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ABSTRACT: Discovery of hemilabile ligands that optimally balance reactivity and stability is 
important for identifying novel catalyst structures. We design a workflow for identifying ligands 
in the Cambridge Structural Database (CSD) that have been crystalized with distinct denticities 
and are thus identifiable as hemilabile ligands. To overcome the difficulty of identifying negative 
example, non-hemilabile ligands in our data set, we implement a semi-supervised learning 
approach using a label-spreading algorithm together with a set of heuristic rules based on ligand 
frequency of appearance. We show that a heuristic based on coordinating atom identity alone is 
not sufficient to identify whether a ligand is hemilabile and our trained machine-learning 
classification models are instead needed to predict whether a bi-, tri-, or tetradentate ligand is 
hemilabile with high accuracy and precision. We gain deeper insight into the factors that govern 
ligand hemilability by conducting feature importance analysis on our models, finding that the 
second, third, and fourth coordination spheres all play an important role in ligand hemilability. 
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 Ligands that can change the metal coordination environment, i.e., hemilabile ligands, are 

often able to address the tradeoff between catalyst activity and stability1,2 because they can ligate 

and protect the transition metal while occasionally disengaging and making the catalyst site 

amenable for a reaction to take place. Hemilabile ligands have been used to address major 

challenges in organic chemistry, such as reactivity selectivity tradeoffs in enantioselective3-6, 

regioselective7, and chemoselective8 catalysis. While hemilabile ligands have been primarily used 

in homogeneous catalysis, their unique properties have also been utilized in nanoparticle9, single 

atom10, and heterogeneous catalysis11,12 in recent years. 

 Normally, new reaction design or reactivity improvement involves screening a large 

number of ligands13-15 or costly computational mechanistic studies16-19. While ligand hemilability 

is often used as a design principle6,18,20, these principles mainly rely on a set of heuristic rules such 

as distinct donor properties of coordinating atoms21, linker flexibility between coordination 

atoms20, and steric crowding6 near the transition metal. Determining ligand hemilability in solution 

usually requires indirect kinetic measurements of reaction rates22-24, trapping distinct complexes 

in crystal structures25, or time-consuming computational mechanistic studies5. Most commonly, 

the design of ligands involves the trial-and-error changing and mismatching of the donor properties 

of coordinating atoms21,24 in an attempt to bias ligands towards hemilability. However, symmetric, 

homo-functional ligands have also been shown to undergo hemilabile coordination changes5,26,27, 

while some multifunctional ligands do not tend to change coordination environments20. Therefore, 

being able to tell a priori whether a ligand can act as a hemilabile ligand would greatly accelerate 

screening efforts. 

Here, we employed a data-driven approach to identify factors that determine the likelihood 

of a ligand to be hemilabile. We curated a dataset of ligands from the Cambridge Structural 
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Database (CSD). We separately identified candidate hemilabile ligands from this CSD set and then 

used counting rules to identify non-hemilabile ligands. We trained machine learning (ML) 

procedures to predict ligand hemilability and used feature analysis of the trained models to show 

why common heuristic rules can struggle to fully account for a hemilabile character. This ML 

model allowed us to further expand and suggest a set of candidate hemilabile ligands from existing 

(i.e., in the CSD) and thus synthesizable ligands. 

 We first curated a dataset of hemilabile ligands from a set of all ligands that appear in 

mononuclear transition metal complex (TMC) crystal structures28 29. We identified 4,144 ligands 

that appear in mononuclear TMCs with different denticities, with their highest denticity 

conformations ranging from bidentate to nonadentate, based on the molecular graph determinants 

of each ligand bound to a dummy transition metal30, as well as those of ligands with transition 

metal absent (Supporting Information Text S1). A ligand was labeled hemilabile if the molecular 

graph determinant of a ligand without the transition metal mapped to more than one molecular 

graph determinant of a ligand bound to a transition metal, indicating a change in the coordination 

environment (Figure 1, inset). For this set of ligands, we identified and separated them into distinct 

subsets based  on the highest denticity conformation of the ligand. Since bi-, tri-, and tetradentate 

ligands are most widely used for catalysis and were the most common ligand types, only these 

ligands were studied further (Figure 1 and Supporting Information Figures S1–S2). To focus on 

catalytically relevant ligand types and remove trivial cases arising from agostic interactions31 such 

as those with hydrogen, we eliminated any ligands where the coordinating atoms did not consist 

of carbon, nitrogen, oxygen, phosphorus, or sulfur (Supporting Information Table S1). Finally, 

any ligands with a high absolute charge, q, assignment (i.e., |q| >4) were eliminated in order to 

remove ligands derived from alternately either highly charged or poorly resolved (i.e., missing 
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hydrogen atoms) complexes (Supporting Information Table S1). After each of these steps, we 

obtained a set of 1,531 hemilabile bidentate, 1,069 tridentate, and 492 tetradentate ligands, where 

we group ligands by their highest denticity observed in a transition metal complex. 

 

Figure 1. Description of the data curation workflow and filtering steps for defining bidentate 
hemilabile and non-hemilabile sets. Examples of a hemilabile ligand in high and low denticity 
conformation are shown as a top inset, along with refcodes (GEYWIS – Ni, ATEPUL – Pd, 
ACOQAL – Cu, JUSWAV – Fe) associated with a representative complex involving these 
ligands, where ligating atoms of hemilabile ligand and the transition metal are shown as spheres. 
Examples of non-hemilabile ligands are shown in the bottom inset. Hydrogens are omitted for 
clarity. Atoms in the insets are colored as follows: C in gray, O in red, N in blue, Ni in dark green, 
Cl in green, Pd in light blue, Cu in brown, P in light orange, Fe in dark orange. 

 To gain more insight into how transition metal elemental identity affects hemilabile ligand 

conformations, we analyzed how frequently each of the 4,144 hemilabile ligands appear with the 

ten most common transition metals both at their lowest and highest denticity conformations 

https://doi.org/10.26434/chemrxiv-2023-66jqr ORCID: https://orcid.org/0000-0001-8133-4165 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-66jqr
https://orcid.org/0000-0001-8133-4165
https://creativecommons.org/licenses/by/4.0/


5 

 

(Supporting Information Figure S3). We find that while most transition metals tend to favor a 

higher denticity conformation of a known-hemilabile ligand, ligands that appear in complexes with 

palladium, platinum, and zinc tend to prefer a lower denticity conformation. We also find that the 

most balanced occurrence of ligands in both the lower and higher denticities occurred for copper-

containing complexes. The majority (55%) of hemilabile ligands appear in both high and low 

denticities in at least two distinct complexes with the same transition metal center, nevertheless 

meaning that a significant number of ligands only appear in different denticity conformations when 

the identity of the transition metal is changed (Supporting Information Table S2).  

 To ensure we avoid introducing bias in our hemilabile ligand dataset by including ligands 

that strongly prefer either high or low denticity conformations, we evaluated how many times they 

appear in each denticity in the unique complexes of these ligands (Supporting Information Figures 

S4–S6). While different binding conformation changes for hemilabile tridentate (e.g., to 

monodentate as well) and tetradentate ligands (e.g., to bidentate) are possible, here, we only define 

two classes, i.e., hemilabile and non-hemilabile, to ensure sufficient dataset sizes (Supporting 

Information Figures S7–S8). There is a wide distribution of the hemilabile ligands occurring in the 

low denticity configuration relative to the total occurrences that is nevertheless centered around 

0.5 (i.e., both low and high denticity are equally weighted). For the majority of ligands (i.e., 75.8% 

bidentate, 75.4% tridentate, 76.8% tetradentate), the ratio of low denticity to total count is between 

0.2 and 0.8, indicating that these hemilabile ligands appear in higher and lower conformations with 

similar frequency. Focusing on the ligands that strongly prefer either high or low conformations 

(i.e., the ratio of low denticity to total count is < 0.01 or > 0.99), only a very minor fraction of 

ligands (i.e., 1.2% bidentate, 0.6% tridentate, 0.8% tetradentate) fall into this category. Thus, most 
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ligands in our hemilabile set can be expected to sample both denticities based on their occurrence 

in crystal structures.  

 Using this dataset of hemilabile ligands, we next devised a strategy to train machine 

learning (ML) models that could predict the likelihood of a ligand to exhibit hemilability for 

bidentate ligands. To train such a model, we require not just the hemilabile ligand dataset but also 

a set of negative, non-hemilabile ligands. Although positive examples of hemilability are 

identifiable based on the presence of complexes with ligands in multiple denticities, the absence 

of multiple denticities for ligands across complexes could be due to a lack of prior synthesis of 

diverse complexes containing a given ligand. To address this issue, we defined three different non-

hemilabile sets, which were constructed by i) randomly subsampling all unlabeled ligands to obtain 

an equal sample size of hemilabile and non-hemilabile ligands (random dataset), ii) using 

frequency rules to identify a small set of non-hemilabile ligands and randomly subsampling 

hemilabile ligands to equalize class sizes (small dataset), and iii) using semi-supervised learning 

strategy that started from the small non-hemilabile dataset and employed machine learning to 

identify more non-hemilabile ligands (semi-supervised dataset, Figure 1 and Supporting 

Information text S2). Semi-supervised learning32 encompasses a broad set of techniques that 

combine aspects of supervised (i.e., with labeled data) and unsupervised (i.e., with unlabeled data) 

learning approaches to address the challenges of only partially labeled datasets. Using this 

approach enables constructing a model that could benefit from the large size of the known-

hemilabile set while preserving good labels for non-hemilabile ligands We used these datasets to 

train a classification model using the extreme gradient boosting algorithm33 (XGBoost) for the 

prediction of hemilability (Figure 1). To featurize ligands, we used using ligand-based revised 

autocorrelations (RACs)34, which are connectivity-based representations that have been 
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successfully applied to transition metal complex property prediction34-37 (see Computational 

Details).  

 

Figure 2. ML classifier (i.e., XGBoost) prediction probability (top) and ROC for random (left), 
small (middle), and semi-supervised (right) datasets. All data points are represented as translucent 
circles to depict data density and colored by classification correctness: correct (green) and incorrect 
(red). Examples of correct and incorrect classifications of ligands are shown as insets, bound to a 
metal. Hydrogens are omitted for clarity. Atoms are colored as C in gray, N in blue, O in red, P in 
orange, S in sulfur, and metal in brown.  

 

 The model trained on the random dataset shows promising performance on a set-aside test 

set with good separation between two classes with a receiver-operating characteristic area under 

the curve (ROC-AUC) of 0.86 as well as good accuracy (0.80) and recall (0.80), despite our 

expectation of potential label contamination due to likely incorrectly assigned negative labels 

(Figure 2 and Supporting Information Figures S9–S10 and Table S3). Despite a significantly 

diminished training set size of the small dataset (i.e., an 80% training partition of 3,062 ligands 
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versus of 588 ligands in the small set), the model trained on this dataset still shows a slight 

improvement over the randomly sampled set in the predictive power on the test set, including an 

improved ROC-AUC of 0.88, accuracy of 0.81, and a comparable recall of 0.80 (Figure 2 and 

Supporting Information Figures S11–S12 and Table S3). Finally, we trained an ML model 

classifier (i.e., again XGBoost) on the original set of hemilabile ligands along with the balanced 

class of new non-hemilabile ligands and preserved the initial test set that was also used during 

semi-supervised learning. This model shows by far the best overall performance, with a marked 

improvement that includes an ROC-AUC of 0.96, accuracy of 0.90, and recall of 0.89 (Supporting 

Information Figures S18–S19 and Table S3). In order to test the limits of this encouraging 

performance, we carried out a more stringent test of a grouped split in which we nearly eliminated 

specific coordinating atom elements from the training set. Specifically, we removed 90% of the 

ligands that contained at least one phosphorus atom as a coordinating atom from the training set. 

This split largely preserves our label balance (i.e., 51:49 hemilabile:non-hemilabile in training and 

45:55 in the test set). Although performance is expectedly reduced, this model still shows 

encouragingly good performance, including an ROC-AUC of 0.94, accuracy of 0.87, and a recall 

of 0.84 (Supporting Information Figures S20–S22 and Table S3). 

Given the good performance we observed on bidentate hemilabile ligands, we repeated our 

analysis and ML model training for tri- and tetradentate ligands. Given the somewhat smaller 

dataset sizes, we reduced the requirement for the number of unique complexes to confidently label 

negative examples (Supporting Information Figures S1–S2). For both tridentates and tetradentates, 

we trained XGBoost ML models using all three protocols we demonstrated on the bidentate set. 

The XGBoost ML models trained to predict the hemilability of tridentate ligands on the randomly 

selected set (2,138 ligands total) show relatively poor performance, with an ROC-AUC of 0.72 
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and accuracy of 0.67, but this is either improved by using the small set (ROC-AUC of 0.79 and 

accuracy of 0.73, 354 ligands total) or even more substantially by using a semi-supervised set 

(ROC-AUC of 0.94 and accuracy of 0.87, 2,138 ligands, Figure 3 and Supporting Information 

Table S4). For the tetradentate models, smaller dataset sizes (984 ligands for randomly selected 

set) mean that we do not see the performance improvement from the randomly selected dataset 

(ROC-AUC of 0.81, accuracy 0.73, and recall 0.83) to the small dataset (ROC-AUC of 0.82, 

accuracy of 0.75, and recall 0.77, 222 ligands total), and we attribute this relatively comparable 

performance to the small size (178 ligands) of the training set (Figure 3 and Supporting 

Information Table S5). Thus, the semi-supervised approach is particularly critical in this case, 

giving by far the best model performance (ROC-AUC of 0.97, accuracy of 0.93, and recall 0.96). 

We also carried out the same grouped split test for tri- and tetradentate ligands, but we held out 

oxygen for tetradentate ligands due to both the limited number and class imbalance of phosphorus-

coordinating ligands among the tetradentate set. These grouped split models using the semi-

supervised labeled data still show good performance, with ROC-AUC of 0.88 and 0.92 for tri- and 

tetradentate ligands, respectively. To confirm the approach is not strongly sensitive to the ML 

model, we also trained support vector classifiers, random forest models, and multilayer perceptrons 

which all have comparable performance to the XGBoost model across all three ligand types 

(Supporting Information Tables S6–S8). 
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Figure 3. Accuracy and recall of the XGBoost classifier model on the test sets of random, small, 
and semi-supervised sets. 

 

We next aimed to understand better what chemical mapping we were developing in the 

semi-supervised learning task by comparing differences in chemical and structural diversity of the 

two classes. We first analyzed the coordination environment of these ligands and calculated 

common geometric features of ligands bound to a representative transition metal center (here, 

copper) in their highest denticity conformations. Analysis of the coordination atom environment 

shows some differences and similarities between the two sets (Figure 4). As expected, hetero-

donating ligands, where the identity of coordinating ligands differ, are more common among 

hemilabile ligand sets, which is a common design principle for hemilabile ligands. However, the 

non-hemilabile ligand set also features many hetero-donating ligands. Furthermore, homo-

donating ligands are still frequent in the hemilabile ligand set. In particular, the hemilabile ligand 

set shows an increased number of bis-oxygen coordinating configurations, which can be attributed 

to the generally weaker donor ability of oxygen-coordinating ligands. While bis-nitrogen ligands 

are more common among non-hemilabile sets, they are still abundant within hemilabile sets. From 

the geometric analysis, we find that hemilabile ligands tend to have a slightly lower steric crowding 

near the metal based on the common steric descriptors such as buried volume38 or solvent-
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accessible surface area39, which can be attributed to the decrease in ligand bite angle and weaker 

binding to the transition metal, based on the metal-ligand bond distances (Supporting Information 

Figures S13–S17). These similarities and differences highlight that while the two classes, obtained 

through semi-supervised learning, are different, their separation based on one or two geometric or 

chemical characteristics alone is not trivial. 

 

Figure 4. Upper left triangular coordinating-atom matrix showing the frequency of different 
coordinating environments observed in the hemilabile (left) and non-hemilabile ligand datasets of 
bidentate ligands. The area of each circle represents the total count of unique ligands, as indicated 
qualitatively by the inset legend of representative circle sizes. 

 

Analysis of the coordinating atom environment of tri- and tetradentate ligands shows that, 

similar to the bidentate ligands, the frequency of hetero-donating ligands increases within the 

hemilabile set for both tri- and tetradentate ligands (Supporting Information Figures S23–S24). 

Unlike the bidentate set, we find that the all-nitrogen-donating ligand becomes the predominant 

class not only for the non-hemilabile ligand set but also for the hemilabile ligand set. Similarly, 

we see an increase in the total number of oxygen-donating ligands in hemilabile class, which can 

be attributed to weaker donor strength of oxygen-donating ligands. Furthermore, there is a marked 

increase in the number of bis-carbon donating ligands among the hemilabile set for both tri- and 

tetradentate ligands, which can be attributed to the π-coordinating alkene ligands. Similar to the 

https://doi.org/10.26434/chemrxiv-2023-66jqr ORCID: https://orcid.org/0000-0001-8133-4165 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-66jqr
https://orcid.org/0000-0001-8133-4165
https://creativecommons.org/licenses/by/4.0/


12 

 

bidentate ligand set, steric crowding around non-hemilabile ligands tends to be lower (Supporting 

Information Figures S25–S26). While these differences across two classes for three ligand types 

demonstrate that there is some internal consistency with our label assignment, similarities between 

the two classes still demonstrate the difficulty of identifying hemilabile ligands and demonstrate 

the need for classification models. 

 

One potential limitation with our ML models to predict hemilability is that they would 

require difficult experiments to validate. As an alternative strategy to validate our models, we 

carried out electronic structure calculations with density functional theory (DFT) to discern 

differences in ligand dissociation energies from our hemilabile and non-hemilabile (i.e., either 

from the small or semi-supervised) sets. We selected 100 total tridentate ligands that were neutral 

(i.e., to avoid issues with charge separation during dissociation) and had been crystalized with Cu 

in the CSD. In total, 50 tridentate ligands were obtained from the hemilabile set, and 50 tridentate 

ligands were from the non-hemilabile set (25 small, 25 semi-supervised). A complete list of the 

ligand refcodes and structures of the ligands are provided in the Supporting Information. We 

selected tridentate ligands for this stringent test because tridentate ligands were the most 

challenging for our ML models to classify. The focus on copper is motivated by the fact that copper 

is the metal with the greatest balance in lower and higher denticity ligand sampling. We then 

constructed complexes with the hemilabile or non-hemilabile ligand bound to a Cu complex that 

also contained chloride, in a four-coordinate tetrahedral or square planar geometry, depending on 

the ligand geometry. We computed partial dissociation energies of the three Cu-L bonds in these 

complexes. For these partial ligand dissociation energies (see Computational Methods) we observe 

that partial ligand dissociation is more favorable for hemilabile ligands, with a mean partial 
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dissociation energy of –1.8 kcal/mol for the bidentate configuration relative to the tridentate bound 

conformation, whereas the partial dissociation energy of non-hemilabile ligands was found to be 

2.3 kcal/mol (Supporting Information Figures S27–S28), implying that the partial dissociation for 

the hemilabile set is more favorable. Independent t-test analysis showed that these two sets are 

statistically different, whereas the same test applied to the two non-hemilabile sets are statistically 

indistinguishable (Supporting Information Table S9). Thus, our semi-small subset supervised 

labeling strategies quantitatively distinguish features important to separating hemilabile and non-

hemilabile ligands.  

Motivated by our observation of good separation of ligands that have hemilability from 

those that do not along with good ML model performance, we further analyzed what features our 

models trained on the semi-supervised labeled set emphasize the most in making this classification. 

We carried out a feature importance analysis of the final XGBoost model by examining the total 

gain function of each feature, where we only considered features that contributed at least 1% to 

the total gain. Consistent with our earlier analysis on the set, we find that metal-local features (i.e., 

1st or 2nd coordination sphere) contribute less (i.e., 25-50%) compared with more distal features 

(i.e., 3rd coordination sphere and global) that contribute  ~50-75% to the total prediction for the 

three different ligand types (Figure 5). The significant contribution of metal-distal and global 

features explains the difficulty associated with predicting ligand hemilability based on heuristics 

and donor-ability alone that had been previously emphasized in the literature3,20,24,40. Furthermore, 

hemilability is a highly balanced property that depends both on structural features as well as 

electronic features in comparison to other properties such as spin state that depend much more 

strongly on electronic features34 (Figure 5). Because we might assume this feature importance was 

sensitive to our choice of an XGBoost classifier, we also compared feature importance based on 
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Gini impurity in a random forest classifier. We indeed observe similar feature importances, with 

metal-distal features contributing ~50-75% of the total prediction (Supporting Information Figure 

S29). 

 

Figure 5. Feature importance of bidentate (left), tridentate (middle) and tetradentate (right) ligands 
based on the total gain of the XGBoost classifier. Only features that contributed more than 1% to 
the classifier were retained. S refers to structural (topology, identity, radius) and E refers to 
electronic (electronegativity, nuclear charge) features. First through fourth refers to the 
coordination shell relative to the transition metal based on ligand-centered RACs depth, and Glob 
refers to global (ligand-scope) features. 

Finally, to demonstrate the promise of our ML models for ligand discovery in catalyst 

design, we use the best-performing XGBoost models to make hemilability predictions for all 

unlabeled ligands in our original dataset. Our model assigns many ligands as candidates for 

hemiability. We obtain a bimodal distribution of a similar number of bi- and tetradentate ligands 

labeled as labile and non-hemilabile, whereas the majority of the tridentate ligands are labeled as 

hemilabile, which appears to likely be an overprediction of hemilability (Figure 6). These trends 

by ligand denticity are consistent with the performance of the classifier with the random set, where 

bidentate and tetradentate ligands showed better performance on the randomly sampled set, but 

the tridentate classifier has poorer performance, which can potentially be attributed to a larger 

degree of label contamination if we assume the majority of the unlabeled tridentate ligands are in 

fact hemilabile.  
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Figure 6. Distribution of the classifier probability on the unlabeled set for bidentate (red), 
tridentate (green), and tetradentate (blue) ligands. The total areas of each distribution are scaled 
relative to the size of each set. Examples of hemilabile and non-hemilabile ligands within each set 
are shown as insets. Hydrogens are omitted for clarity. Representative ligand structures (Refcodes: 
BUGVOP, AXOLEE, COBHIL, BODZEA, FUGCES, CMPORZ – from left to right starting 
at top) are shown, with atoms are colored as C in gray, N in blue, O in red, P in orange, and metal 
in brown. 

We further analyzed the predictions by the model to gain insight into the confidence we 

should have in its predictions and to identify where it could be used in ligand design. For example, 

a bidentate, bisphosphine ligand with a short, rigid linker between two coordinating atoms is 

confidently classified as non-hemilabile. However by changing the bisphosphine ligand’s 

electronic character to bisphosphinite, which has a more flexible ethane diol linker between two 

coordinating atoms, the resulting ligand is classified as hemilabile (Figure 6, inset-top). Similarly, 

we find that the structure of a tridentate N,N,N-coordinating ligand consisting of rigid sp2 

hybridized linkages between coordinating atoms and bulky substituents that could constrain free 

atom movement results in the classification of a ligand as non-hemilabile. Whereas a ligand 

possessing a free-rotating ethylene linker in place of a rigid linker is confidently classified as 

hemilabile (Figure 6, inset-middle). Finally, we find that macrocyclic tetradentate ligands, such as 
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porphyrin-derived ligands, are confidently classified as non-hemilabile. On the other hand, when 

one of the coordinating nitrogen atoms is alkylated, leading to a significant reduction in its donor-

ability, the classifier confidently assigns this ligand as hemilabile, highlighting how the model is 

sensitive to small alterations in the overall structure, including those two bonds or more from the 

metal center (Figure 6, inset-bottom). Thus, the ML models, especially those trained on bidentate 

and tetradentate ligands, should provide new pathways to discovering novel hemilabile ligands. 

We propose that tridentate model predictions could be paired with high-throughput DFT to further 

strengthen confidence in the model predictions given limitations in tridentate dataset quality from 

labels obtained purely from the CSD. 

In summary, we developed a data-driven workflow for identifying hemilabile and non-

hemilabile ligands that can accelerate catalyst screening. We used a semi-supervised learning 

approach to leverage a combination of labeled and unlabeled data to confidently identify examples 

of non-hemilabile ligands. We trained ML models that can predict ligand hemilability for bi-, tri-, 

and tetradentate ligands with high accuracy. We showed that coordinating atom identity alone fails 

to account for ligand hemilability. Feature importance analysis of machine learning models 

highlights why conventional design principles can be insufficient for the identification of 

hemilabile ligands, due to the high significance of metal-distant and structural features. We used 

trained machine learning models to identify a large number of ligands that are predicted to be 

hemilabile, that can be used for accelerated discovery of new catalytic reactions. 

Computational Methods 

Dataset curation: A set of ligands present in mononuclear transition metal complexes was 

curated from the Cambridge Structural Database (CSD)41 version 5.41 (November 2019). The 

procedure employed the Conquest graphical interface and the CSD Python API, with the v5.41 
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dataset including complexes from the November 2019 dataset with March 2020 and May 2020 

updates. A dummy atom with identical connectivity to the metal with an atomic number of 0 was 

introduced to identify ligands without preserving metal identity. For each ligand with a dummy 

atom, the atomic number and bond-order weighted connectivity matrix determinant were 

calculated to identify unique ligands, including their metal-ligand connectivity, as described in ref 

28. Atomic number and bond-order weighted connectivity matrix determinant in the absence of a 

dummy atom was also calculated to identify the same ligands with differing transition metal 

connectivity. 

Feature set: Ligands were featurized using ligand-based revised autocorrelations 

(RACs),34 which are connectivity-based representations that have been successfully applied to 

transition metal complex property predictions.34-37 Ligand-based RAC features are generated from 

molecular graphs of a ligand bound to the same dummy transition metal, where each atom is 

represented by a vertex and each bond is represented by an unweighted edge. Each RAC feature 

is the sum of products or the sum of differences of heuristic atom properties at depth d (i.e., the 

number of bonds separating two atoms) on a molecular graph. The ligand-based RACs in this work 

include features that both span the entire ligand bound to a transition metal, where every atom is 

used as a starting atom in RACs, as well as features that are centered around only coordinating 

atoms with a maximum depth d = 3. Overall, ligand-based RACs consist of 52 total features 

(Supporting Information Text S3). 

Machine learning models: Three different models were trained per ligand dataset, where 

the assignment of negative labels was different. For each model, we used the 80/20 random 

train/test split for the entire database with stratified labels. For random and semi-supervised sets, 

that contain identical positive labels, the identities of the positive train/test groups were preserved. 
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We trained classification models using XGBoost v1.5.0, a gradient boosting ensemble model, to 

classify ligands as either hemilabile or non-hemilabile. Hyperparameters were optimized using 

Hyperopt v.0.2.742 (Supporting Information Table S10). Cross-validation was done using a 

stratified k-fold, with three folds of random splits. Machine learning model feature importance 

analysis was conducted with the feature scores of the XGBoost model based on the total gain. We 

employed the label-spreading semi-supervised learning approach implemented in scikit-learn43 to 

identify non-hemilabile ligands. Ligands that were assigned to the negative class with high 

confidence (>0.995) based on label-spreading, were assigned a negative label. The pseudo-label 

set was then randomly sampled to supplement the original dataset to obtain an equal number of 

positive and negative examples for further examination. 

Electronic structure calculations: We employed a developer version of the GPU-

accelerated TeraChem v1.944,45 code to carry out DFT calculations. All calculations were carried 

out using the B3LYP46-48 functional with the semi-empirical D349 dispersion correction and using 

Becke-Johnson damping.50-52 The LACVP* basis set was used, employing the LANL2DZ53 

effective core potential for Cu and 6-31G* for other atoms. All calculations were carried out as 

closed shell singlets in a restricted formalism. All initial geometries of ligands bound to metal were 

obtained from the CSD, and chloride atom was added manually, followed by universal force field54 

optimization. All structures were initially optimized to the tridentate-bound conformation with the 

translation rotation internal coordinate (TRIC) optimizer55, using the BFGS algorithm with default 

convergence thresholds of maximum energy gradient of 4.5 × 10–4 hartree/bohr and energy 

difference between steps of 10-6. To systematically calculate partial dissociation energies, we 

carried out a series of constrained scans, where each of the three metal-ligand bond was extended 

by 2 Å from the ground state geometry, in 10 incremental steps, using the TRIC optimizer, while 
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all other internal coordinates were allowed to relax. The final structure from the scan was used to 

carry out another optimization using the TRIC optimizer and same convergence threshold as 

described above, which converged to a lower denticity conformation minimum. Out of the three 

conformers, the lowest energy conformation was chosen to calculate the partial dissociation 

energy. 
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