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In this work, the Crystal code, developed previously by the authors to find “holes” as

well as legitimate transition states in existing potential energy surface (PES) functions

[JPC Lett. 11, 6468 (2020)], is retooled to perform on-the-fly “direct dynamics”-

type PES explorations, as well as automatic construction of new PES functions.

In all of these contexts, the chief advantage of Crystal over other methods is its

ability to globally map the PES, thereby determining the most relevant regions of

configuration space quickly and reliably—even when the dimensionality is rather

large. Here, Crystal is used to generate a uniformly-spaced grid of density functional

theory (DFT) or ab initio points, truncated over the relevant regions, which can then

be used to either: (a) hone in precisely on PES features such as minima and transition

states, or; (b) create a new PES function automatically, via interpolation. Proof of

concept is demonstrated via application to three molecular systems: water (H2O),

methane (CH4), and methylene imine (CH2NH).
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I. INTRODUCTION

The chemical dynamics “story” is told through an unfolding of potential energy surface

(PES) features, taking us from reactant valleys and/or minima, through transition states

(TSs) and reaction intermediates, and ultimately to products. Just as with any story,

knowing the beginning and ending is often less important than learning about the journey

in between. For small molecular systems with say, less than five atoms, there are not so

many dynamical possibilities, and it may be feasible to explore them all. As molecules grow

in size, however—and also as the energy increases—the size of the dynamical space can grow

astronomically.

In order to find our way around in such vast spaces, we typically rely on a very powerful

tool called “chemical intuition.” To be sure, this has led to many successful predictions of

chemical structures and reaction paths (RPs). However, there have also been many failures.

Simply put, “chemical intuition” is far from fool-proof; we thus need tools that can reliably

find all relevant RPs—whether they match our preconceived expectations or not. Indeed, this

challenge has been deemed “the most important task in the study...of chemical reactions”.1

Generally speaking, the dynamically most important RPs are those with the lowest-lying

energy barriers. Since straightforward tools (e.g., steepest descent2) exist for determining

RPs from their corresponding TS barriers, the bottleneck challenge is thus to compute all

of the TSs (i.e., first-order saddle points) lying below a given energy Emax, in a guaranteed

and automated fashion that does not rely a priori on “chemical intuition.” This is the heart

of what we propose to call “chemical dynomics”—in analogy with genomics, proteomics, etc.

As a crucial first step in the chemical dynomics direction, the authors recently introduced

a new software tool—i.e., our Crystal code3–6—to completely characterize existing PES

functions as previously published in the literature. In this context, Crystal has already

been applied to existing PESs with as many as 48 degrees of freedom (dofs).4 In addition to

finding all legitimate TSs up to the desired Emax, Crystal also finds all PES “holes”—i.e.,

unphysical saddle points typically leading to valleys of infinitely negative energy, which can

wreak havoc on dynamical calculations. Holes are notoriously difficult to find, because they

can occur literally anywhere, and will therefore not succumb at all to chemical intuition.

Despite best intentions, holes invariably arise in PES fitting when the dimensionality is

large enough, for the simple reason that PES developers have traditionally lacked the tools

needed to globally map their PES functions. Indeed, until recently, the conventional wisdom

had many believing that “there are no general methods...guaranteed to work” beyond about
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three atoms.1 Crystal has changed all of that, however, making global PES mapping feasible

for much larger systems and higher energies than previously thought possible.4,5 This has

already led to the aforementioned discovery of new legitimate TSs—and regrettably, also, a

good number of heretofore unexpected holes—in previously published PES functions.

While using Crystal to “fix” existing PES functions is no doubt a useful enterprise, it

will undoubtedly prove better, going forward, to construct new global PES functions that

are devoid of such problems in the first place. Specifically what we mean by this are PES

functions that, up to some predetermined Emax:

(a) include all energetically accessible minima, TSs, and RPs;

(b) contain no accessible PES holes.

To this end, we develop in this paper an “on-the-fly” version of Crystal, that operates in

the absence of any preexisting PES function.

As with previous Crystal implementations, the new on-the-fly version constructs a uni-

formly spaced grid of points over the desired configuration space (either full-dimensional or

restricted) that is truncated to include only those points with potential energy value less

than Emax. The main difference is that, rather than call a preexisting PES function routine

to evaluate the energy at a given point, either a density functional theory (DFT) or ab initio

calculation is instead performed. In this fashion, a grid of points over the relevant region of

configuration space is efficiently constructed on the fly.

The above constitutes the first phase of on-the-fly Crystal. In the second phase, there

are at least two alternative directions that may be pursued, depending on the desired goal.

The first option is on-the-fly characterization of the PES—meaning that all minima, TSs,

and RPs are accurately determined up to Emax, using procedures analogous to those used

previously.4,5 Of course, there are no PES holes, since there is no fitting; only legitimate PES

structures will be discovered—subject, of course, to the whims of the particular electronic

structure method being used.

The second option is on-the-fly construction of a new PES function, based on precom-

puted grid point values. Of course, to this end, any of a number of well established strategies

may be employed.7–10 Historically, these may be divided as to whether they are primarily

either fitting or interpolation strategies. Whereas the former is traditionally preferred, here

we will advocate for one specific approach that is interpolation-based, due to the following

two considerations. First, consider one of the main reasons why fitting is often used over
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interpolation—i.e., because it can (for some functional forms) lead to “global” PES func-

tions that are well-behaved over the entire configuration space, even well away from the grid

points. In contrast, interpolation is notorious for producing poor quality PES functions in

the “extrapolation” region. However, our philosophy here is to include as global a region

of configuration space as possible, but only up to Emax. The grid that Crystal produces

automatically places points throughout exactly this region; hence, there is no need nor desire

to extrapolate beyond it. The second consideration is the highly pragmatic one of simplic-

ity; interpolation is straightforward to perform when structured, uniformly-spaced grids are

employed (as is the case here), and the results are reasonably accurate. In contrast, global

PES fitting typically requires a lot more effort and finesse to implement effectively.

Interpolation with Crystal thus provides a ready avenue for so-called “automatic” PES

construction—which, moreover, is guaranteed to result in PES functions that satisfy condi-

tions (a) and (b) above. In contrast, most fitting strategies will not necessarily satisfy these

conditions, and in addition, are far more tricky to implement in practice. That said, there

are a number of other “automatic” PES construction strategies that have been developed in

recent years,11–14 some using neural networks or other AI-inspired ideas,15–18 and all more

sophisticated than the simple strategy we describe here. Some of these approaches tend

to center around optimal placement of the n + 1’th point, based on the current grid of n

points. As such, they necessarily lead to a non-uniform grid, not well suited for interpolation

strategies.

In this paper, we shall focus on on-the-fly PES construction using Crystal. A represen-

tative test suite of applications is considered, spanning a range of system dimensionalities,

electronic structure methodologies (Gaussian 16 is used here19), and other factors. We

begin with the well-studied triatomic molecule, water (H2O). The full vibrational space of

H2O has only three dofs; however, to make it interesting, we have chosen our energy cut-

off value of Emax = 32, 000 cm−1 to lie well above the linear inversion barrier TS (near

11,000 cm−1) that leads to the second equivalent bent minimum structure. The resultant

PESs constructed by on-the-fly Crystal are therefore global, symmetric double-well PESs.

Accordingly, the 3D PES grids are chosen to respect this symmetry, as well as the structure

of the two equivalent global minima. For this system, too, we have constructed separate

PESs using both ab initio and DFT electronic structure methods.

For our second application, we consider the restricted configuration space describing a

single CH bond in methane. Keeping the methyl group frozen, the remaining H atom is
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allowed to move in all three Cartesian directions, (x, y, z). This PES, constructed using

DFT calculations on the grid points, is thus 3D. Again, the energy cutoff of Emax = 28, 000

cm−1 is quite high—although, as in the case of H2O, well below dissociation. The restricted

CH4 PES thus serves as a useful benchmark, especially in comparison with the above H2O

calculations. Note that both PESs have the same number of dofs, and the two molecules

are also isoelectronic.

The third application is the most difficult—i.e., methylene imine (CH2NH), computed

in full vibrational dimensionality (9 dofs). Completing all requisite grid point calculations

is quite challenging in this case, despite the fact that only DFT-level electronic structure

calculations are performed. This numerical challenge reflects both the increased number of

grid points due to the larger dimensionality, as well as the greater computational (CPU)

cost needed to perform each such electronic structure calculation. One consequence of this

increased numerical difficulty is the lower energy cutoff used for this system, i.e. Emax = 5300

cm−1. Nevertheless, with almost no “human oversight,” a viable 9D CH2NH PES function

was constructed, which has no holes within the specified energy range, and is otherwise well

behaved. Proof of concept of the method is thereby established.

Note that we were able to perform the many on-the-fly PES grid calculations needed for

CH2NH in a timely fashion—but only by virtue of a new parallel implementation of the

Crystal code. This parallel implementation is designed to be highly efficient whenever the

CPU bottleneck of the calculation is the evaluation of the PES energy at the grid points.

This condition is certainly satisfied for the present on-the-fly applications, but may also be

true more generally. For instance, some PES function evaluations (e.g. using the method of

Dawes11) are notoriously slow to evaluate. In any event, given its broader scope, the parallel

version of Crystal shall serve as the focus of a concurrent publications6 although a brief

description is also provided here.

II. THEORY

A. The Crystal code

Crystal is an open source code developed and maintained by the authors. The basic

structure of the Crystal algorithm is described in Fig 1. As shown, Crystal performs an

outward expansion into a volume space of interest; for our current purpose, this volume

is the region enclosed by a PES contour at the desired energy cutoff, Emax. As seen in
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Fig 1, each shell (collection of light-yellow squares, whose centers are the lattice points) is

generated by the lattice points of the previous (i.e. next innermost) shell. Duplicates are

removed. In addition, the lattice points with higher energy than a predetermined cutoff are

also removed. The shell-generation process is repeated until no new points are generated. Of

course, there are many other technical details that must be considered to make the scheme

feasible in practice;3–5 nevertheless, the basic operation of Crystal, as conveyed in Fig 1, is

very simple.

Figure 1: Operation of the Crystal algorithm. Light yellow squares denote lattice points
for the current shell, whereas dark yellow squares denote current set of lattice points In

each Crystal step, lattice points for the current shell are determined as the nearest
neighbors to all dark yellow lattice points. PES evaluations for all such points are then

conducted, either via function evaluation, or (for on-the-fly Crystal) via a call to external
ab initio/DFT software. Those shell lattice points whose energy lies below the cutoff Emax

(denoted by the black contour curve) are retained and added to the current set; the rest
are discarded. In the example indicated, the red lattice point signifies the avenue to a
second well region (not indicated)—and therefore heralds the presence of a TS nearby.

Despite its remarkable simplicity, the basic Crystal algorithm has been found to be

very suitable for a wide range of purposes, especially involving molecular systems with up

to tens of dofs. It has formerly been utilized not only to find TSs and RPs, but also to
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calculate configuration (or phase) space volumes (e.g. for computing partition functions),

as well as to select basis set functions for performing quantum dynamics calculations for

vibrational spectroscopy3–5. As discussed in Sec. I, in the current paper, we focus on the new

PES-construction aspect of our Crystal code, which we have developed to automate the

determination of uniformly-spaced lattice points—and commensurate electronic structure

calculations—that are required for PES construction. In particular, not only is the new

PES constructed automatically (via interpolation over the lattice points), but the new PES

function is guaranteed not to have any holes up to the predetermined energy cutoff Emax.

One notable strength of Crystal is that it can be readily parallelized. This is accom-

plished by distributing the PES evaluations for the current shell of lattice points across as

many computational (CPU) nodes as desired (presumably up to the total number of lattice

points in the shell). There is some communication required to avoid duplicate calculations,

but this is minimal in comparison with the CPU cost of the electronic structure calcula-

tions themselves. As mentioned earlier, a much deeper analysis of the parallel Crystal code

may be found in the concurrent paper,6 and in future publications. However, we note that

parallel Crystal is likely to allow for reliable exploration of much larger volumes—and in

higher dimensional spaces—than what has been considered in the literature up to this point,

including our own previous Crystal papers.

In the present study, the parallel version of Crystal was applied only to the largest ap-

plication, i.e. methylene imine, for which it was found to be highly efficient. In particular,

nearly perfect parallel scalability was achieved, in that the computational speedup observed

with respect to the number of CPU nodes used was nearly linear. As the methylene imine

calculations are not extremely numerous, we distributed the lattice points of each current

shell across up to eight nodes in total. Each node was then responsible for computing a single

PES evaluation at a time. Note that the computational clusters that we used (see Acknowl-

edgments) have many available cores per node. Accordingly, intranode parallelization across

multiple cores was employed at the level of the electronic structure codes (i.e., Gaussian 16

in our case), but not distributed memory parallelization across multiple nodes.

B. Crystal with on-the-fly PES evaluations

Next, we address the on-the-fly version of Crystal. Although all calculations presented

in this study were performed using on-the-fly Crystal, the calculations for the water and

methane applications were performed without parallelization, and so we address this simpler
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strategy first. For these applications, the PES evaluations inside every shell were performed

serially—i.e., one lattice point after another—which, at least up until now, has been the

standard Crystal implementation. The new wrinkle, of course, is the on-the-fly aspect of

how these serial lattice-point PES evaluations are evaluated, which is described below.

Figure 2: Schematic of on-the-fly implementation of the Crystal code, as explained in the
text. The Crystal algorithm is implemented as a continuously running FORTRAN 90

executable, which communicates with a sequence of Gaussian 16 jobs via input/output
.txt files, all coordinated through a shell script.

The basic operation involves running one Crystal executable job throughout the calcula-

tion, together with a sequence of individual Gaussian 16 jobs, each designed to perform a

single PES evaluation for a given lattice point. For the initial lattice-point PES evaluation,

a Gaussian 16 input file, corresponding to the initial reference molecular geometry, is first

created by the Crystal code. A Gaussian 16 job is then executed to read in this input

file, compute a single PES evaluation at the specified geometry, and produce an output file

which contains the molecular energy at this geometry, which is then fed back into Crystal.

Thereafter, this feedback loop is repeated, as illustrated in Fig. 2: Crystal generates new

shells based on the prior Gaussian 16 energy outputs, and creates new Gaussian input files

for subsequent evaluation. Simultaneously, Gaussian 16 produces output files, based upon

which, Crystal generates the next set of input files, etc. Communication is straightforward

enough as to preclude the need for sophisticated tools such as MPI; instead, simple shell

scripts and built-in time delays suffice for this purpose.

For methylene imine, a parallel version of on-the-fly Crystal was used, as follows. First,

the Crystal codes themselves were partitioned into two separate executables. The first is

the “primary” Crystal code, which performs all of Crystal’s functions that do not involve
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PES evaluations—such as lattice-data collection, distribution, and storage. Throughout

the parallel on-the-fly calculation, there is just a single primary code that is executed. In

addition, however, there are multiple “secondary” Crystal executables, one running on each

node used in the parallel calculation (i.e., eight in all, in the case of methylene imine). Each

of these secondary jobs runs in a feedback loop with its own set of Gaussian 16 jobs, to

perform a sequence of PES evaluations on a given node, one at a time. After each such PES

evaluation is completed, the corresponding secondary Crystal job communicates with the

primary job, to receive a new lattice point for PES evaluation.

Typically, a Crystal shell may be expected to contain hundreds to thousands of new

lattice points, for systems with as many dofs as methylene imine. Moreover, this number

increases polynomially quickly as a function of system dimensionality. Since the communica-

tion cost is very limited in comparison to the PES evaluation cost, the parallel load sharing of

PES evaluations is expected to scale nearly perfectly, until the number of nodes or secondary

jobs starts to approach the shell size. Therefore, we also have the desirable situation that

systems with higher dimensionality—i.e., those that are larger and more challenging—are

also expected to exhibit better parallel scalability.

C. Electronic structure calculations

For all three of the molecular systems considered in this work, i.e. water, methane,

and methylene imine, DFT methods have been used to compute structures and PES func-

tions, via on-the-fly Crystal. In addition, for H2O, a second on-the-fly PES has also been

constructed using an ab initio electronic structure method. For the DFT calculations,

after examining several options, we selected B3LYP/aug-cc-pVTZ as a suitable choice of

functional/basis set, that would take proper account of all the atoms in our investigated

molecules. In the ab initio context, coupled-cluster methods are widely used to generate

PESs, with CCSD(FULL) a fairly accurate standard choice available in Gaussian 16. Ac-

cordingly, CCSD(FULL) was used to construct our ab initio PES for H2O. Note that for

these CCSD calculations, we also used the aug-cc-pVTZ basis set.

Regarding the above choices, it should be noted that our primary goal here is not to

construct new state-of-the-art PESs to compete with others already on the market (although

we may well have achieved this result for CH2NH20). Rather, it is to demonstrate the viability

of our on-the-fly Crystal PES construction scheme, for realistic calculations. Accordingly,

our choices above reflect what are some of the most commonly used methods in electronic
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structure, as opposed to what might be optimal for the specific molecular systems considered.

Note that for this first-ever, proof-of-concept effort, we are not constructing any PESs with

TSs, apart from the H2O system. For this system, we wish to construct fully global double-

well PES functions, that include the linear TS structure, as well as the two equivalent bent

minima. Hence, this seems the appropriate system for which to construct an ab initio PES,

in addition to the DFT PES, in order to validate the quality of the latter—especially in the

vicinity of the TS structure. In the event, the two H2O PESs, DFT and CCSD, are found

to be reasonably similar, as discussed in Sec. IVA.

All electronic structure calculations presented in this work were performed using the

Gaussian 16 program.19 References for the B3LYP DFT functional, CCSD(FULL) method,

and basis sets used here, may be found in the Gaussian 16 Users Reference—as well as in

standard electronic structure textbooks.21,22

D. Interpolation

In most of its incarnations, the Crystal algorithm generates a uniformly-spaced lattice

of grid points, over the configuration space of interest. For PES construction, the next and

final stage is to use this lattice to construct a PES function, that can be evaluated at any

desired point in the space (at least within the energy range of interest). To this end, regular

grids of the sort produced by Crystal are very well suited to interpolation methods—which

are preferred over fitting methods for this work, as discussed. However, although the lattice

itself is regular; the truncation of lattice grid points as determined by Crystal is most

decidedly not regular. The region fleshed out by the grid points is anything but rectangular,

in other words. Indeed, this is the point; if a fully rectangular grid of lattice points were to be

employed, the number of such points would grow exponentially with system dimensionality,

which is what Crystal is striving to circumvent.

In principle, a truncated regular grid does not pose insurmountable difficulties for inter-

polation. However, for the present paper, we rely on the canned Interpolation routine from

Mathematica, which does indeed require a fully rectangular (i.e. non-truncated) grid of

lattice points in order to interpolate effectively. At present, we deal with this obstacle in

the most obvious manner possible—by simply extending our Crystal-truncated grid into a

fully rectangular lattice, and assigning a constant energy value to all of the additional lattice

points. This procedure is straightforward and fast—even when the fully rectangular grid

contains many times the number of points as the truncated grid. (As a technical point, we
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note that in practice, better results are obtained when the assigned energy value is chosen

to be somewhat higher than Emax itself.)

Of course, the interpolation was handled in the above manner solely for expediency.

Although it works well enough for the molecular systems considered here (up to 9D), this

approach and its exponential scaling (albeit with a very small prefactor) is not a tenable

one for larger systems. Going forward, there are a number of customized interpolation

approaches that could be relied upon. Or conversely, if interpolation should prove too

onerous, PES fitting is always an option—albeit one that requires more finesse, and is

therefore less well-suited for “automatic” PES construction.

III. COMPUTATIONAL DETAILS

A. Water

As described in Sec. I, on-the-fly Crystal can be used to characterize structures such as

TSs, as well as to construct PESs. For on-the-fly minima, it is generally more convenient to

compute these directly via the electronic structure code itself, rather than using on-the-fly

Crystal, although the reverse may be true for on-the-fly TSs. Conventional (i.e. “non-on-

the-fly”) Crystal can, of course, also be used to find both minima and TSs for existing PES

functions. For all of the molecular systems considered here, the grid of lattice points is chosen

so as to always include the global minimum (or minima) explicitly. Since interpolation is

used, this ensures that the PES function values are exact at the true PES minima (subject

to the vagaries of the electronic structure methods employed...). Thus, there is never a need

to use either conventional or on-the-fly Crystal explicitly to find these structures.

In the case of H2O, there is, in addition, the TS structure representing the inversion

barrier to isomerization. However, because this TS structure has a known linear symmet-

ric geometry, it is once again easier to compute this structure via constrained optimization

within the electronic structure code itself, rather than using on-the-fly Crystal. That said,

however, we do use conventional Crystal to compute the TS structures of the resultant in-

terpolated H2O PES functions. In any event, the various ground state minima and inversion

barrier TS structures we computed for H2O, as described above, may be found in Tables I

and IV, respectively.

For H2O PES construction purposes, rather than work directly in valence bond coor-

dinates, we found it convenient to create a grid of points in the Cartesian-like internal
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Table I: Global minimum structures for H2O, as computed using DFT and CCSD electronic
structure methods, and incorporated into corresponding interpolated PES functions.
Structures are reported in three different coordinate systems: Cartesian, internal, and

valence bond. Cartesian and radial coordinate values are presented in units of Å; angular
coordinates are in radians. Some additional results from the literature are also provided.

Minimum geometries Atom/Coord DFT CCSD
Our result O (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
(Cartesian) H1 (-0.763, 0.585, 0.000) (-0.756, 0.586, 0.000)

H2 (0.763, 0.585, 0.000) (0.756, 0.586, 0.000)
Our result H1x 0 0
(internal) H2x 0 0

Hy ± 0.58487 ± 0.58490
Our result r1 0.9617 0.9562
(valence) r2 0.9617 0.9562

θ 1.834 1.824
Ref. 23 r1 0.958
(valence) r2 0.958
CCSD(T)/aug-cc-pVTZ θ 1.821
Ref. 24 r1 0.9572
(valence) r2 0.9572
Experiment θ 1.824

coordinates, (H1x, H2x, Hy), indicated in Fig. 3. Note that H1x and H2x are defined as

displacements relative to equilibrium, whereas Hy=0 corresponds to linear geometries with

bend angle θ = π. The (H1x, H2x, Hy) coordinate system can be easily converted to the

more standard valence bond coordinate system, (r1, r2, θ), as indicated in Eqs. 1 to 3.

r1 =
√
(H1x − x0)2 +H2

y (1)

r2 =
√

(H2x + x0)2 +H2
y (2)

θ = π − Φ1 − Φ2, (3)

where Φ1 = arctan[−Hy/(H1x − x0)]

and Φ2 = arctan[Hy/(H2x + x0)]

In the equations above, ±x0 represents the equilibrium value of the Cartesian x coordinate—

e.g., x0 = 0.756370, in the case of CCSD (as indicated in Table I). In any event, all 3D

PES lattice grids for H2O were constructed using on-the-fly Crystal in conjunction with

Gaussian 16. Lattice spacings and maximum extents in each coordinate direction are as
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indicated in Table III.

Figure 3: Internal coordinates used to construct lattice grids for both DFT and CCSD
on-the-fly Crystal PESs for H2O. Following the orientation of the figure, x and y refer to
horizontal and vertical planar motions of the two H atoms, H1 and H2. The body-fixed

frame is defined by constraining H1y and H2y to move together; we thus replace these with
the single coordinate Hy.

Note that for all molecular systems, the coordinates and grids are defined such that the

global minimum is a grid point. For H2O, for which we construct symmetric double-well

PES functions, both equivalent global minima are grid points. The geometry representing the

origin of the (H1x, H2x, Hy) coordinate system is taken to be the average of the two minima

structures, as represented in Cartesian coordinates. This is a linear symmetric structure, in

terms of which the two minima are described in internal coordinates by (0, 0, ± Hmin
y ), and

the TS by (-HTS
x , HTS

x , 0). Note that Hmin
y and HTS

x values may be readily obtained from

Tables I and IV, respectively, where the minima and TS structures are expressed in internal

as well as valence bond coordinates.

In order to ensure that both minima are included as explicit lattice points in our grid, it

is necessary to choose an Hy grid spacing ∆y that divides into 2 Hmin
y . For both H2O grids

considered here, we choose ∆y = Hmin
y /7, which provides a good number of grid points in

the Hy direction (i.e., 15 just from minimum to minimum). For the symmetric H1x and H2x

directions, a sufficiently small grid spacing ∆x was chosen so as to ensure good sampling of

the PES in these directions, as indicated in Table III.
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In comparing ∆x grid spacing values between the CCSD and DFT lattices, precise values

were finessed a bit, in order to ensure that the maximum extent of both grids (as measured

by the number of lattice points in H1x or H2x) is the same. For the same reason, we also used

slightly different energy cutoffs for the two lattices, i.e. Emax = 32,000 cm−1 for the DFT

lattice, and Emax = 33,000 cm−1 for the CCSD lattice. (Note that the DFT dissociation

threshold energy for H2O is around 41,600 cm−1.) With these choices, nearly 14,000 lattice

points were obtained, for both the CCSD and DFT lattices.

B. Methane

Our second application system is a prototype for CH bond activation, or the “predissoci-

ation” dynamics in methane, i.e. CH4 → CH3 + H. A 3D restricted PES is constructed, by

allowing one of the hydrogens to move along all three Cartesian directions, (x, y, z). Note

that this coordinate system is defined such that the C atom lies at the origin, and the moving

H atom lies along the positive z axis when CH4 is in its global minimum configuration. The

other three H atoms (in the methyl group subunit) thus lie parallel to and below the x–y

plane, with one of these lying in the x–z plane. Due to tetrahedral symmetry, the global

minimum geometry is uniquely determined by specifying a CH bond length—which is found

to be 1.089 Å, at the B3LYP/aug-cc-pVTZ level of theory. (For comparison, the experi-

mental value is 1.0870 Å.25) Note that for simplicity, the methyl group subunit is frozen

at its CH4 minimum geometry, even as the mobile H atom is displaced, which is slightly

unrealistic.

This system was chosen for several reasons. Firstly, as discussed in Sec. I, we envision on-

the-fly Crystal being used to construct full-dimensional as well as restricted PESs, and so

it is important to have at least one example of the latter. Secondly, we wish to demonstrate

the applicability of on-the-fly Crystal across a variety of coordinate system types, so we

wanted to consider a Cartesian coordinate calculation. Finally, the PES dimensionality for

this system is the same as for the H2O PES, and the electronic structure calculations are also

isoelectronic. So this system serves as a good comparison with H2O, to determine whether

CPU costs are widely different.

In fact, they turn out to be comparable, although the lattice size is somewhat smaller,

because CH4 is a single-well system. Note that we do not extend the PES lattice all the

way to the dissociation channel, for which the threshold energy is 36,700 cm−1 (according

to the B3LYP/aug-cc-pVTZ level of theory). Instead, we truncate the lattice at Emax =
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28,000 cm−1—which is very far into the anharmonic region, if still below dissociation. In

any event, this choice gives rise to around 11,000 lattice points in all, which enables a very

detailed sampling of the PES region of interest. Lattice spacings and maximum extents in

each coordinate direction are as indicated in Table III. Other computational details are as

discussed in Secs. II and IIIA.

C. Methylene imine

Our largest and most challenging molecular application is methylene imine, CH2NH,

studied here in full dimensionality. Of course, the individual electronic structure calculations

for CH2NH are much more computationally expensive than for the other applications, and

in addition, many more such calculations are required to flesh out the 9D lattice. In addition

to these difficulties, the CPU cost of the PES interpolation itself also becomes non-trivial in

this regime. Nevertheless, using DFT with on-the-fly Crystal, and the other computational

techniques as discussed, we were able to construct a viable 9D PES for this system—which

is moreover, guaranteed to be hole-free, up to the chosen energy cutoff.

The global minimum structure of CH2NH, as computed at the B3LYP/aug-cc-pVTZ level

of theory, is presented in Table II, in both Cartesian and internal coordinates. This structure,

together with the nine internal coordinates used to construct the 9D lattice and PES, is also

indicated in Fig. 4. Four of these internal coordinates are radial stretch coordinates (i.e.

q1–q4), three are essentially valence bond bend angle coordinates (i.e., q5, q7, and q9), and

the remaining two (i.e., q6 and q8) are Cartesian out-of-plane motions. Note that since the

lower HCN subunit defines the body-fixed x–y plane, only the upper two H atoms, H1 and

H3, may move out of plane. In any event, q6 and q8 are defined to be along the perpendicular

z direction, rather than as true torsional angles.

Because of the aforementioned computational difficulty of this system, it was not possible

to maintain a similar energy cutoff value as for the previously considered systems, while

still keeping the same highly detailed level of PES region sampling. Consequently, Emax

for this system was reduced down to 5,300 cm−1, giving rise to a lattice of over 80,000

points. This is still sufficiently energetically high as to enable a detailed investigation of the

most relevant vibrational dynamics of this system. In comparison, the only other published

CH2NH PES function of which we are aware20 has a hole at just 2800 cm−1 above the

ground state minimum!26 Additionally, the number of lattice points, or explicit electronic

structure calculations, is greater here than what is typically found in the literature for
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Figure 4: Internal coordinates used to construct 9D lattice for DFT PES for CH2NH.
Following the orientation of the figure, x and y refer to horizontal and vertical planar

motions, so that z refers to out-of-plane motion. The methylene imine structure indicated
is the ground state minimum. The body-fixed frame is defined by constraining the H-C-N
subunit to lie in the x-y plane. Accordingly, only the upper two H atoms, i.e. H1 (left) and
H3 (right), may move out of plane—corresponding to coordinates q6 and q8, respectively.

many constructed PES functions of similar system dimensionality. To this end, of course,

the parallel version of Crystal was immensely helpful, reducing the CPU time that would

otherwise be required by about an order of magnitude.

All of that said, in point of fact the computational bottleneck for this system was not

the Crystal/Gaussian 16 calculation per se, but rather, the subsequent PES interpolation

procedure. This is discussed in more detail in the next subsection.
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Table II: Global minimum structure for CH2NH, as computed using DFT, and
incorporated into corresponding interpolated PES function. Structure is reported in

Cartesian and internal coordinates, in Col. IV. Cartesian and radial coordinate values are
presented in units of Å; angular coordinates are in radians. Atoms and internal

coordinates are defined in Cols. II and III.

Methylene imine Atom No. Atom Coordinates
Minimum geometry 1 C (0.000, 0.000, 0.000)
(Cartesian) 2 N (1.264, 0.000, 0.000)

3 H1 (-0.624, 0.899, 0.000)
4 H2 (-0.528, -0.953, 0.000)
5 H3 (1.637, 0.950, 0.000)

Coord. Description Value at minimum
Minimum geometry q1 r (1,2) 1.2636
(internal) q2 r (1,3) 1.0938

q3 r (1,4) 1.0892
q4 r (2,5) 1.0205
q5 θ (2,1,3) 2.1774
q6 z (3) 0
q7 2π − θ (2,1,4) 4.2066
q8 z (5) 0
q9 π − θ (1,2,5) 1.1966

Table III: Lattice spacings and coordinate ranges obtained in the construction of PES grids
for all three molecular systems: water, methane, methylene imine. Units are as indicated

in Col. II. Coordinate values for the grid points corresponding to ground state minima are
also indicated, in Col. III.

Molecule Coord (unit) Value at Spacing Min Max
minimum

Water H1x (Å) 0.000 0.042 -0.798 0.84
H2x (Å) 0.000 0.042 -0.84 0.798
Hy (Å) ± 0.585 0.084 -1.169 1.169

Methane x (Å) 0.000 0.10 -1.2 1.2
y (Å) 0.000 0.10 -1.2 1.2
z (Å) 1.089 0.05 0.389 1.939

Methylene imine q1 (Å) 1.264 0.05 1.164 1.414
q2 (Å) 1.094 0.05 0.944 1.294
q3 (Å) 1.089 0.05 0.939 1.289
q4 (Å) 1.020 0.05 0.920 1.220
q5 (rad) 2.177 0.18 1.817 2.537
q6 (Å) 0.000 0.225 -0.675 0.675
q7 (rad) 4.207 0.18 3.847 4.567
q8 (Å) 0.000 0.225 -0.675 0.675
q9 (rad) 1.197 0.18 0.657 1.557
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D. Interpolation

As discussed in Sec. IID, we are currently using a canned Interpolation routine that

requires extending our Crystal grid out into a fully rectangular lattice. The cost to evaluate

the (constant) energy value for each new lattice point is trivial compared to each Crystal

lattice point PES evaluation. Nevertheless, the number of such additional points grows

exponentially with system dimensionality, such that before too long, the interpolation itself

becomes the computational bottleneck. It is worth exploring this in some detail for our

three application systems.

Starting with H2O, we have seen that Crystal constructs a truncated grid of nearly 14,000

lattice points. However, upon extending the grid out to encompass the fully rectangular 3D

lattice, the number of points increases to over 48,000. Similar behavior is observed for the

3D CH4 PES, for which the total number of lattice points grows from ∼11,000 to ∼20,000—

although the ratio here is a bit smaller than for H2O, because the PES itself is more regular.

For 9D methylene imine, the grid limits in each coordinate direction are as indicated in

Table III. Multiplying all nine 1D grid sizes together yields the total number of fully rect-

angular lattice points—approximately 3.5 million in this case. This represents an enormous

increase from the original ∼81,000 truncated grid points—so much so that interpolation now

becomes the bottleneck of the entire computation.

IV. RESULTS

A. Water

Two different H2O PESs were constructed, one using DFT and one using CCSD. Both are

symmetric double-well PESs that incorporate the linear inversion barrier to isomerization.

To satisfy symmetry, the internal coordinate system origin is accordingly placed at a linear

geometry (albeit not the TS), as discussed in Sec. III A.

In Fig. 5, we present 1D “slices” of the DFT H2O PES, along each of the internal coor-

dinate directions, (H1x, H2x, Hy). As expected, the H1x and H2x plots are mirror images

of each other. Note that the flat regions on the right and left sides, respectively, of these

two plots, arise because of the additional constant-energy points, added to form the fully

rectangular lattice for interpolation purposes. The Hy plot is also fully symmetric, as ex-

pected, with both equivalent PES wells and global minima evident. Note that whereas the
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Figure 5: 1D “slice” plots of the DFT H2O PES, taken along each of the three internal
coordinate directions, keeping the other two coordinates fixed at their global minimum

values: (a) H1x; (b) H2x; (c) Hy.

minima here really are the true global minima, the barrier at Hy=0 is by no means the true

inversion barrier TS, but rather, the aforementioned origin of the coordinate system. The

true inversion barrier height is therefore much lower than what might otherwise be inferred

from this plot.

(a) (b)

Figure 6: Surface plots of the DFT H2O PES, taken along two of the three internal
coordinate directions, keeping the third coordinate fixed at its global minimum value: (a)
varying (H2x, Hy) at fixed H1x=0; (b) varying (H1x, H2x) at fixed Hy = Hmin

y =0.58487 Å.
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To round out our characterization of the DFT H2O PES, we also present several 3D plots.

Fig. 6 presents surface plots for which one of the three internal coordinates is held constant

at its equilibrium value. In particular, the left panel, corresponding to fixed H1x = 0, shows

both PES wells with very pronounced anharmonicity. Note that here too, the apparent TS,

while lower than in Fig. 6, is not the true inversion barrier TS either.

(a) (b)

Figure 7: Surface plots of the DFT H2O PES, taken along the r1 and r2 valence bond
coordinate directions, keeping the bend angle fixed: (a) at the global minimum value,

θ = 105.08◦; (b) at the TS value, θ = 180◦.

Finally, in Fig. 7, we present 3D plots in valence bond coordinates—specifically, in the

two OH bond lengths, keeping the bond angle θ fixed. In the left panel, θ is set to the global

minimum value, whereas in the right panel, θ is set to the TS value of 180◦. The minimum

in the latter plot therefore corresponds to the true inversion barrier TS.

As discussed, we have also computed a CCSD PES for H2O. It is instructive to compare

the DFT and CCSD PESs, in order to better comprehend the validity of the former—

particularly in the barrier regions. Fig. 8 presents 1D “slice” plot comparisons in the internal

coordinates, as in Fig. 5. To be sure, the overall trends between the two PESs are consistent,

with the DFT and CCSD H1x plots as presented in the upper part of the figure appearing

very nearly identical. However, these plots are on slightly different scales, with the CCSD

curve consistently higher than the DFT curve throughout. In the bottom panel, the two

Hy plots are presented. Here, the rescaling is quite evident—although interestingly, the

DFT curve becomes higher than the CCSD curve in the barrier region. Furthermore, the

agreement appears no worse in the barrier region than elsewhere, and is in fact rather better

here than in the asymptotic regions at comparable energy.

Although the apparent minima in Fig. 8 are true minima, the local maximum at Hy=0 in
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Figure 8: Comparison of DFT and CCSD H2O PESs, as observed through 1D “slice” plots
taken along one internal coordinate direction, keeping the other two coordinates fixed at
their global minimum values: (a) H1x plot for DFT PES; (b) H1x plot for CCSD PES; (c)

Hy plot for both DFT and CCSD PESs.

the bottom panel is not the true inversion barrier TS, as discussed. Of course, it is important

to compare the true structures—not only as computed via DFT vs. CCSD directly in

Gaussian 16, but also with respect to the respective interpolated PES functions. By the

same token, since H2O is such a well-studied system, it is also worthwhile to compare our

results with previous results from the literature.23,24,27,28

As discussed, all interpolated PES functions include the true minima as explicit lattice

points; these structures are presented in Table I, and seen to show very close agreement

between DFT and CCSD, although the CCSD bond lengths are a bit shorter. The table

also presents minimum geometry data as obtained from a previous CCSD(T)/aug-cc-pVTZ

calculation,23 and from experiment.24 Bond lengths for the former agree with our CCSD

results extremely well—i.e., to less than .002 Å—although it should be noted that these

results were obtained using a very similar level of electronic structure theory. Even so,
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agreement between our results and experiment is even better—with bond lengths to within

0.001 Å, and the computed bend angle within .001 radians of the experimental value.

Table IV: Comparison of TS structures and energies for H2O, as computed using DFT and
CCSD electronic structure methods within Gaussian 16, and compared with TSs for

corresponding interpolated PESs functions. TS structures are reported in both internal and
valence bond coordinates. Cartesian and radial coordinate values are presented in units of
Å; angular coordinates are in radians; energies are in cm−1 relative to the corresponding

ground state minima. Some additional results from the literature are also provided.

Inversion barrier TS geometries Coord DFT CCSD
Our result H1x -0.174 -0.166
(internal) H2x 0.174 0.166
Gaussian 16 Hy 0.000 0.000
Our result r1 0.937 0.932
(valence) r2 0.937 0.932
Gaussian 16 θ 3.142 3.142
Our result H1x -0.174 -0.166
(internal) H2x 0.174 0.166
Interpolated PES Hy 0.000 0.000
Our result r1 0.937 0.922
(valence) r2 0.937 0.922
Interpolated PES θ 3.142 3.142
Ref. 23 r1 0.934
(valence) r2 0.934
CCSD(T)/aug-cc-pVTZ θ 3.142
Energy (Ours, Gaussian 16) 10425.9 11254.7
Energy (Ours, Interpolated PES) 10424.9 11247.0
Energy (Ref. 23, CCSD(T)/aug-cc-pVTZ ) 11269
Energy (Ref. 23, best ) 11127

As for the inversion barrier TS structures, both the Gaussian 16 and interpolated PES

structures, for both DFT and CCSD, are presented in Table IV, in internal and valence

bond coordinates. Here, too, our Gaussian 16 geometries are quite similar, differing by

only .005 Å (again, with CCSD a tiny bit shorter). The corresponding interpolated PES TS

structures are interesting, in that the DFT case exhibits almost perfect agreement with the

Gaussian 16 result, whereas on the CCSD side, the agreement is good (i.e., to .01 Å) but

certainly not perfect. That being the case, the spectacular DFT agreement may well be a

fluke.

Ample theoretical data from the prior literature also exists for comparison of inversion

barrier TS structures and energies—with Ref. 23 serving as one definitive resource on this

topic. In Table IV, we present data on a previous CCSD(T)/aug-cc-pVTZ calculation, which

is the closest we could find to our current CCSD calculation. As was the case for the similar
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comparison with global minimum structures, the bond lengths agree to .002 Å. Barrier height

energies are also in excellent agreement, to within 15 cm−1. That said, our energy result is

actually closer to the “best” theoretical result from Ref. 23 (also listed in the table), which

incorporates extrapolation, core correlations, relativistic, diagonal Born-Oppenheimer, and

other corrections.

We conclude this section with a contour plot comparison between the DFT and CCSD

H2O PESs, in the coordinates H1x and H2x, with Hy set to its global minimum value. The

two contour plots, with labeled contours, are presented in Fig. 9. Once again, the two plots

appear nearly indistinguishable, apart from a systematic rescaling of energy. All in all, we are

pleased with the level of agreement between our DFT and CCSD interpolated PES functions,

particularly given the global nature of the PESs, which incorporate extensive energy ranges,

multiple equivalent global minima, inversion barrier TSs, and isomerization pathways (albeit

not dissociation). The agreement with previous computational and experimental data is also

very satisfactory.
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Figure 9: Comparison of DFT and CCSD H2O PESs, as observed through contour plots
taken along the H1x and H2x directions, keeping Hy fixed at its global minimum value: (a)

contour plot for DFT PES; (b) contour plot for CCSD PES.
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B. Methane

As discussed in Sec. III B, we have also constructed one restricted-coordinate DFT PES,

describing activation/predissociation of a single CH bond in methane. Cartesian coordinates

(x, y, z) are used for the construction of the lattice grid and interpolated PES function, with z

representing the dissociation reaction coordinate. Although Emax = 28, 000 cm−1 was chosen

somewhat below the dissociation threshold, it still permits a very broad latitude of motion

for the mobile H atom. Moreover, the use of ∼11,000 lattice points for this relatively smooth

3D PES function ensures a very well-behaved and accurate interpolated PES function.

In Fig. 10 we present a 1D slice of our CH4 PES, taken along the reaction coordinate z.

As in the case of H2O, the flat region at the smaller z values is due to the fully-rectangular

extension of the lattice grid, needed for interpolation. As is evident from the figure, the

minimum energy occurs around 1.089 Å, with the PES reaction profile exhibiting a typical

bond-breaking softening pattern for larger z values. The large z end of the interpolated

region signifies an energy an excess of 75% of the dissociation threshold.

Figure 10: 1D “slice” plot of the CH4 PES, taken along the dissociation reaction
coordinate, z, keeping x = y = 0 fixed at their global minimum values.
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In Fig. 11 we present contour plots of the CH4 PES in the “perpendicular ” directions,

(x, y), for several different fixed z values. For the most part, these show quite isotropic

behavior, as might be expected. However, as the value of z decreases, the contour plots

increasingly deviate from circular symmetry, becoming a bit more triangular in nature. Of

course, this shift represents the increasing proximity to the methyl group subunit H atoms.

In particular, the presence of one such H atom in the x-z plane implies the highest energies

in the directions 0◦, 120◦, and 240◦, and lowest energies in the directions 60◦, 180◦, and 300◦.

Indeed, this behavior is clearly evident in the third panel of Fig. 11.
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Figure 11: Contour plots of the CH4 PES, taken along the perpendicular directions x and
y, for several different values of the dissociation reaction coordinate, z: (a)

z = 1.089 Å= zmin; (b) z = 1.489 Å> zmin; (b) z = 0.589 Å< zmin.

C. Methylene imine

Methylene imine (CH2NH) is the largest and the most challenging system considered in

this study. Nevertheless, using the very straightforward methods discussed, we were able

to construct a fully automated, hole-free, full-dimensional (9D) PES for this system. As a

reminder, the coordinate system and ranges, lattice spacing, and minimum geometry, are

presented in Fig. 4 and in Tables II and III. As discussed, over 80,000 truncated lattice points

were used in the construction of the PES (i.e., prior to the extension to a fully rectangular
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lattice). This enables quite decent sampling and smooth interpolation over the energy range

considered—which is lower, and therefore less anharmonic, than for the other molecular

systems of this work.

(a) C-N (b) C-H1

(c) C-H2 (d) N-H

Figure 12: 1D “slice” plots of the CH2NH PES, taken along each of the four radial valence
bond stretch coordinates, q1–q4, keeping all other internal coordinates fixed at their global
minimum values. For plotting purposes, coordinates have been shifted so that the global
minimum appears at the origin: (a) q1 (C-N stretch); (b) q2 (C-H1 stretch); (c) q3 (C-H2

stretch); (d) q4 (N-H stretch).

In Fig. 12, we present 1D slice plots of the CH2NH PES, along each of the four radial va-

lence bond stretch coordinates, i.e. q1–q4. Note that for plotting purposes, these coordinates

have been shifted by their equilibrium values, so that the true minimum always appears at

the origin. Note also that the apparent energy limits vary a bit—especially on the left or

small-value side of the plots, where the PES curves are steeper. This is due to the vagaries

of discrete grid truncation, which is more pronounced for larger system dimensionalities. Of

course, in practice, we could extend all of these curves outward somewhat by extrapolating

our interpolated PES function. This procedure will generate a smooth and well-behaved

extension, and is reliable up to a point—presumably up to Emax, anyhow—before running

into the types of problems discussed in Sec. I. For the figure, however, we decided to present

only “pure” curves, that end at the edge of the interpolation grid. From the figure, the

latter three curves, which all describe H atom bond lengths, look very similar. Indeed, the
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q2 (C-H1) and q3 (C-H2) curves are nearly identical, to within a few tens of cm−1 or so.

(a) H1-C-N (b) H2-C-N

(c) H3-N-C

Figure 13: 1D “slice” plots of the CH2NH PES, taken along each of the three valence bond
bend-type angular coordinates, q5, q7, and q9, keeping all other internal coordinates fixed
at their global minimum values. For plotting purposes, coordinates have been shifted so
that the global minimum appears at the origin: (a) q5 (H1-C-N bend); (b) q7 (H2-C-N

bend); (c) q9 (H3-N-C bend).

Fig. 13 depicts 1D slice plots along the three valence bond bend-type angle coordinates,

i.e. q5, q7, and q9. Here too, the angles have been shifted to their equilibrium values for

plotting purposes. From the figure, it is clear that the H1 and H2 bend profiles (i.e., the H

atoms bound to the C atom) are much more symmetric than the H3 bend profile—and also

stiffer. Apart from an expected mirror reflection, these first two are again nearly identical

to each other, to within 10 cm−1 or so—even closer than what was observed for the H1 (q2)

and H2 (q3) stretch profiles already discussed. Finally, we have the out-of-plane z motions

for H1 (q6) and H3 (q8), for which 1D slice plots are presented in Fig. 14. Note that both

of these plots are perfectly symmetric, in their respective coordinates. However, the H3 (q8)

profile is considerably stiffer than that of H1 (q6).

It is also worth examining mode- or coordinate-coupling, within our full 9D CH2NH PES.

Of course, it is only possible to plot the PES as a function of two coordinates at a time. For

a 9D PES, there are 36 such coordinate pairs in all. We have made 3D and contour plots

of all 36 coordinate pairs, in an attempt to identify those that are most strongly coupled
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(a) (b)

Figure 14: 1D “slice” plots of the CH2NH PES, taken along each of the two Cartesian
out-of-plane coordinates, q6 and q8, keeping all other internal coordinates fixed at their

global minimum values. For plotting purposes, coordinates have been shifted so that the
global minimum appears at the origin: (a) q6 (H1 z motion); (b) q8 (H3 z motion).

over the range of energies considered. Note that, whereas we might have used Hessians to

determine the strongest mode couplings, in principle this procedure is only reliable in the

vicinity of a minimum, and not throughout a given energy range.

Our approach, though it relies on qualitative visual analysis, is in any event unambiguous

for the present CH2NH PES. For this system, the most coupled coordinate pairs are clearly

(q2, q5) and (q3, q7). In other words, the bend and stretch coordinates for each of the C-bound

H atoms are the most strongly coupled. In Fig. 15(a), we present a contour plot for the

CH2NH PES with respect to the H1 (q2, q5) coordinates, keeping all other coordinates fixed at

their global minimum values. As can be seen from the figure, the “egg-shaped” contours are

clear evidence of significant anharmonicity and/or coupling, which become more pronounced

at higher energies. Fig. 15(b) presents a similar, and in fact nearly identical, contour plot

for the H2 (q3, q7) coordinates.
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Figure 15: Contour plots of the CH2NH PES, taken along the valence bond bend and
stretch coordinates for each of the two C-bound H atoms, keeping all other internal

coordinates fixed at their global minimum values. For plotting purposes, coordinates have
been shifted so that the global minimum appears at the origin: (a) H1 atom, (q2, q5); (b)

H2 atom, (q3, q7).

V. CONCLUSIONS

On the time scale of the theoretical chemistry enterprise, the art of constructing potential

energy surface (PES) functions for molecular systems may be regarded as “ancient.” Well-

known PES models such as Morse,29 Eckart30 and LEPS,31 go back to nearly the earliest days

of quantum mechanics, and predate even the development of ab initio electronic structure as

a standalone discipline. For some decades, PES construction usually meant human beings

fitting intuitive functional forms to experimental or theoretical data for three- and four-atom

systems. Although such applications may be far from trivial, the configuration spaces (i.e.,

6 dofs or fewer) are small enough so that any “surprises” that might arise can generally be

dealt with relatively easily.

No more. The current research climate demands PES characterization and construc-

tion for much larger systems, and for novel environments and contexts, where traditional

“chemical intuition” may be a far less reliable guide. Above all, the increased system di-

mensionalities of interest nowadays imply exponentially larger configuration spaces that can

wreak havoc in all sorts of ways. To begin with, the legitimate chemical structures and

pathways can become far more intricate and numerous, motivating the development of the

“chemical dynomics” enterprise, as discussed in Sec. I. Additionally however, and even more
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insidious, is the greatly increased likelihood that the constructed PES functions exhibit

pathologically unphysical features—undetected and unsuspected by their creators. Indeed,

one of the lessons learned from the early Crystal papers—now that the community has

a reliable means of characterizing existing PES functions—is the ubiquitous presence of

low-lying “holes,” even in well-established PES functions.4,5

Whereas previous Crystal work has focused on characterizing existing PES functions—

and in particular, on discovering previously undetected low-lying holes—the present work

represents a significant departure, in that we now aim to characterize PESs, or construct

new PES functions without recourse to an existing PES function. Instead, on-the-fly PES

evaluations are conducted, during the course of the Crystal code execution itself. As with

all on-the-fly methods, individual PES evaluations are typically far more costly than they

would be with a preexisting function; consequently, viability demands some careful means of

optimizing the choice of points to be evaluated. While many strategies exist,11–14,17 Crystal

is unique in offering a global exploration of precisely the region of configuration space that is

needed (up to energy Emax). As a consequence, the resultant automatically-generated PES

is guaranteed to capture all possible dynamical pathways (whether envisioned a priori or

not), while also avoiding the undesirable creation of spurious hole features.

The results of the present study indicate the viability of the on-the-fly Crystal PES

construction approach across a variety of contexts—e.g., varying dimensionalities (up to 9D),

multiple isomerization minima, DFT vs. ab initio electronic structure methods, restricted

vs. full dimensionality, different coordinate types, etc. In all such contexts, the operation

of on-the-fly Crystal was found to be sufficiently straightforward that the resultant PESs

may truly be deemed to have been “automatically” generated. Although a large number

of PES evaluations is typically required, especially for the larger system dimensionalities,

the external electronic structure codes (Gaussian 16 in this case) are called automatically,

without the direct involvement of a human user.

Likewise, the use of interpolation over fitting renders the final PES function construction

fully automatic as well—although slightly more sophisticated methods than Mathematica’s

Interpolation routine will be needed going forward, in order to avoid the need for fully rect-

angular grids. Indeed, without the rectangular constraint, 9D is by no means the limit. For

comparative purposes, we point out that serial Crystal has already been used to charac-

terize existing PES functions up to 48D—with the parallel version expected to extend such

calculations to perhaps ∼100D or so. So it is likely that creating new PES functions using
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parallel on-the-fly Crystal, without fully rectangular grids, will scale effectively up to at

least several tens of dofs.

Of course, one important factor that must not be ignored in such assessments is the in-

creasing cost with increasing system size of the electronic structure methods used—which

are well known to follow very different scaling laws, depending on the level of theory. In

particular, higher-level multi-reference methods may be desired, depending on one’s objec-

tives. Even for the relatively cheap methods used in this paper, we observe, e.g., that our

9D CH2NH Crystal grid calculations would have taken over a week to complete using our

serial code. The parallel version reduces this time to less than a single day, using only 8

nodes. As discussed, parallel scalability is nearly perfect, and increases quickly with sys-

tem dimensionality. In theory, this parallel performance will be maintained so long as the

overall CPU cost bottleneck is the PES evaluations. Consequently, we envision no practical

limit, at present, on the size of the molecular systems that may be considered, provided that

sufficient computational resources are available.

Many future developments are planned for on-the-fly Crystal, both in terms of algo-

rithms and applications. On the algorithmic front, in addition to the truncated-grid inter-

polation scheme already mentioned, we will seek to better exploit the natural symmetry of

a given problem into the calculation itself. We also aim to pursue several ideas pertaining

to still-better parallelization schemes, as discussed in the concurrent6 and future papers.

Additionally, more code development work is required to beef up the PES characterization

(as opposed to construction) features of on-the-fly Crystal. Several schemes are presented

in Ref. 6, which emphasizes the PES characterization aspect of Crystal much more than

this paper. There, too, we discuss another exciting new algorithmic development—enabling

Crystal to characterize features of conical intersection seams.

Insofar as applications are concerned, we are currently identifying a set of molecular and

chemical systems for which chemical intuition does not likely provide all the answers, and

a more chemical dynomics approach is needed. This can be the case, either because the

nature of the interactions or environment is non-standard, or simply because the number of

available pathways is large. Rare gas clusters, with many equivalent minima and low-lying

isomerization barriers, exemplify both criteria, and otherwise serve as an interesting and

naturally scalable testbed.32–37 Proton transfer is important in many biological processes,38

yet is often difficult to model accurately; not only are there typically many potential re-

action pathways to contend with, but quantum effects such as tunneling can play a role,
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implying that higher-than-classical TS barriers must be considered. Regarding restricted

PESs, hydrogen ligand dynamics and reactivity within transition metal polyhydride com-

plexes present another interesting application area, relevant for catalysis and hydrogen fuel

storage.39–46 There are also many interesting applications from photochemistry as well. In

the concurrent paper,6 we explore photoswitches,47,48 notably Photostatin-147, for which we

will allow the methoxy groups to rotate in future work. Other photoswitches such as Donor

Accepter Sternhouse Adducts48 exhibit the kind of complex, multistep chemistry that would

seemingly lend itself very well to a Crystal analysis.

The above, of course, represents nalbut a tiny sampling of possible application areas.

Should the reader find himself or herself coming up with ideas of his or her own, we remind

the reader that the latest Crystal source code and user’s manual are always available from

the authors on request. We also make ourselves available to offer our assistance in utilizing

these resources effectively.
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