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Abstract

Application of Artificial intelligence (AI) in drug discovery has led to several success stories
in recent times. While traditional methods mostly relied upon screening large chemical
libraries  for  early-stage  drug-design,  the  AI-based  approaches  can  help  identify  novel
target-specific molecules by sampling from a much larger chemical space. Although this
has  increased  the  possibility  of  finding  diverse  and  novel  molecules  from  previously
unexplored chemical space, this has also posed a great challenge for medicinal chemists
to synthesize at least some of the AI-designed novel molecules for experimental validation.
To  address  this  challenge,  in  this  work,  we propose  a  novel  forward  synthesis-based
generative AI method, which is used to explore the synthesizable chemical space. The
method uses a structure-based drug design framework, where the target protein structure
and a target-specific seed fragment from co-crystal structures can be the initial inputs. A
random fragment from a purchasable fragment library can also be the input if a target-
specific fragment is unavailable. Then a template-based forward synthesis route prediction
and  molecule  generation  is  performed in  parallel  using  the  Monte  Carlo  Tree  Search
(MCTS)  method  where,  the  subsequent  fragments  for  molecule  growth  can  again  be
obtained from a purchasable fragment library. To the best of our knowledge, this is the first
model  to  utilize  MCTS  for  forward  synthesis  route  prediction.  The  rewards  for  each
iteration of MCTS are computed using a drug-target affinity (DTA) model based on the
docking pose of  the generated reaction intermediates at  the binding site  of  the target
protein of interest. With the help of the proposed method, it is now possible to overcome
one of the major obstacles posed to the AI-based drug design approaches through the
ability of the method to design novel target-specific synthesizable molecules.
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Introduction

Deep learning models have transformed the space of drug discovery by enabling molecule
generation, property prediction and on-the-fly molecular optimization in the recent years
(Olivecrona et al., 2017; Segler et al., 2018; Popova et al., 2018; Bung et al., 2020; Born et
al., 2021; He et al., 2021; Krishnan et al., 2021; Krishnan et al., 2022; Das et al., 2023;
Vangala  et  al.,  2023).  Several  testaments  to  the  success of  deep neural  networks  in
identifying  clinically  potent  and  efficacious  small  molecules  have  also  emerged
(Zhavaronkov et al., 2019; Stokes et al., 2020). Although the extent of chemical space
currently explored by deep generative models remains unquantified (Bender and Cortes-
Ciriano, 2021; Vogt, 2022), it is safer to say that they can explore a sufficiently diverse and
relevant space of potentially novel small  molecules with the aid of techniques such as
transfer learning (TL) and reinforcement learning (RL). With the models currently available
in literature, it  is technically possible to design drug-like small  molecules for any given
target protein of interest using either the protein sequence (Grechishnikova, 2021; Born et
al.,  2022a; Born et al.,  2022b) or structure (Aumentado-Armstrong, 2018; Skalic et al.,
2019; Xu et al., 2021; Krishnan et al.; 2022; Isert et al., 2022) or a set of known inhibitors
(Segler et al., 2018; Bung et al., 2020; Krishnan et al.; 2021a) identified  apriori. However,
further experimental validation of the designed small molecules requires that the molecule
be easily synthesizable.

Several studies have tried to address the problem of synthetic accessibility of generated
small  molecules  essentially  through  one  of  the  two  methods:  1)  quantification  of
synthesizability with metrics and 2) in silico prediction of the probable synthesis route(s) for
the molecule. Traditionally, the synthesizability of a small molecule is quantified in terms of
the contribution of fragments toward the overall complexity of the molecular structure (Ertl
and Schuffenhauer, 2009). Few examples of such metrics include synthetic accessibility
score, SAS (Ertl  and Schuffenhauer, 2009), and SCScore (Coley et al., 2018). Recently,
metrics such as RAscore (Thakkar et al., 2021), SYBA (Voršilák et al., 2020), GASA (Yu et
al., 2022), and CMPNN (Li and Chen, 2022) utilize machine learning and deep learning
models,  with  a  varied  set  of  molecular  features  underlying  each  model,  to  predict
synthesizability.  Based  on  a  comparative  analysis  (Skoraczynski  et  al.,  2022)  on  the
performance of these metrics alongside existing retrosynthesis prediction models such as
AiZynthFinder  (Genhenden  et  al.,  2020),  it  is  evident  that  these  metrics  need  to  be
finetuned according to the target model for synthetic route prediction. This suggests that
the generalizability of these metrics is to be carefully analyzed to discriminate molecules
according  to  their  degree  of  synthesizability.  Several  examples  of  molecules  with
conflicting synthesizability predictions have also been reported earlier (Gao and Coley,
2020; Skoraczyński et al., 2023), suggesting a need to improve existing metrics and reach
consensus.

On  the  other  hand,  multiple  groups  have  approached  the  problem of  synthetic  route
prediction  for  small  molecules,  resulting  in  multiple  approaches  for  both  forward  and
retrosynthetic  route prediction.  The existing approaches can be categorized into  either
reaction template-based or template-free methods. The template-dependent approaches
(Gottipati et al., 2020; Li et al., 2022; Button et al., 2019; Horwood and Noutahi, 2020; Noh
et al.; 2022) require a set of expertly curated chemical reaction rules, which generalize
transformations  from  reactants  to  products.  The  template-independent  approaches
(Bradshaw et al., 2019; Schwaller et al., 2019) try to learn these rules from a large corpus
of reactions in organic chemistry, therefore limiting their generalization capability to novel
reactant datasets. Based on literature, it has been observed that the existing template-
dependent  methods  explicitly  limit  the  reactions  to  single-step  or  two-step  synthesis
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problems  (Li  et  al.,  2020)  to  avoid  traversing  the  highly  diverse  space  of  available
fragments.  Two  of  the  existing  methods  (Button  et  al.,  2019;  Noh  et  al.,  2022)  have
enforced generation of molecules which are similar to existing approved drugs or known
synthesizable small molecules, thereby significantly restricting the exploration of chemical
space by the model. While other approaches have tried to overcome this by allowing user-
defined starting reactants (Li et al., 2022), the molecules are again generated atom-by-
atom through policy learning, which has been shown before to reduce chemical space
exploration in previous studies (Podda et al., 2020; Chen et al., 2021). Only one of the
existing approaches (Li et al., 2022) has tried to provide a structure-level perspective of
the evolution of the molecule and its interactions with the binding site residues through 3D
conformation generation. Although the coordinate space of the generation process was
anchored to the binding site, the lack of minimization and analysis of short contacts post-
generation leads to incomplete validation of the generated conformations.

In  this  work,  we  introduce  a  synthesis-aware  generative  model  which  can  perform
template-based  forward  synthesis  route  prediction  and  molecule  generation
simultaneously using the Monte Carlo Tree Search (MCTS) method. To the best of our
knowledge, this is the first model to utilize MCTS for forward synthesis route prediction.
The rewards for each iteration of MCTS are computed using a drug-target affinity (DTA)
model  dependent  on  the  docking  pose of  the generated reaction intermediates at  the
binding  site  of  the  target  protein  of  interest.  The  model  utilizes  a  tethered  docking
approach wherein,  crystallographic fragments can be provided as the starting point  for
molecule generation, and the corresponding fragment coordinates in the crystal structure
can be used as the seed pose for docking. In this way, the model is designed to consider
any available information regarding the protein structure while designing molecules, and
predict their forward synthesis route using libraries of globally purchasable reactants. The
application of the method is showcased through generation of molecules specific to the
human cAMP-dependent protein kinase A (PKA).

Materials and Methods

Target-specific fragments were considered as initial starting points
Fragment-based  drug  discovery  can  identify  very  small  molecules  also  known  as
fragments that can bind to the target protein, using biophysical and biochemical methods.
Fragment  screening  hits  from  existing  crystal  structures  were  considered  as  initial
reactants to grow the molecule based on chemical reaction rules, till  the target-specific
molecules  with  high  bioactivity  are  obtained.  To  make  the  molecule  target  specific,
bioactivity of the intermediate and final molecules were calculated (as described in the
section titled “Incorporation of structural information from the target protein during
MCTS reward calculation”). In this article, fragment hits are obtained from Protein Data
Bank (PDB)-deposited structures for the target protein of interest. In real world scenario,
such  fragment  hits  can  also  be  obtained  from  fragment-based  screening  assay.  To
generalize the method for cases where no initial fragment hit is available, generic, random
fragments obtained from a purchasable fragment library, such as Enamine, were also used
as starting fragments to initialize the generation process.

Datasets utilized for molecule generation
Reaction  templates:  A dataset  of  121  reaction  templates  was  obtained  in  reaction
SMIRKS format from an earlier study (Horwood and Noutahi, 2020). The validity of these
reaction SMIRKS was first  checked using the rdchemReactions module in  RDKit.  The
RDKit  Rxn objects of  valid reaction templates (Table S1) were saved for mapping the
reactants to their probable template reactions.
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Subsequent  reactants:  The  dataset  of  subsequent  reactants  was  curated  from  the
Enamine  comprehensive  building  blocks  catalog  (Grygorenko  et  al.,  2020).  1,169,054
reactants  part  of  the  catalog  were  pre-processed  using  RDKit  to  map  each  reactant
SMILES to their corresponding Enamine product identifier. The Enamine database was
chosen to ensure that the reactants corresponding to the intermediates identified as part of
the forward synthesis route of any molecule are easily purchasable globally.
Unimolecular and bimolecular reactions: The USPTO MIT dataset (Jin et al., 2017) with
organic reactions extracted from patent literature was considered for reaction template
mapping. Since previous studies have already shown that majority of all existing reactions
can be categorized into either unimolecular or bimolecular reactions (Hartenfeller et al.,
2011; Konze et al., 2019; Gottipati et al., 2020; Horwood and Noutahi, 2020; Ucak et al.,
2022), only these reaction categories were isolated from the dataset using custom Python
scripts to parse the reaction SMILES format. The resultant set of 116,633 unimolecular
reactions  and  350,893  bimolecular  reactions  were  considered  for  reaction  template
mapping.  Unimolecular  reactions  are  those  where  a  single  reactant  undergoes
transformation  to  obtain  the  final  product.  Bimolecular  reactions  are  those  where  two
reactants are required for the reaction to happen.

Preparing the Enamine reactants dataset for model training
The reactants from Enamine globally purchasable dataset were mapped to the probable
reaction templates which can be applied on them, using the RDKit Rxn objects and the
RunReactants function. Such an approach can reduce the search space and can allow
focusing  on only  the  subsequent  reactants  that  can be mapped with  previous/starting
reactant and the corresponding reaction template. With the SMILES of Enamine building
blocks dataset as input, the template mapping step could map 99% (1,157,468 reactants)
of data to their corresponding probable reaction templates. However, upon analyzing the
number  of  reactants  mapped  per  reaction  template  it  was  observed  that  the  dataset
exhibited  severe  class  imbalance,  with  the  least  populated  class  (reaction  template)
containing only 27 reactants mapped to it  (Table S2).  To handle this,  Butina clustering
(Butina, 1999) was employed to cluster reactants mapped to each reaction template, using
Tanimoto coefficient (TC) as the distance metric. With a within-cluster similarity of 60% (TC
of at least 0.6) as the criteria, only the representative reactants and singleton reactants
from the clustering results were chosen for each template to create the dataset (Table S2).
Singleton reactants without any clustering were also included in the dataset to retain the
reactant  diversity  after  downsampling.  This  downsampled  dataset  included  281,765
(24.34%) of the template-mapped reactants obtained.

Preparing the USPTO reactants dataset for model training
The procedure explained in the previous subsection, makes sure to map reactants from
Enamine  library  with  their  respective  reaction  templates.  Similarly,  the  reactants  from
13.78% (64,439) of the USPTO reactions, both unimolecular and bimolecular, could be
mapped to the reaction templates using RDKit. The similarity of products obtained with the
templates  identified  were  compared to  the actual  products  from the  USPTO reactions
using ECFP4 fingerprints (Rogers and Hahn, 2010) and Tanimoto coefficient (TC) as the
similarity metric, to ensure that the products obtained are highly similar, if not identical, to
the actual products reported. From the mapping, more than 90% of the products obtained
with RDKit were identical to the actual products (supplementary information - Fig. S1).
Only the Enamine reactants and USPTO reactions with templates available were used for
building the generative models.
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Models involved in the MCTS formulation
(a) Reaction template selection policy: Given a starting reactant of interest or a reaction
intermediate  as  the  input,  the  reaction  template  selection  policy  is  used  to  decide  a
suitable reaction template for the starting reactant or reaction intermediate, to grow the
MCTS  search  tree.  Hence,  a  template  classification  model  is  pre-trained  with  the
downsampled Enamine reactants dataset as input. For any reactant, this pre-trained policy
can provide a probability distribution over the possible reaction templates that can be used
at  that  step  of  the  search.  With  the  atomistic  molecular  graph  representation  of  the
reactant molecule, a graph convolution network (GCN) (Kipf and Welling, 2017) was used
to predict the reaction template. The architecture included a single GCN layer followed by
a fully connected layer and a final dense layer with softmax activation. The output hidden
state from the GCN layer was subject to global mean pooling to get graph-level readout
from the model. The downsampled Enamine reactants dataset of 281,765 molecules was
split  in  a  9:1:1  ratio  using  the stratified  split  method in  scikit-learn.  Categorical  cross-
entropy loss was used to train the model and the parameters were optimized using the
Adam optimizer. The initial learning rate was set to 0.005 and the model was trained for
100 epochs with a dropout rate of 0.5 to prevent overfitting. The model was implemented
with the Deep Graph Library (DGL) framework (Zheng et al., 2021) using PyTorch as the
backend. The architecture of the model  described above is depicted in supplementary
information (Fig. S2).

(b)  Second reactant  selection policy:  After  the  prediction  of  most  probable  reaction
template  with  the  reaction  template  selection  policy,  it  is  further  categorized  into
unimolecular or bimolecular reactions. In case of bimolecular reaction templates, a second
reactant is necessary to obtain the final product by the application of the chosen template.
Hence,  a  second  reactant  selection  policy  was  pre-trained  with  the  template-mapped
bimolecular reactions from the USPTO dataset (Jin et al., 2017). For this model, the first
reactant  is  represented  as  a  molecular  graph  and  the  predicted  bimolecular  reaction
template is represented using a binary one-hot encoded vector. The graph-level readout
for  the  molecular  graph  is  obtained  from a  graph  convolutional  (GCN)  layer  and  the
reaction template vector is concatenated to  this graph embedding vector (Fig.  1).  The
concatenated vector is passed through two fully connected layers with ReLU activation
and a final dense layer with tanH activation, to get a vector of 35 properties normalized
between -1 and 1 (Gottipati et al., 2020). This property vector is considered as the output
representation of the probable second reactant for the bimolecular reaction. The second
reactant selection policy is trained with mean squared error (MSE) loss function and the
parameters are optimized with the Adam optimizer. The initial  learning rate was set to
0.005 and the model was trained for 100 epochs with a dropout rate of 0.5 to prevent
overfitting. The model was implemented with the Deep Graph Library (DGL) framework
(Zheng  et  al.,  2021)  using  PyTorch  as  the  backend.  The  architecture  of  the  second
reactant selection policy model is provided in supplementary information (Fig. S3).

(c) kNN search: The property vector predicted by the second reactant selection policy is
subject to k-nearest neighbors (kNN) search against the pre-computed and normalized
property vectors of all Enamine reactants from the downsampled dataset, to obtain a set of
k possible second reactants for the bimolecular reaction (Gottipati et al., 2020). Euclidean
distance  between  the  predicted  property  vector  and  the  Enamine  property  vectors  is
considered as the distance metric for the kNN step. The k reactants obtained are used to
expand  the  search  tree  further.  Since  distance  calculations  against  the  entire
downsampled  dataset  of  Enamine  reactants  poses  a  linear  time  complexity  (O(n)),
searching against only the Enamine reactants mapped to the predicted reaction template
was used as a heuristic during the kNN search.
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Incorporation of structural information from the target protein during MCTS reward
calculation
The drug-target affinity (DTA) prediction model based on our previous studies (Krishnan et
al., 2022; Krishnan et al., 2023), is used to compute rewards during MCTS. The model
takes as input an extended connectivity interaction fingerprint (ECIF) of the protein-ligand
complex, and predicts the corresponding binding affinity in log-scale (Sánchez-Cruz et al.,
2021). To obtain the ECIF fingerprints during MCTS, the predicted reaction intermediates
and products were docked on-the-fly to the target protein using the rDock program (Ruiz-
Carmona et  al.,  2014).  This  program was chosen since it  supports  significantly  faster
docking  in  both  tethered  and  untethered  modes,  enabling  consideration  of  available
crystallographic fragment positions as seed coordinates for docking pose identification. In
this way, the MCTS process is made more specific to a target protein of interest by pre-
training the DTA model to be specific to the protein of interest. The DTA model so obtained
was used to compute the rewards of reaction intermediates and products obtained during
the expansion and simulation steps of MCTS, which are detailed below.

Monte Carlo Tree Search (MCTS) formulation for forward synthesis route prediction
MCTS is a reinforcement learning-based process to utilize information from simulations of
the  future  steps  and  select  current  actions  by  learning  from  the  simulated  episodes
(Browne et  al.,  2012;  Segler  et  al.,  2017a).  MCTS involves  four  major  steps namely,
selection, expansion, rollout or simulation, and update (Segler et al., 2017a). To generate
molecules along with their forward synthesis route using the template-mapped reactants
as the starting point, two policies (reaction template selection policy and second reactant
selection policy) were pre-trained with the datasets prepared. In the MCTS search tree,
every node is a reactant or intermediate or product molecule, and every edge is a reaction
template applied to arrive at the child nodes or leaf nodes.

Selection (Tree policy):  In every step of MCTS, the Upper Confidence Bounds (UCB)
condition (Auer and Ortner, 2010), also known as the tree policy, is used to select the
action (reaction template) at the current state (node or reactant) based on the number of
times the node was visited during simulation. A node or reactant that was visited multiple
times, will have a larger visit count and hence, more probability to be generated in the path
of maximum reward during MCTS. The action or reaction template which led to the most
visited node will be chosen for the current state based on the value computed as follows
(1):

a t=arg max
aε A ( st)(

Q ( st , a )

N ( st , a )
+c

√ logN (s( t−1 ) , a )

N (st , a ) ) (1)

Here, Q(st, a) is the reward obtained for the node from the reinforcement learning critic,
N(st, a) is the visit count for the current state or node, N(s t-1, a) is the visit count for the
parent of the current node, and c is a parameter controlling the exploration-exploitation
trade-off  during the MCTS process. In this study, a c value of 2 is used for all  results
reported. The rewards for the child nodes obtained from each step are computed in terms
of  their  predicted  log-scale  bioactivity,  using  a  pre-trained  drug-target  affinity  (DTA)
prediction model from our previous studies (Sánchez-Cruz et al., 2021; Krishnan et al.,
2022).

Expansion:  During  expansion  from  a  selected  node  (starting  reactant  or  reaction
intermediate), the probable child nodes are predicted in a two step process. First the top
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10 probable reaction templates which can be applied on the selected node are predicted
using the pre-trained reaction template selection policy. From the predicted templates, the
unimolecular and bimolecular templates are separated. For the bimolecular templates, the
most probable second reactants to complete the reaction are predicted using the pre-
trained second reactant selection policy and kNN search over the Enamine library. Finally,
the probable child  nodes for  every predicted reaction template are obtained using the
RDKit RunReactants function.

Rollout or Simulation: Each predicted child node from the expansion step is subject to 10
rounds of simulation, to gauge their reward potential (estimated future bioactivity) before
expanding  the  MCTS  search  tree  further.  The  average  reward  of  the  simulations  is
thresholded to a cut-off bioactivity value to select the child candidate for further expansion.
It is to be noted that for every reward calculation, the reaction intermediate is docked on-
the-fly to the target protein to obtain the ECIF representation, which is used as input to the
DTA model. Hence, information on the structure of the target protein and the exact binding
site  location  are  used  during  every  step  of  the  MCTS  search,  to  guide  the  forward
synthesis process.

Update: During update, the rewards (Q(st, a)) and visit counts (N(st, a)) of the edges and
nodes of the search tree, respectively, are updated based on the simulation results from
the current state (st) to the root node. The average reward from the simulation is assigned
to  the  node  from  where  the  simulation  was  performed.  The  state-action  pair  which
produced the maximum average reward post-simulation is selected for the next expansion-
simulation-update  iteration  of  MCTS.  After  several  iterations  of  MCTS  expansion,
simulation and update, the path containing reactants and products with the most number
of visits and highest average reward is reported, with the final product being the generated
molecule of interest. The complete formulation of the forward synthesis prediction problem
using MCTS is provided as a schematic below (Fig. 1).

Figure 1: A detailed schematic of the MCTS formulation of forward synthesis prediction
cum small molecule generation problem. The three pre-trained models involved are the
expansion policy, second reactant selection policy and DTA model. Information regarding
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the structure of the target protein is utilized for pose generation through standard docking
programs, for MCTS reward calculation (predicted bioactivity from the DTA model).

Application of MCTS for generation of molecules targeting human cAMP-dependent
Protein Kinase A (PKA)
To generate molecules specific to the human cAMP-dependent Protein Kinase A (PKA)
along with their forward synthesis routes using MCTS, the set of starting reactants from
Enamine downsampled dataset, with identity to the substructures present in PKA inhibitors
were identified using RDKit substructure matching functions. Further, with the dataset of
537 PKA inhibitors and their bioactivity collected from ChEMBL database, the DTA model
was pre-trained to be specific to PKA, with the PKA-inhibitor complex structures predicted
using the GNINA docking program. To perform the untethered docking and for DTA model
development, the structure of PKA with PDB ID: 3OWP was considered, and the binding
site  coordinates were defined based on the ligand bound to  the protein  in  the crystal
structure.

Figure 2: The crystallographic fragments and their corresponding scaffolds chosen for the
tethered  docking-based  MCTS  experiments  from (a)  3NX8;  (b)  3OOG;  (c)  5BX6;  (d)
5BX7; (e) 5N3Q.

For the tethered docking experiments, five experimental structures of the human cAMP-
dependent protein kinase A (PKA) with a co-crystallized fragment were finalized (PDB IDs:
3NX8, 3OOG, 5BX6, 5BX7, 5N3Q). These five structures were chosen due to the identical
binding sites of the fragments involved. For each structure, rDock parameter files were
prepared for tethered docking in an automated fashion and integrated with the DTA model
for bioactivity prediction. The fragments present in each crystal structure chosen, along
with the scaffold from the fragment used for tethered docking are shown above (Fig. 2).
The human cAMP-dependent protein kinase A (PKA)-specific DTA model was found to
have an r value of 0.72 and an RMSE of 0.66 on the test set. The regression plot obtained
with the PKA-specific DTA model is provided below (Fig. 3) along with the line of best fit
obtained.
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Figure 3: Regression plot showing the performance of the PKA-specific DTA model for the
test dataset.

Results and Discussion
Case Study against human cAMP-dependent protein kinase A:  The human cAMP-
dependent  protein  kinase  A  (PKA)  is  a  heterotetramer  composed  of  two  regulatory
subunits (R) and two catalytic subunits (C). Binding of cAMP to the regulatory subunit
leads  to  dissociation  of  the  catalytic  subunits  from  the  regulatory  subunits.  The  free
catalytic subunits of PKA (PRKACA) are further responsible for phosphorylation of a wide
variety  of  cellular  substrates  involved  in  metabolism,  gene  expression  and  cellular
proliferation (Cheung et al., 2015). Mutations in the catalytic subunit have been identified
to lead to Cushing’s syndrome, a kidney disorder leading to excessive cortisol production,
and  tumors  such  as  fibrolamellar  hepatocellular  carcinoma  (FL-HCC)  (Cheung  et  al.,
2015).  Increase in cAMP levels and PKA substrate levels has also been shown to be
linked to incidence of hepatitis C virus infections in humans (Farquhar et al., 2008). Due to
the unusual mode of regulation of PRKACA in comparison with other kinases, it has been
considered as a vital target for design of kinase inhibitors in cancers (Herberg and Taylor;
1993; Wen and Taylor, 1994; Viht et al., 2007). 

Table 1:  Performance of the three models developed in this study – reaction template
selection policy, second reactant selection policy and the DTA model is tabulated below.
Further details on model performance are provided in supplementary information (Section
S1 and Fig. S4).

Model Performance metrics

Reaction template selection
policy

ROC = 0.88

Second reactant selection
policy

Rp = 0.90
r2 = 0.81

MAE = 0.115

DTA model r2 = 0.72
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RMSE = 0.66

In the following sections, the results obtained from the application of the proposed forward
synthesis  prediction  method using  Monte  Carlo  Tree Search to  design  potential  small
molecules  against  the  catalytic  subunit  of  human  PKA are  discussed  in  detail.  The
performance of the pre-trained models to perform MCTS are summarized above (Table 1).
Also,  a  detailed  comparison  of  the  proposed  method  with  existing  forward  synthesis
prediction models in literature is provided in the supplementary information (Table S3).

Figure  4:  Examples  of  four  tethered  docking-based  experiments  with  different
crystallographic starting reactants obtained from structures with PDB IDs: (a) 3NX8, (b)
5BX7,  and (c)  5BX6.  Each  reaction  step  contains  the  name of  the  reaction  template
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chosen  and  the  enamine  identifiers  of  the  second  reactants  and  products,  wherever
possible.

Structural  perspective  of  the  forward  synthesis  route  generated  based  on
crystallographic fragments
Crystallographic fragments can be considered as valuable starting points for exploration of
the interacting groups within the binding site of a drug target. To retain the information
available from such screening studies, a tethered docking-based approach was used. This
approach would anchor the scaffolds of reaction intermediates and products to the scaffold
position of the fragment hits selected. Based on comparative analysis, the rDock program
(Ruiz-Carmona et al.,  2014) was found to provide better speed with both tethered and
untethered  docking  calculations  than  GNINA  (McNutt  et  al.,  2021)  (Supplementary
information – Section S2). A few examples of the molecules generated from the tethered
docking based MCTS runs, along with their forward synthesis routes are shown below
(Fig. 4).

Figure  5:  Examples  of  scaffolds  of  generated  reaction  intermediates  and  products
anchored to the scaffold from the crystallographic fragment hit (green sticks). The scaffold
alignments were obtained based on the tethered docking results collected using the rDock
program during the MCTS experiments.

On  comparison  of  the  docking  poses  obtained  for  the  starting  reactant,  reaction
intermediates and the final product with the initial seed coordinates, it was observed that
the centre of mass of the scaffold of interest in all pairs of molecules was aligned within 0.5
Å to that of the crystallographic fragment. A few examples of the aligned molecules are
shown  below  (Fig.  5).  The  results  indicate  that  the  tethered  docking  approach  could
successfully constrain the scaffold of interest to the desired region of the kinase binding
site. Analysis of the intermolecular interactions observed over the course of the forward
synthesis route indicated a steady increase in bioactivity with the growth of the molecule in
the binding site. Due to the abundance of non-polar amino acids in the human PKA binding
site, most of the interactions observed between the generated molecules and the binding
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site  residues were hydrophobic,  followed by hydrogen bonds and stacking interactions
(Fig. 6). This was found to be in accordance with the predominant interactions of human
PKA inhibitors reported in literature (Toyota et al., 2022) (Fig. S5). The following binding
site residues were found to consistently interact with both existing inhibitors and generated
small  molecules  from this  study:  Arg18B,  Arg19B,  Asn20B,  Ala21B,  His23B,  Leu49A,
Gly50A,  Thr51A, Gly52A, Ser53A, Phe54A, Gly55A, Arg56A, Val57A, Ala70A,  Lys72A,
Ile73A,  Leu74A,  Gln84A,  Thr88A,  Glu91A,  Val104A,  Met120A,  Glu121A,  Tyr122A,
Val123A, Glu127A, Asp166A, Lys168A, Glu170A, Asn171A, Leu173A, Thr183A, Asp184A,
Gly186A, Phe187A, Phe327A, Tyr330A.

Figure 6: Examples of interactions between the generated small molecules (cyan sticks)
and the PKA binding site residues (green lines). Hydrogen bonds and ionic interactions are
highlighted using yellow dotted lines, while residues involved in hydrophobic interactions
are  also  shown  for  each  molecule.  The  predicted  bioactivity  of  the  generated  small
molecule is also provided in red figures within parantheses. The figures were generated
using PyMOL.
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Molecular  diversity observed among multiple runs of  MCTS using same starting
reactant
By performing multiple runs of MCTS using same starting reactant, different final products
were obtained for each run. The average similarity of different small molecules obtained
with the same starting reactant was found to be 0.65, in terms of Tanimoto coefficient. This
indicates that even across different runs starting from the same reactant, the generated
molecules  show  significant  molecular  diversity.  Upon  comparison  of  the  generated
molecules  with  existing  PKA inhibitors  curated  from ChEMBL,  several  molecules  with
better bioactivity and interaction profiles were identified. The results of top 5 MCTS runs
for three of the chosen crystallographic starting reactants are tabulated below (Table 2).
Interestingly, most of the molecules with better bioactivity also had very low similarity (less
than 0.5) with existing PKA inhibitors, further highlighting the diversity of small molecules
generated by the MCTS workflow proposed.

Table 2: Results from the MCTS calculations for starting reactant from PDB IDs: 3NX8,
5BX6 and 5BX7. Tethered docking-based MCTS calculations were performed 5 times and
the final product molecules obtained are shown along with their predicted bioactivity and
maximum similarity with existing PKA actives. The ChEMBL ID of the similar PKA inhibitor
and its experimental bioactivity value are also provided.

Starting reactant
No. of reactions
in the predicted

route
Final product molecule

Predicted
bioactivity

against
PKA

Similarity
(TC) to

existing
PKA

actives

Similar
ChEMBL
molecule

(bioactivity)

3 6.338 0.582
CHEMBL35

44960
(7.13)

2 6.609 0.461
CHEMBL19
72568 (5.50)

1 6.137 0.506 CHEMBL20
04872 (6.36)
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3 6.350 0.475
CHEMBL19
77135 (6.99)

2 6.061 0.525
CHEMBL45
76489 (7.37)

2 6.161 0.488
CHEMBL19
77135 (6.99)

4 6.628 0.748
CHEMBL45
76489 (7.37)

2 6.109 0.552
CHEMBL20
00481 (5.30)

4 6.075 0.521
CHEMBL20
00481 (5.30)

3 5.587 0.601
CHEMBL45
76489 (7.37)
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2 5.295 0.427
CHEMBL19
65170 (6.09)

3 6.006 0.439
CHEMBL19
77135 (6.99)

Performance of generative model with generic and target-specific starting reactants
In  addition  to  utilizing  the  fragment  screening  hits  from existing  crystal  structures  for
molecule generation,  random and target-specific  starting reactants from a purchasable
fragment library, such as Enamine, were also used to initialize the generation process. To
obtain the target-specific starting reactants, exact substructure matching was performed to
identify  fragments  from  the  Enamine  library  which  are  enriched  in  the  existing  PKA
inhibitors. A generic (random) set of starting reactants was also identified and confirmed to
be non-overlapping with that of the target-specific reactant dataset. The MCTS workflow
was  used  to  design  inhibitors  with  both  these  reactant  datasets  to  investigate  the
generalization capability of the approach.

Figure 7:  Comparison of  generated small  molecules from the proposed method using
random starting reactants and target-specific starting reactants.

The complete forward synthesis route predicted by MCTS for each molecule shown in first
5  rows of  Table  2  is  provided in  the  supplementary  information  (Figs.  S7-S11).  Upon
comparison of the small molecules generated using random starting reactants and target-
specific reactants, only two molecules had above 0.75 Tanimoto similarity between the two
datasets (Fig. 7). However, in terms of the distribution of predicted bioactivity values, both
datasets showed significant overlap, indicating that the MCTS process samples across a
highly  diverse  region  of  the  chemical  space,  without  compromising  on  the  bioactivity
against  the  target  protein  of  interest  (Fig.  S6).  By  embedding  the  generated  small

https://doi.org/10.26434/chemrxiv-2023-54bss ORCID: https://orcid.org/0000-0002-1961-2483 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-54bss
https://orcid.org/0000-0002-1961-2483
https://creativecommons.org/licenses/by-nc/4.0/


molecules  and  the  existing  PKA  inhibitors  using  t-distributed  stochastic  neighbor
embedding (tSNE), the different chemical spaces occupied by generated small molecules
and existing PKA inhibitors could also be clearly visualized (Fig. 8). To further understand
the diversity and synthesizability of generated molecules, all final products obtained were
compared with ~13.8 million readily purchasable small molecules available in the ZINC20
database.  Based  on  the  comparison,  only  60  generated  molecules  had  significant
similarity  (above  0.75  TC)  to  the  ZINC20  compounds  (Fig.  9).  These  results  also
substantiate the diversity of the generated molecules and their synthesis routes, using only
reactants from a purchasable fragment library such as Enamine.

Figure 8:  tSNE plot  showing the different  chemical  spaces occupied by  existing  PKA
inhibitors and generated small molecules. 

Figure 9: Similarity of the generated small molecules to readily purchasable compounds
from the ZINC20 database. The similarity of the small molecules is quantified as Tanimoto
coefficients (TC). The ZINC IDs of the highly similar compounds are also provided.
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Conclusions
In  this  study,  a  novel  forward  synthesis  prediction  method  for  synthesis-aware  small
molecule generation was proposed using Monte Carlo Tree Search (MCTS). The proposed
approach  provides  a  structure-level  perspective  of  the  evolution  of  potential  small
molecules at the binding site of the target protein. The method can be utilized to design
molecules with large, diverse and readily purchasable fragment libraries such as Enamine.
The method can also consider crystallographic fragment screening hits as starting points
to grow the molecule within the binding site. The proposed approach was validated by
designing potential inhibitors against the human cAMP-dependent protein kinase (PKA),
which was considered as the target protein of interest. The results indicate that the MCTS-
based  approach  could  design  highly  diverse  small  molecules  with  better  bioactivity
compared to  existing inhibitors,  along with  their  predicted forward synthesis  route and
interaction profile. The generated small molecules sample a completely novel region of the
chemical  space  upon  comparison  with  synthesizable  large  compound  databases  and
embedding approaches, highlighting the applicability of this method to discover potential
novel small molecules with better bioactivity. The ability of the proposed method to design
target-specific and synthesizable novel drug molecules can help to overcome of the major
challenge posed to the AI-models, which is synthesizability of novel molecules proposed
by AI-models.
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