems, Sun and Geva proposed six levels of semiclassical approximations

based on the linearized semiclassical (LSC) approach and highlighted that the classical limit of

the LSC FGR formula reduces to the famous Marcus theory28–31 when assuming no nuclear

dynamics and Gaussian statistics of the donor-to-acceptor energy gap.32 The semiclassical theories

of FGR provide practical approaches for studying CT processes in complex and disordered

condensed-phase systems, which are described by general anharmonic all-atom force fields for

different electronic states. The semiclassical CT rate constant calculation was demonstrated in a

prototypical organic photovoltaic carotenoid-porphyrin-C60 (CPC60) molecular triad dissolved in

explicit tetrahydrofuran (THF) solvent,33 and interfacial CT in subphthalocyanine (SubPC)/C60
34

and tetraphenyldibenzoperiflanthene (DBP)/C70 systems.35 Recently, an open-source software

package CTRAMER for CT rate constant calculation in complex systems was developed.36

In the case of photoinduced CT processes, however, the CT molecular system is typically

equilibrated on the ground state before the photoexcitation. Upon the sudden vertical excitation

that brings the system to a bright locally excited (LE) state or the donor state, the CT molecule

and the surrounding solvent are no longer in a stable structural arrangement, thereby inducing

a nonequilibrium nuclear relaxation. This nonequilibrium effect of nuclear DOF needs to be

accounted for if the timescale of the nuclear structural relaxation for attaining thermal equilibrium

on the donor surface is longer than the time scale of the donor-to-acceptor electronic transition.

Additionally, because there is not an unambiguous common initial nuclear state in the case of

electronic transition between more than two excited states, the equilibrium assumption for the

initial nuclear state is no longer satisfied.

To this end, nonequilibrium Fermi’s golden rule (NE-FGR) was proposed by Coalson, et

al.,37–39 which is designed to address the nonequilibrium nature of the initial nuclear state and
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demonstrated in the spin-boson model for two-level systems. The most apparent feature of NE-

FGR from FGR is that the electronic transition rate is now a time-dependent rate coefficient

in NE-FGR, which is essential for describing photoinduced CT.40 In the past decade, many

developments of NE-FGR have been reported. For example, Izmaylov, et al. applied NE-FGR

to electronic transition through conical intersections in gas-phase molecules.41,42 Matyushov

developed a theory for radiationless transition rates with nonequilibrium vibrational modes.43

Borrelli and Peluso developed a second-order cumulant approach that is equivalent to NE-FGR

for a two-level molecular system described by normal modes with Duschinsky rotations.44 Song

and Shi compared NE-FGR with numerically exact hierarchical equations of motion for a proton

coupled electron transfer reaction.45 Sun and Geva developed the LSC formulation of NE-FGR

for nonequilibrium electronic transition in two-state harmonic models such as the spin-boson

model with Condon interstate couplings and the linear vibronic coupling model with non-Condon

interstate couplings and proposed a hierarchy of approximations for NE-FGR for both Condon and

non-Condon cases.46,47 Recently, Hu, et al. have extended the NE-FGR to atomistic simulations

and discovered that the nonequilibrium relaxation in some cases could lead to significant initial

enhancement in the NE-FGR rate coefficient from the FGR rate constant even on the instantaneous

Marcus theory (IMT) level, which fundamentally alters our understanding of the photoinduced CT

process in the condensed phase.48,49

However, in the previous applications of NE-FGR, electronic transitions between multiple

states were not systematically studied either on the multi-state model level or on the all-atom

level. Part of the reason is the lack of a general strategy for constructing effective models

for multi-state molecular systems in the condensed phase. Recently, we proposed a consistent

approach for mapping the anharmonic all-atom Hamiltonian onto an effective multi-state harmonic

(MSH) model Hamiltonian50,51 and demonstrated that the resulting MSH model can accurately

capture the nonadiabatic dynamics compared with all-atom nonadiabatic dynamical simulations of

photoinduced CT in the condensed phase.52

The MSH model has a globally shared bath and the electronic-nuclear couplings between each
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pair of states are built to satisfy the corresponding reorganization energies obtained from MD

simulations. For an F-state system, there are total C2
F = F(F − 1)/2 different pairs of states

leading to F(F − 1)/2 reorganization energies restrictions. As pointed out in the previous work,

each reorganization energy is related to the equilibrium position shift between the corresponding

pair of states.51 These reorganization energies are probably distinct in a heterogeneous molecular

environment, which is very common even in isotropic liquid solutions since the heterogeneity

could also arise from the physical nature of different electronic states. For example, molecules in

LE and CT states would interact with the environment differently. To have a consistent description

of the heterogeneous environment for the multiple electronic states, which can be for the same

molecule or for different molecules, we proposed to extend the dimensionality of each normal

mode such that the equilibrium positions of all electronic states are represented by a polyhedron in

(F −1)-dimensional space.51 The MSH model not only describes the widely-seen correlated and

heterogeneous environment such as chromophores with different orientations and intermolecular

distances in the Fenna-Matthews-Olson photosynthetic complex,53 but it can also reduce to the

homogeneous limit. Consider the case with a homogeneous environment, if all electronic states

couple to the bath equally, the reorganization energies of all pairs of states will be the same and

the resulting electronic-nuclear coupling parameters will be reflected by an (F − 1)-dimensional

equilateral polyhedron. Therefore, the MSH model offers a unified approach to construct an

effective Hamiltonian for molecules in a heterogeneous or homogeneous environment, which is

built to be consistent with all-atom simulations.

In this work, we present a generalized NE-FGR implementation for the MSH model. The

current approach will provide a general expression for the fully quantum-mechanical NE-FGR

rate coefficient of arbitrary pair of states in the MSH model, which is obtained with exact real-

time path-integral formalism. The current approach will address the backward reaction issue,

which was neglected in previous NE-FGR applications where only electronic transitions between

two states were concerned,48 and simulate all the possible electronic transitions simultaneously

by enabling the electronic transition pathways between all pairs of states in the MSH model.
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Moreover, we intend to develop a series of semiclassical approximations for the realistic multi-

state systems and compare the performance between quantum-mechanical NE-FGR and its

semiclassical approximations using the MSH model.

In specific, we consider the MSH models for the prototypical photoinduced CT system con-

sisting of a CPC60 molecular triad dissolved in explicit THF solvent.54–60 This molecular triad has

a wide range of applications including organic photovoltaics, artificial light harvesting, quantum

teleportation, molecular wires, and so forth.54–56,61–63 The donor-bridge-acceptor arrangement of

the triad makes it a great candidate for understanding photoinduced CT dynamics: the triad was

initially prepared on the ground (G) state, CPC60, which is in thermal equilibrium with the solvent,

then abruptly gets photoexcited to the porphyrin-localized excited ππ∗ state, CP∗C60. Following

the photoexcitation, nuclear relaxation begins while there is some probability for electronic

transition to a partially charge-separated state, CP+C−
60, which is referred to as CT1, as well as a

fully charge-separated state, C+PC−
60, which is referred to as CT2. We previously investigated the

two separate pathways using NE-FGR, i.e., either CPC60(G)
hν−→ CP∗C60(ππ∗)−→ CP+C−

60(CT1)

or CPC60(G)
hν−→ CP∗C60(ππ∗) −→ C+PC−

60(CT2), but the electronic transition between CT1 and

CT2 was not allowed.48 It was discovered that the CT rate constants vary significantly with the

triad conformations spanning several orders of magnitude and the solvent motion is playing a big

role in CT dynamics.48,64 Our previous all-atom LSC NE-FGR calculation and its classical limit

using IMT for the first pathway show that the triad has a significant nonequilibrium effect from

the nuclear initial state, which causes an enhanced CT rate coefficient that is about 40 times larger

than the plateau value or the CT rate constant using equilibrium FGR.48 However, the previous NE-

FGR calculation was only applied to a certain donor-to-acceptor transition, given a nonequilibrium

initial nuclear sampling, so with two-state NE-FGR we still do not have a comprehensive picture

of the entire photoinduced CT process involving electronic transitions between multiple states.

The current generalized NE-FGR described above could provide more information regarding the

population transfer dynamics in the triad.

The remainder of this paper is organized as follows. Sec. 2 outlines the generalized NE-FGR
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formulation for multiple states and its semiclassical approximations. Sec. 3 presents the MSH

model Hamiltonian for the photoinduced CT phenomenon of the carotenoid-porphyrin-C60 triad

dissolved in explicit solvent and provides the NE-FGR expressions for the MSH model at different

semiclassical approximation levels. Sec. 4 presents the results and discussion. Sec. 5 provides the

concluding remarks.

2 Theory

2.1 Nonequilibrium Fermi’s Golden Rule

We start with briefly reviewing the NE-FGR for two-state Hamiltonian

Ĥ = Ĥ0 + ĤI =

 ĤD V̂DA

V̂AD ĤA

 , (1)

which is composed of the zeroth-order Hamiltonian, Ĥ0 = ĤD|D⟩⟨D| + ĤA|A⟩⟨A|, and the

perturbation, ĤI = V̂DA|D⟩⟨A|+ V̂AD|A⟩⟨D|. Here, the D and A denote the donor and acceptor

electronic states, respectively, and the corresponding nuclear Hamiltonians are given by

ĤD/A =
P̂2

2
+VD/A(R̂), (2)

where R̂ =
(
R̂1, . . . , R̂Nn

)
and P̂ =

(
P̂1, . . . , P̂Nn

)
are the mass-weighted nuclear positions and

momenta and the nuclear DOF is Nn. The interstate couplings are assumed as constant under

the Condon approximation, such that V̂DA = V̂AD = ΓDA = Const.

If the initial nuclear state is described by an arbitrary density operator ρ̂(0) and the initial

electronic state is |D⟩⟨D|, then the donor population at a later time t is

PD(t) = TrNTre

[
e−iĤt |D⟩ρ̂(0)⟨D|eiĤt

]
, (3)
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where TrNTre[·] denotes the trace over the nuclear and the electronic Hilbert spaces.

NE-FGR treats the interstate electronic coupling term as a small perturbation on the second-

order time-dependent perturbation theoretical level. If one further assumes that the backward

reaction of A → D is negligible, NE-FGR provides the following approximation expression for

the donor-state population:37

PD(t) =1−
∫ t

0
dt ′kD→A(t ′)+ · · · ≈ exp

[
−
∫ t

0
dt ′kD→A(t ′)

]
, (4)

where the time-dependent rate coefficient for reaction D → A is given by

kD→A(t) =
2
h̄2 Re

∫ t

0
dt ′ TrN

[
ρ̂(t)V̂DAe−iĤAt ′/h̄V̂ADeiĤDt ′/h̄

]
=

2
h̄2 Re

∫ t

0
dt ′ TrN

[
ρ̂(0)

(
eiĤDt/h̄V̂DAe−iĤAt/h̄

)
×
(

eiĤA(t−t ′)/h̄V̂ADe−iĤD(t−t ′)/h̄
)]

=
2
h̄2 Re

∫ t

0
dτ TrN

[
ρ̂(0)ṼDA(t)ṼAD(τ)

]
=

2
h̄2 Re

∫ t

0
dτ CDA,AD(t,τ). (5)

Here, the nuclear density operator ρ̂(t) is obtained by evolving for time t on the donor PES starting

from ρ̂(0),

ρ̂(t) = e−iĤDt/h̄
ρ̂(0)eiĤDt/h̄, (6)

and the time variable to τ = t − t ′. We denote

Ṽjk(t)≡ eiĤ jt/h̄V̂jke−iĤkt/h̄, ( j ̸= k), (7)
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and ⟨·⟩= TrN [ρ̂(0)·], so that the time correlation function (TCF) can be written as65

CDA,AD(t,τ) =
〈
ṼDA(t)ṼAD(τ)

〉
. (8)

Next, we consider the general F-state Hamiltonian given by

Ĥ =



Ĥ1 V̂12 · · · V̂1F

V̂21 Ĥ2 · · · V̂2F

...
... . . . ...

V̂F1 V̂F2 · · · ĤF


, (9)

where the interstate couplings are assumed to be constants, i.e., V̂jk = V̂k j = Γ jk in the Condon

case, and the nuclear Hamiltonian of the j-th electronic state is

Ĥ j =
P̂2

2
+Vj(R̂), ( j = 1, . . . ,F). (10)

Instead of assuming no backward reaction and only considering the D → A reaction, we consider

all possible reaction pathways in this multi-state system. The equations of motion for the electronic

population can be written in the form of Pauli’s master equations as below19,20

d
dt

Pk(t) = ∑
j ̸=k

k j→k(t)Pj(t)− ∑
j ̸=k

kk→ j(t)Pk(t), ( j = 1, . . . ,F), (11)

where the NE-FGR time-dependent rate coefficient k j→k(t) for pathway j → k is defined as

k j→k(t) =
2
h̄2 Re

∫ t

0
dτ C jk,k j(t,τ), ( j,k = 1, . . . ,F), (12)

C jk,k j(t,τ) =
〈
Ṽjk(t)Ṽk j(τ)

〉
. (13)

The F-coupled differential equations in Eq. 11 have to be solved simultaneously, which involves

all possible reaction pathways j → k and k → j for any j ̸= k.
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Figure 1: Schematic representation of quantum time correlation function C jk,k j(t,τ) =〈
Ṽjk(t)Ṽk j(τ)

〉
, where the first forward propagation is under an electronic population | j⟩⟨ j| for time

t and the second backward propagation is under an electronic coherence | j⟩⟨k| for time t ′ = t − τ .

Now we derive the quantum-mechanical NE-FGR expression for a normal mode subject

to multi-state shifted harmonic potentials (extension to multiple nuclear dimensions will be

performed in the following section), where the nuclear Hamiltonian of the i-th normal mode on

the j-th electronic state is given by

Ĥ j =
p̂2

i
2
+

1
2

ω
2
i (x̂i − s j)

2, ( j = 1, . . . ,F). (14)

We assume that the initial nuclear density ρ̂(0) is the equilibrium distribution of the unshifted

ground-state harmonic potential, Ĥ0,

ρ̂(0) =
1
Z0

e−β Ĥ0, (15)

Ĥ0 =
p̂2

i
2
+

1
2

ω
2
i x̂2

i , (16)

where partition function Z0 = TrN [e−β Ĥ0]. Note this choice is still general since the equilibrium

positions of all other states, {s j| j = 1, . . . ,F}, can be shifted such that the initial sampling is around

the origin. The real-time propagator and the imaginary-time density matrix element for Ĥ j can be

derived using the path integral formalism and they can be converted via Wick’s rotation t =−iβ h̄,
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which are given by66,67

U(xb, t;xa,0) = ⟨xb|e−iĤ jt/h̄|xa⟩

=

√
ωi

2πih̄sin(ωit)
exp

{
iωi

2h̄sin(ωit)

[(
(xa − s j)

2

+(xb − s j)
2)cos(ωit)−2(xa − s j)(xb − s j)

]}
, (17)

ρ(xb,xa;β ) = ⟨xb|e−β Ĥ j |xa⟩

=

√
ωi

2π h̄sinh(β h̄ωi)
exp

{
− ωi

2h̄sinh(β h̄ωi)

[(
(xa − s j)

2

+(xb − s j)
2)cosh(β h̄ωi)−2(xa − s j)(xb − s j)

]}
. (18)

Expressed in the real-time path-integral formulation, the quantum TCF C jk,k j(t,τ) becomes

C jk,k j(t,τ) =
|Γ jk|2

Z0

∫
dx0 · · ·dx4⟨x0|e−β Ĥ0|x1⟩⟨x1|eiĤ jt/h̄|x2⟩

×⟨x2|e−iĤkt/h̄|x3⟩⟨x3|eiĤkτ/h̄|x4⟩⟨x4|e−iĤ jτ/h̄|x0⟩, (19)

which can be evaluated by inserting Eqs. 17 and 18 and integrating over all positions. The resulting

expression for the generalized TCF C jk,k j(t,τ) is given below

Cexact
jk,k j(t,τ) = |Γ jk|2 exp

{
ωid2

jk

2h̄
coth

(
β h̄ωi

2

)
× [cos(ωit −ωiτ)−1]+ i · ωi

2h̄

[
−d2

jk sin(ωit −ωiτ)

+2d jks j [sin(ωit)− sin(ωiτ)]
]}

, (20)

where d jk = s j − sk. Note that the above expression of CDA,AD(t,τ) reduces to C(t, t − τ) in Eq. 48

of Ref. 46 with jk = DA, s j = S, sk = Req +S for each normal mode.
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2.2 Semiclassical approximations for NE-FGR

In this section, we derive a series of semiclassical approximations for the generalized TCF

C jk,k j(t,τ) following Ref. 46. The LSC approximation for C jk,k j(t,τ) is given by

CW-AV
jk,k j (t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,W (R0,P0)

× exp
[
− i

h̄

∫
τ

t
U jk(R(u) jk)du

]
, (21)

where the initial nuclear sampling is performed with Wigner transformed ρ̂(0), i.e.,

ρ0,W (R0,P0) =
∫

dZ e−iZ·P0/h̄
〈

R0 +
Z
2

∣∣∣∣ ρ̂(0)
∣∣∣∣R0 −

Z
2

〉
. (22)

Starting from the sampled initial nuclear conditions (R0,P0), the system is propagated forwardly

during time 0 → t on the j-th PES arriving at (R(t) j,P(t) j) as in classical MD simulation, and then

propagate backwardly during time t → τ on the average PES between the j-th and the k-th states,

V jk(R) = 1
2

[
Vj(R)+Vk(R)

]
arriving at (R(τ) jk,P(τ) jk). During the second propagation, a phase

factor is formed due to the quantum coherence | j⟩⟨k|, which depends on the energy gap between

the two PESs defined as

U jk(R) =Vj(R)−Vk(R). (23)

For the fact that the Wigner initial sampling and then the coherence dynamics on the average PES

are employed, we label the LSC approximation as “W-AV”.

Replacing the Wigner initial sampling ρ0,W (R0,P0) in Eq. 21 with the corresponding classical

distribution ρ0,Cl(R0,P0) and still using the same average PES V jk(R) for backward propagation
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during the quantum coherence period for time t → τ , we arrive at the “C-AV” approximation:

CC-AV
jk,k j (t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,Cl(R0,P0)

× exp
[
− i

h̄

∫
τ

t
U jk(R(u) jk)du

]
. (24)

If we perform the nuclear dynamics during the quantum coherence period on the ground-state

PES, or V0(R), starting from R(t) j the nuclear positions arrive at R(τ)0. In this case, both W-AV

and C-AV approximations become the “W-G” and “C-G” approximations, respectively:

CW-G
jk,k j(t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,W (R0,P0)

× exp
[
− i

h̄

∫
τ

t
U jk(R(u)0)du

]
, (25)

CC-G
jk,k j(t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,Cl(R0,P0)

× exp
[
− i

h̄

∫
τ

t
U jk(R(u)0)du

]
. (26)

If the relaxation of the nuclear DOF is much slower than the electronic dephasing time, then we

reach the inhomogeneous limit, where the nuclear positions will be assumed stationary or after the

initial population dynamics on the j-th PES. In this way, we have “W-0” and “C-0” approximations

with Wigner and classical initial sampling choices, respectively:

CW-0
jk,k j(t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,W (R0,P0)

× exp
[

i
h̄

U jk(R(t) j)(t − τ)

]
, (27)

CC-0
jk,k j(t,τ) =|Γ jk|2

∫
dR0dP0 ρ0,Cl(R0,P0)

× exp
[

i
h̄

U jk(R(t) j)(t − τ)

]
. (28)
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3 Multi-State Harmonic (MSH) Model Hamiltonian

The general F-state MSH model Hamiltonian has the same overall diabatic form with nonvanishing

off-diagonal electronic couplings as in Eq. 9, but in the MSH model the nuclear Hamiltonians of

the F electronic states are given by

Ĥ1 =
F−1

∑
a=1

N

∑
j=1

P̂2
a, j

2
+

N

∑
j=1

1
2

ω
2
j
[
R̂2

1, j + R̂2
2, j + · · ·+ R̂2

F−1, j
]
+ ε1,

Ĥ2 =
F−1

∑
a=1

N

∑
j=1

P̂2
a, j

2
+

N

∑
j=1

1
2

ω
2
j

[(
R̂1, j −S(12)

j

)2
+ R̂2

2, j + · · ·+ R̂2
F−1, j

]
+ ε2,

Ĥ3 =
F−1

∑
a=1

N

∑
j=1

P̂2
a, j

2
+

N

∑
j=1

1
2

ω
2
j

[(
R̂1, j −S(13)

j

)2
+
(

R̂2, j −S(23)
j

)2
+ · · ·+ R̂2

F−1, j

]
+ ε3,

· · ·

ĤF =
F−1

∑
a=1

N

∑
j=1

P̂2
a, j

2
+

N

∑
j=1

1
2

ω
2
j

[(
R̂1, j −S(1F)

j

)2
+
(

R̂2, j −S(2F)
j

)2
+ · · ·+

(
R̂F−1, j −S(F−1,F)

j

)2
]
+ εF .

(29)

Here, {ω j| j = 1, . . . ,N} are the N physical normal mode frequencies of the globally shared

bath; the index a = 1, . . . ,F − 1 labels the F − 1 extended sets of the physical normal modes

resulting in the total nuclear DOF Nn = (F −1)×N; {S(XY )
j |1 ≤ X < Y ≤ F} are the equilibrium

(horizontal) shift components for the PES of state Y along the j-th mode; {εX |X = 1, . . . ,F} are

the energy minima (vertical shifts) of the PESs of the different electronic states; {V̂XY |X ,Y ∈

(1, . . . ,F),X ̸= Y} are the interstate electronic couplings and V̂XY = V̂Y X = ΓXY is constant under

the Condon approximation.

In Ref. 51, we introduced the general way for constructing the MSH model Hamiltonian

from multi-state all-atom MD simulations and quantum chemistry calculations. Basically, one

needs excited-state electronic structure calculations to determine the excitation energy and the

charge distribution for each electronic state, and MD simulations to determine the energy-gap TCF
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between all possible pairs of states,

C(XY )
UU (t) =⟨UXY (t)UXY (0)⟩−⟨UXY ⟩2, (30)

where the energy gap UXY = VX −VY , and VX and VY denote PESs of distinct state X and state Y .

More precisely, to construct the F-state harmonic model, the following F(F − 1)/2 energy-gap

TCFs are required: {C(XY )
UU (t)|X < Y, and X ,Y ∈ 1, . . . ,F}. From each TCF, the corresponding

reorganization energy between X ,Y states is given by

E(XY )
r =

C(XY )
UU (0)
2kBT

. (31)

The electronic couplings {ΓXY} can be obtained from the fragment charge difference (FCD)

method.68 The energy minima {εX} are determined from their difference, or the reaction free

energies ∆E(XY ), which can be estimated with the reorganization energy and the energy-gap

average from equilibrium MD simulations on the PES of the initial electronic state

εY − εX = ∆E(XY ) =−E(XY )
r −⟨UXY ⟩. (32)

Using the classical MD for TCF is usually valid for condensed-phase systems since most of the

contributing modes are intermolecular vibrations with low frequencies in the THz region.

The F(F − 1)/2 sets of the equilibrium shift components, or {S(12)
j ,S(13)

j ,S(23)
j , . . . ,S(F−1,F)

j }

are designed such that the F(F − 1)/2 reorganization energy restrictions are satisfied simultane-

ously. In particular, the {S(XY )
j } are chosen such that the distance between the minima of all pairs

of PESs scales linearly with the square root of the corresponding reorganization energy:

R(XY )
j =

√
2E(XY )

r

N
1

ω j
= a j

√
E(XY )

r , ( j = 1, . . . ,N), (33)

where a j =
√

2/N/ω j. The general formulas for the equilibrium shift components {S(XY )
j } are
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detailed in Ref. 51. In the F = 4 state case, which we will use in this work, {S(XY )
j } parameters

are given by

S(12)
j = a j

√
E(12)

r ,

S(13)
j = a j

√
E(13)

r cosθ23,

S(23)
j = a j

√
E(13)

r sinθ23,

S(14)
j = a j

√
E(14)

r cosθ24,

S(24)
j = a j

√
E(14)

r sinθ24 cosθ
′
34,

S(34)
j = a j

√
E(14)

r sinθ24 sinθ
′
34,

(34)

where

cosθ jk =
E(1 j)

r +E(1k)
r −E( jk)

r

2
√

E(1 j)
r E(1k)

r

, (35)

cosθ
′
3k =

cosθ3k − cosθ23 cosθ2k

sinθ23 sinθ2k
, (k ≥ 4). (36)

We briefly comment on the MSH model. First, the MSH model in Eq. 29 is not a conventional

harmonic model, but a special one with the parameters that are designed for consistently

incorporating the multi-state characteristics of the interstate correlations, in terms of reorganization

energies between all possible pairs of states. Conventional harmonic models like the Frenkel

exciton model only account for the correlations between the excited states and the ground state,

but not between any pair of excited states.53 Second, the interstate correlations are achieved by

extending the spatial dimension for each normal mode to F −1 dimensions, which are required to

fully represent the reorganization energies corresponding to the F(F − 1)/2 pairs of states in an

F-state system. The resulting (F −1)×N total nuclear DOF are still representing the N physical

normal modes but in an extended space.51 Third, the MSH model parameters are constructed from

mapping all-atom simulations, rather than some assumed analytical form for spectral density. The

MSH model of the triad system has been demonstrated to agree with the all-atom semiclassical

nonadiabatic dynamics described by about explicit 88,000 atoms, suggesting that MSH model is
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useful in estimating the timescales of electronic transition and the significance of nuclear quantum

effects cost-effectively.52 However, the MSH model has limitations. For instance, it cannot provide

atomistic information and the nuclear normal mode frequencies are obtained by discretizing a

spectral density into finite N modes, thereby the Duschinsky rotation effects are neglected and

only the irreversible dissipative dynamics in timescales shorter than the Poincaré recurrence time

is physical.

To simplify the notation for NE-FGR expressions for the MSH model, we recast the MSH

model Hamiltonian in Eq. 29 as below. First, we extend the equilibrium shift parameters by setting

{S(XY )
j } ≡ 0 when X ≥Y . Second, we rewrite the nuclear Hamiltonian of the X-th electronic state,

i.e., ĤX (X = 1, . . . ,F) using the composite index i for nuclear DOF as in the mapping relation

(a, j)→ i, where i= 1, . . . ,Nn and Nn = (F−1)N such that (P̂a, j, R̂a, j)→ (R̂i, P̂i) and S(a X)
j → S(X)

i :

ĤX =
F−1

∑
a=1

N

∑
j=1

[
P̂2

a, j

2
+

1
2

ω
2
j

(
R̂a, j −S(a X)

j

)2
]
+ εX (37)

≡
Nn

∑
i=1

[
P̂2

i
2

+
1
2

ω
2
i

(
R̂i −S(X)

i

)2
]
+ εX . (38)

Third, we denote D(XY )
i ≡ S(X)

i −S(Y )i and h̄ωXY = εX − εY for X ,Y = 1, . . . ,F and X ̸= Y . Using

the similar technique described in Ref. 46, we have the closed-form expressions of TCF on the
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above-mentioned generalized NE-FGR approximation levels for the MSH model:

Cexact/W-AV
jk,k j (t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

ωi(D
( jk)
i )2

2h̄
coth

(
β h̄ωi

2

)
[cos(ωit −ωiτ)−1]

+ i ·
Nn

∑
i=1

ωi

2h̄

[
− (D( jk)

i )2 sin(ωit −ωiτ)+2D( jk)
i S( j)

i [sin(ωit)− sin(ωiτ)]
]}

, (39)

CC-AV
jk,k j (t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

(D( jk)
i )2

β h̄2 [cos(ωit −ωiτ)−1]

+ i ·
Nn

∑
i=1

ωi

2h̄

[
− (D( jk)

i )2 sin(ωit −ωiτ)+2D( jk)
i S( j)

i [sin(ωit)− sin(ωiτ)]
]}

, (40)

CW-G
jk,k j(t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

ωi(D
( jk)
i )2

2h̄
coth

(
β h̄ωi

2

)
[cos(ωit −ωiτ)−1]

+ i ·
Nn

∑
i=1

ωi

2h̄

[(
(S( j)

i )2 − (S(k)i )2
)
(ωit −ωiτ)+2D( jk)

i S( j)
i [sin(ωit)− sin(ωiτ)− sin(ωit −ωiτ)]

]}
,

(41)

CC-G
jk,k j(t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

(D( jk)
i )2

β h̄2 [cos(ωit −ωiτ)−1]

+ i ·
Nn

∑
i=1

ωi

2h̄

[(
(S( j)

i )2 − (S(k)i )2
)
(ωit −ωiτ)+2D( jk)

i S( j)
i [sin(ωit)− sin(ωiτ)− sin(ωit −ωiτ)]

]}
,

(42)

CW-0
jk,k j(t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

ωi(D
( jk)
i )2

2h̄
coth

(
β h̄ωi

2

)[
−1

2
(ωit −ωiτ)

2
]

+ i ·
Nn

∑
i=1

ωi

2h̄

[
− (D( jk)

i )2(ωit −ωiτ)+2D( jk)
i S( j)

i (ωit −ωiτ)cos(ωit)
]}

, (43)

CC-0
jk,k j(t,τ) =|Γ jk|2 exp

{
iω jk(t − τ)+

Nn

∑
i=1

(D( jk)
i )2

β h̄2

[
−1

2
(ωit −ωiτ)

2
]

+ i ·
Nn

∑
i=1

ωi

2h̄

[
− (D( jk)

i )2(ωit −ωiτ)+2D( jk)
i S( j)

i (ωit −ωiτ)cos(ωit)
]}

. (44)

It is important to note that for the MSH model, the LSC expression of NE-FGR is identical

to the exact quantum-mechanical NE-FGR formula, thus we will plot the exact NE-FGR and the

LSC (W-AV) results together in the result section. Note that perturbative NE-FGR is expected to

be valid when the electronic couplings are weak in MSH model.

The MSH models of two conformations of the CPC60 triad with four electronic states,
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{ππ∗,CT1,CT2,G} were developed in Ref. 52, and the energy minima and interstate electronic

couplings parameters are summarized in Table 1. The triad conformations are selected from the

CT landscape landmark structure database,64 and here Conf. #2 and Conf. #3 as shown in Fig. 2

are adopted from Refs. 51 and 52, which show very different photoinduced CT dynamics, for

example, Conf. #3 has CT2 state populated in the first picoseconds but Conf. #2 does not. Since

the ground state is only for initial nuclear sampling and it does not have electronic couplings

with the three excited states in the model, the energy minimum parameter εG does not affect the

dynamics thus can be chosen arbitrarily. The number of physical normal modes N = 200 and for

the four-state MSH model, the total nuclear DOF is Nn =(F−1)N = 600. Two temperatures for the

liquid solution phase were investigated: room temperature at T = 300 K and a low temperature at

T = 200 K, which is still above the freezing point of THF (164 K). The initial state for the nuclear

DOF was chosen as the equilibrated ground state on the PES VG(R), where the semiclassical

Wigner distribution was employed in W-AV, W-G, and W-0 methods and the classical distribution

was employed in C-AV, C-G, and C-0 methods. The initial electronic state is a population of

|ππ∗⟩⟨ππ∗|, which mimics the result of vertical excitation from the ground state to the ππ∗ state.

The nuclear time step is ∆t = 0.1 fs and the total length of propagation is 2 ps. The memory

time τm, beyond which the TCF is assumed to vanish, is tested and chosen to be 0.04 ps and

0.25 ps for conformations #2 and #3, respectively (see supporting information). The frequencies

and equilibrium shifts of the MSH models are provided in supporting information.

4 Results and Discussion

In this section, we present the results for the photoinduced CT dynamics in the MSH models

of CPC60 triad calculated by the generalized NE-FGR approach. Although different levels of

approximation of NE-FGR may have a similar computational cost for the MSH models, it is

important to note that the more classical NE-FGR approaches are much cheaper than the more

quantum NE-FGR approaches in realistic all-atom systems, like solar energy conversion materials.
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Figure 2: Conformations of CPC60 triad studied here, (a) conformation #2 and (b) conformation
#3.

Table 1: Energy minima εX for the excited states and the interstate electronic couplings ΓXY
between different pairs of states in two conformations (#2 and #3) of the triad (in eV). Here,
electronic states X = 1,2,3,4 corresponding to ππ∗,CT1,CT2, and ground states, respectively.
The electronic couplings between any excited states ( j < 4) and the ground state are assumed to
be zero.

state Conf. #2 Conf. #3
ε(ππ∗) 0 0
ε(CT1) −0.268 −0.828
ε(CT2) −0.779 −0.640

Γ12 8.8×10−2 −1.5×10−2

Γ13 1.1×10−4 7.2×10−3

Γ23 1.2×10−4 −2.9×10−2

Γ j4 0 0
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Thus, it is essential to test the accuracy of different approximation levels of NE-FGR in MSH

model, where the fully quantum-mechanical expression is available. This study serves as a

demonstration of how to benchmark for NE-FGR semiclassical approaches and can be used in

other systems since the applicability of approximations varies from system to system.

The photoinduced process starts out with a vertical excitation from an equilibrated ground

state triad dissolved in THF solvent and time zero starts from 100% electronic population on the

ππ∗ state. Following the instantaneous photoexcitation, the nuclear DOF start to relax and the

nonadiabatic transition pathways between any pair of excited states are possible, i.e., ππ∗, CT1,

and CT2 states. The two conformations of the triad investigated here are Conf. #2 and Conf. #3,

and their photoinduced CT dynamics at the high temperature of 300 K and the low temperature

of 200 K are shown in Figs. 3–6. A general observation is that the dynamics of the selected

triad conformations are quite different. In Conf. #2, the main population transfer is through the

pathway ππ∗ → CT1 in the first 0.5 ps after photoexcitation, which means the local excitation

energy is converted to the charge transfer with hole localized on porphyrin and electron localized

on C60. On the contrary, Conf. #3 gives a different photoinduced CT picture, where the CT2 state

also gets populated resulting carotenoid-localized hole (ππ∗ → CT2 pathway) besides porphyrin-

localized hole (ππ∗ →CT1 pathway). This can be explained by a shorter distance between C60 and

carotenoid in Conf. #3 than in Conf. #2 helps stabilize the carotenoid-to-C60 CT2 state in Conf. 3.

More detailed discussions on the atomistic details of photoinduced CT in the triad in an explicit

solvent can be found in the previous work.48,52

In particular, the population dynamics at different NE-FGR levels for the triad Conf. #2 at 300

K are reported in Fig. 3. It is evident that the population is transferred from the ππ∗ state to the CT1

state, while the CT2 state stays unpopulated for the first 2 ps (not shown) after the photoexcitation.

This can be understood by comparing the electronic couplings for different pairs of states of triad

Conf. #2 in Table 1, where the coupling between ππ∗ and CT1 is Γππ∗,CT1 = 8.8× 10−2 eV, two

orders of magnitude larger than Γππ∗,CT2 = 1.1×10−4 eV and ΓCT1,CT2 = 1.2×10−4 eV. The ππ∗

population suddenly drops at an ultrafast time and then shows a non-monotonic trend in the first
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Figure 3: Photoinduced CT population dynamics for the MSH model of the CPC60 triad
conformation #2 obtained with different levels of NE-FGR at 300 K. The initial electronic state is
ππ∗ and the initial nuclear state is in thermal equilibrium with the ground state potential energy
surface.
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Figure 4: Photoinduced CT population dynamics for the MSH model of the CPC60 triad
conformation #2 obtained with different levels of NE-FGR at 200 K. The initial electronic state is
ππ∗ and the initial nuclear state is in thermal equilibrium with the ground state potential energy
surface.
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Figure 5: Photoinduced CT population dynamics for the MSH model of the CPC60 triad
conformation #3 obtained with different levels of NE-FGR at 300 K. The initial electronic state is
ππ∗ and the initial nuclear state is in thermal equilibrium with the ground state potential energy
surface.
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Figure 6: Photoinduced CT population dynamics for the MSH model of the CPC60 triad
conformation #3 obtained with different levels of NE-FGR at 200 K. The initial electronic state is
ππ∗ and the initial nuclear state is in thermal equilibrium with the ground state potential energy
surface.
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Figure 7: Comparison of population dynamics between the exact NE-FGR and nonadiabatic
dynamics using the symmetrical quasiclassical with triangle window (SQC) and the resolution-
of-identity linearized semiclassical (RI-LSC1)52 for the MSH models of the triad conformations
#2 and #3 at 300 K.

0.2 ps, where the population decay rate of ππ∗ and CT1 is reversed briefly before getting back

to normal population transfer direction, that is ππ∗ → CT1. Different NE-FGR approximations

seem able to capture the exact NE-FGR dynamics well, even on the C-0 level, where we assume no

semiclassical Wigner nuclear sampling and no dynamics in the quantum coherence period. Fig. 4

displays the NE-FGR results for Conf. #2 at 200 K. Comparing 200 K against 300 K results, we

observe a faster population decay timescale of about 0.3 ps at 200 K than about 0.5 ps at 300

K. Besides, at the low temperature, we observe that W-G and C-G approximations give a slightly

negative population for ππ∗ state briefly around 0.5 ps, but then get back to physical positive values

at a later time, which can be traced back to the fact that the governing PES is assumed to be that

of the ground state during the quantum coherence period. In contrast, W-0 and C-0 do not seem to

have this type of issue and both approaches give reasonable population dynamics that agree with

the exact NE-FGR or LSC (W-AV) predictions.

What is more interesting is the triad Conf. #3 as shown in Fig. 5 for 300 K, which displays an

ultrafast population transfer between all three excited states. This phenomenon is expected since

the couplings between all pairs of states are comparable within an order of magnitude (10−3 to
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10−2 eV, see Table 1), so the population transfer rates from the ππ∗ state to both of the CT1 and

CT2 states are comparable. The initial rise of the population in the CT1 state in the exact NE-

FGR at 300 K indicates a larger instantaneous rate coefficient of kππ∗→CT1(t) than kππ∗→CT2(t)

in the first 0.5 ps, and then the CT2 state gets populated while the CT1 population gets flattened.

Comparing different approximation levels, the Wigner sampling and the classical sampling for the

nuclear DOF seem not to make a large difference, since the W-AV and C-AV population dynamics

are almost identical. So are the W-G and C-G approaches as well as the W-0 and C-0 approaches.

However, comparing the different coherence dynamics such as W-AV, W-G, and W-0, we do see

a noticeable difference, especially W-G gives a higher CT1 population and W-0 gives a lower

CT1 population at a long time compared with the exact NE-FGR or W-AV result. At the lower

temperature of 200 K as shown in Fig. 6, we observe a similar trend but a slower overall population

transfer rate as compared with the high-temperature case.

Considering the computational expense of the classical sampling versions C-AV, C-G, and C-

0, they provide a great option for complex condensed-phase systems, since the classical sampling

is more straightforward in MD simulations than the Wigner sampling, especially when nuclear

quantum effects are not significant such as at high temperatures. Among all the approximations,

C-0 is attractive and the most straightforward for implementation, since it is based on classical

sampling on the ground state or any nuclear initial state, and in the meanwhile, the only dynamics

that one has to propagate is the nonequilibrium relaxation on the j-th state’s PES during the

population | j⟩⟨ j|, and no further dynamics is needed for the following coherence period. We

believe that the C-0 level of theory can also be generated to the Marcus level, or the instantaneous

Marcus theory,48,49 but this is out of the scope of the current work and will be reported in future

work.

Fig. 7 shows the comparison between the NE-FGR and nonadiabatic semiclassical dynamics

based on the mapping basis,69,70 such as the symmetrical quasiclassical (SQC) dynamics71–76

with triangle window functions74,76 as well as the resolution-of-identity linearized semiclassical

dynamics (RI-LSC1)77–79 obtained from Ref. 52. For the triad Conf. #2, the NE-FGR ππ∗
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population curve tracks the lower profile of the semiclassical results, which suggests that an explicit

treatment to the quantum coherence-to-population mechanisms might be required to have more

realistic ultrafast population oscillations. After the first 0.3 ps, the NE-FGR population decay is

overestimated compared with the two nonadiabatic semiclassical dynamics, SQC and RI-LSC1,

which behave similarly. Despite the difference between NE-FGR and the nonadiabatic dynamics

included here, we cannot take the nonadiabatic semiclassical dynamics as the ground truth, but

as a reference. For the triad Conf. #3, the NE-FGR seems to overestimate the population transfer

from the initial ππ∗ to the CT1 state, while the difference between SQC and RI-LSC1 is also quite

noticeable. In both cases, NE-FGR provides a consistent time scale for the population transfer

compared with the two nonadiabatic semiclassical dynamics, which is still quite impressive, since

the calculation of NE-FGR is much cheaper than simulating the nonadiabatic dynamics directly.

We thus believe NE-FGR could be useful for investigating population transfer dynamics in more

complex systems in the condensed phase.

5 Concluding Remarks

In this work, we generalized nonequilibrium Fermi’s golden rule (NE-FGR) methodology to

simulate the electronic population transitions between multiple states in the newly developed

multi-state harmonic (MSH) model Hamiltonian for photoinduced CT in an organic photovoltaic

triad, CPC60 dissolved in THF. The MSH model Hamiltonians were constructed for different

triad conformations, which have different excitation energies and interstate electronic couplings.

Closed-form expressions were derived for the general MSH model Hamiltonian, and furthermore,

a hierarchy of semiclassical approximations to the fully quantum-mechanical NE-FGR was

developed as well. The LSC approximation coincides with the exact quantum-mechanical NE-

FGR expression in the perturbative limit for the MSH model. With Wigner or classical nuclear

sampling options, we have further proposed W-G, W-0, C-AV, C-G, and C-0 approximation levels,

which differ from which PES will be used for nuclear propagation during the quantum coherence
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period. Our simulations for two different triad conformations (Conf. #2 and Conf. #3) display that

the difference between all levels of approximation for NE-FGR is not too large, especially in the

high temperature (300 K) case, where the nuclear quantum effect is not significant. However, it

does not mean that for any system the different approximation levels would give the same result.

In fact, the current work serves as a demonstration of how to benchmark for different semiclassical

NE-FGR approaches with the help of the MSH model. The benchmark would provide guidance for

realistic all-atom systems, like solar energy conversion materials since the more classical approx-

imation NE-FGR approaches are much computationally cheaper than the more quantum NE-FGR

approaches, and one could adopt the cheaper approaches if it does not compromise the predicting

power. Also, by comparing with nonadiabatic semiclassical dynamics, we see similar timescales

predicted by NE-FGR theories. Considering the computational straightforwardness of NE-FGR,

we believe the current formulation for the MSH Hamiltonian could provide physical insights for

more complex systems, especially the cheapest C-0 approximation among all levels mentioned

above. Other extensions could be made for NE-FGR methodology to study quantum dynamics in

multi-state systems, such as extending the current time-convolutionless quantum master equations

to the time-convolution ones and incorporating quantum coherences in propagation.65 With the

versatile MSH model Hamiltonians for general multi-state molecular systems in the condensed

phase, the photoinduced CT and excitation energy transfer processes in heterogeneous nanoscale

materials80–88 and biological systems7,11,53,89–91 could be investigated.

Supporting Information

See the Supporting Information (SI) for MSH model parameters and example TCFs in both

conformations of CPC60 triad.
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