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An analytical expression for the nonradiative rate constant is derived based on Fermi’s

golden rule within the mixed-spin crude adiabatic (CA) approximation. The mixed-spin

CA basis is defined by a set of eigenstates for the electronic Hamiltonian that comprises the

nonrelativistic electronic Hamiltonian and spin-orbit coupling clumped at the reference nu-

clear configuration. The mixed-spin basis differs from the pure-spin basis defined by a set

of eigenstates for the nonrelativistic electronic Hamiltonian. The mixed-spin CA represen-

tation provides a unified view of the nonradiative transition; both internal conversion and

intersystem crossing (ISC) are regarded as vibronically-induced phonon emission and ab-

sorption processes. The analytical expression enables us to determine important vibrational

modes responsible for phonon emission/absorption (promoting modes) and accepting ex-

citation energy (accepting modes) according to the selection rule of vibronic coupling. An

advantage of the CA representation is that the spatial distribution of vibronic coupling is

elucidated based on its density form, i.e., vibronic coupling density, which can be applied

to theoretical molecular design with controlled nonradiative processes. The calculated ISC

rate constant of tetracene reproduces the experimental result well.
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I. INTRODUCTION

Nonradiative transitions between electronic states are classified into internal conversion (IC)

and intersystem crossing (ISC), depending on whether the spin multiplicities before and after

the transition are the same or different 1,2. Two representations are well-known to treat nuclear

motions in a molecule: Born-Oppenheimer (BO) and crude adiabatic (CA) representations 3,4. In

the BO representation, a vibronic wavefunction is expanded by the electronic basis that depends on

the nuclear coordinates. In contrast, in the CA representation, a vibronic wavefunction is expanded

by the electronic basis fixed at the reference nuclear configuration. Formulating the nonradiative

rate constant using Fermi’s golden rule is commonly based on the BO representation 2,5,6. The

perturbation to induce IC in the BO and CA representations is derivative coupling and vibronic

coupling, respectively 3,4.

The perturbation for ISC changes depending on whether the electronic states are pure-spin or

mixed-spin states, which are defined by the eigenstates of the zeroth-order electronic Hamiltonian

that excludes or includes the spin-orbit (SO) coupling, respectively 7–17. The currently most used

representation to formulate the ISC rate constant is the pure-spin BO one. 18–22, In this case, ISC

is induced by direct SO coupling at the first-order perturbation and SO coupling plus derivative

coupling at the second-order perturbation. Historically, Siebrand et al. suggested employing the

pure-spin BO representation to consider ISC between pure-spin states that are easy to associate

with experimental observations 7–10. In contrast, Azumi et al. suggested employing the mixed-spin

BO representation, in which ISC is regarded as a nonradiative transition between mixed-spin states

induced by derivative coupling at the first-order perturbation 11,12. This representation allows a

unified treatment of the nonradiative transitions because the driving force of IC and ISC becomes

the same 13,14. Note also that the mixed-spin basis has been widely used for phosphorescence

rate expression; phosphorescence is a radiative transition between mixed-spin states induced by

electron-photon coupling 18,23–25.

We previously derived an analytical expression for the IC rate constant based on Fermi’s golden

rule using the CA representation instead of the BO one 26. IC can be interpreted as a phonon

emission and absorption process, in analogy to a photon emission (fluorescence) and absorption

process. This view clarifies the role of vibronic coupling in the IC process; vibrational modes

are classified into promoting modes (responsible for phonon emission and absorption) and accept-

ing modes (responsible for accepting excitation energy) according to the selection rule of vibronic
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coupling. In addition, an advantage of the CA representation is that the origin of vibronic coupling

can be elucidated by its density form, vibronic coupling density (VCD), which is utilized for ratio-

nal molecular design 27–29. The VCD concept has been applied to various fluorescent molecules

to obtain chemical insights into the IC processes 30–33.

In this study, we derive an analytical expression for the nonradiative rate constant based on

Fermi’s golden rule using the mixed-spin CA representation, which can be applied to IC and ISC

in a unified framework. All vibrational modes are considered on an equal footing in the rate

expression. A mixed-spin state is written as a linear combination of pure-spin states, wherein

the mixing coefficients between the pure-spin states are obtained by diagonalizing the electronic

Hamiltonian represented by the pure-spin CA basis. The irreducible representation (irrep) of a

double group 34–37 is employed, i.e., the irrep of a pure-spin state is expressed as that of spatial

and spin parts separately, to clarify the ISC channel from the selection rule of SO coupling and

vibronic coupling. The density of the final vibronic states weighted by the vibrational matrix

element is evaluated in the time-correlation function formalism 38,39. Tetracene, for which the ISC

rate constant was experimentally 1,40,41 and theoretically investigated 42,43, is used as an illustrative

example.

The paper is organized as follows: in Section 2, we derive an analytical expression for the ISC

rate constant. Section 3 describes the computational details, and Section 4 provides the calculated

results for the ISC rate constant and VCD of tetracene. Section 5 concludes this study.

II. THEORY

This section is organized as follows: in Section 2.1, we derive a general expression for the

nonradiative rate constant based on Fermi’s golden rule within the mixed-spin CA approximation.

Section 2.2 defines the vibronic coupling constant (VCC) between mixed-spin states. In Section

2.3, we obtain the ISC rate constant using several assumptions and approximations. Section 2.4

provides an analytical expression for the nuclear part of the ISC rate constant. Section 2.5 defines

the VCD for mixed-spin states.
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A. Rate Constant of Nonradiative Transition within the Mixed-Spin Crude Adiabatic

Approximation

A molecule with M nuclei and N electrons is considered. A set of electronic coordinates is

denoted by r = (r1, · · · ,ri, · · · ,rN) with ri = (xi,yi,zi) in the Cartesian coordinates. A set of mass-

weighted normal coordinates is denoted by Q = (Q1, · · · ,Qα , · · · ,Q3M−5 or 3M−6). Molecular de-

formation from a reference nuclear configuration is described by normal coordinates 27,44. A

vibronic Hamiltonian is given by3

H (r,Q) = Tn(Q)+H̃e(r,Q), (1)

H̃e(r,Q) = He(r,Q)+HSO(r,Q), (2)

where Tn(Q) is the nuclear kinetic-energy operator, and H̃e(r,Q) is the electronic Hamilto-

nian consisting of the nonrelativistic electronic Hamiltonian, He(r,Q), and the SO coupling,

HSO(r,Q) (for details, see Sec. S1.1 in the Supporting Information). HSO(r,Q) is supposed

to comprise the one-electron term, wherein the effect of the two-electron term is approximately

included through the effective nuclear charge 45,46. The explicit consideration of the two-electron

term may be important for a molecule with large SO coupling, such as one having d elements. A

vibronic Schrödinger equation is given by

[H (r,Q)−Et ]Φ(r,Q) = 0, (3)

where Φ(r,Q) is the vibronic wavefunction and Et is the total energy of a molecule. A usual

approach to solve the above equation is expanding the vibronic wavefunction in terms of the elec-

tronic basis, of which types determine the matrix element of the vibronic Hamiltonian. The mixed-

spin CA basis is employed in this study.

The Herzberg–Teller expansion of H̃e(r,Q) around reference nuclear configuration Q = 0 is

given by

H̃e(r,Q) = H̃e(r,0)+H̃ ′
e (r,Q), (4)

H̃ ′
e (r,Q) = ∑

α

(
∂H̃e(r,Q)

∂QαΓ

)
0

QαΓ +
1
2 ∑

α,β

(
∂ 2H̃e(r,Q)

∂QαΓ∂QβΓ′

)
0

QαΓQβΓ′+ · · · . (5)

Vibrational mode α is expressed with its irrep Γ of point group G. The electronic Schrödinger

equation for H̃e(r,0) is given by

[H̃e(r,0)−EMΓ(0)]Ψ̃MΓ(r,0) = 0, (6)
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where {Ψ̃MΓ(r,0)} is the mixed-spin CA basis and EMΓ(0) is the electronic energy of the mixed-

spin state. Γ represents the irrep of the electronic wavefunction that includes spatial and spin parts.

Note that the electronic Hamiltonian at Q = 0 is expressed as

H̃e(r,0) = He(r,0)+HSO(r,0). (7)

The electronic Schrödinger equation for the nonrelativistic electronic Hamiltonian Q= 0, He(r,0),

is given by

[He(r,0)−EkΓ(0)]ΨkΓ(r,0) = 0, (8)

where {Ψ̃kΓ(r,0)} is the pure-spin CA basis and EkΓ is the electronic energy of the pure-spin

state. In the following, capital letters, M and N, and small letters, k, ℓ, m, and n, distinguish

the different mixed-spin and pure-spin states, respectively. Both the mixed- and pure-spin CA

bases are clamped at Q = 0. In contrast, sets of eigenfunctions for He(r,Q) and H̃e(r,Q), called

the pure-spin and mixed-spin BO bases, explicitly depend on the nuclear coordinates12,17. In the

mixed-spin CA representation, a vibronic wavefunction is expanded using the mixed-spin CA

basis,

Φ(r,Q) = ∑
M

χMν(Q)Ψ̃MΓ(r,0), (9)

where χMν(Q) is the vibrational wavefunction with ν = (ν1, · · · ,να , · · · ,ν3M−5 or 3M−6) a set of

vibrational quantum numbers. The vibrational Schrödinger equation in this representation is given

by [
Tn(Q)+EMΓ(0)+ ⟨Ψ̃MΓ|H̃ ′

e (r,Q)|Ψ̃MΓ⟩−Et

]
χMν(Q)

+ ∑
N ̸=M
⟨Ψ̃NΓ′ |H̃ ′

e (r,Q)|Ψ̃MΓ⟩χNν ′(Q) = 0. (10)

This is the coupled differential equation.

The adiabatic approximation is employed to define an initial adiabatic state for the nonradiative

transition. Within the mixed-spin CA adiabatic approximation, a vibronic wavefunction is given

by

ΦMν(r,Q) = χMν(Q)Ψ̃MΓ(r,0). (11)

Then, χMν(Q) is defined by the eigenfunction of the following vibrational Schrödinger equation;[
Tn(Q)+EMΓ(0)+ ⟨Ψ̃MΓ|H̃ ′

e (r,Q)|Ψ̃MΓ⟩−EMν

]
χMν(Q) = 0, (12)
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where EMν is the vibronic energy. The vibronic transitions from initial vibronic state Mν to final

state Nν ′ are considered, treating the neglected coupling term as a perturbation. According to

Fermi’s golden rule, the nonradiative rate constant from initial mixed-spin state M to final state N

is given by

knr
N←M =

2π
h̄ ∑

ν ,ν ′
PMν(T )|(H)′NM|2δ (ENν ′−EMν), (13)

(H)′NM = ⟨χNν ′ | ⟨Ψ̃NΓ′ |H̃ ′
e (r,Q)|Ψ̃MΓ⟩ |χMν⟩ . (14)

Here, PMν(T ) is the distribution of the initial vibrational states at temperature T , which is ex-

pressed as Boltzmann distribution in this study, assuming thermal equilibrium. Note that Eq. (11)

cannot be used for degenerate systems, such as the dynamic Jahn–Teller system47. In this case, the

potential part of the vibronic Hamiltonian must be diagonalized within the degenerate subspace to

obtain the adiabatic states. Hence, electronic states are assumed to be non-degenerate below.

B. Vibronic Coupling Constant

In evaluating the nonradiative rate constant, the matrix element of H̃ ′
e (r,Q) represented by the

mixed spin CA basis (see Eqs. (12) and (14) for the diagonal and off-diagonal elements, respec-

tively) needs to be calculated. From Eq. (5), the matrix element is given by

⟨Ψ̃NΓ′ |H̃ ′
e (r,Q)|Ψ̃MΓ⟩= ∑

α
V NΓ′MΓ

αΓ QαΓ +
1
2 ∑

α,β
W NΓ′MΓ

αΓβΓ′
QαΓQβΓ′+ · · · , (15)

where V NΓ′MΓ
αΓ and W NΓ′MΓ

αΓ are the linear and quadratic VCCs between mixed-spin states defined

by

V NΓ′MΓ
αΓ =

〈
Ψ̃NΓ′

∣∣∣∣∣
(

∂H̃e(r,Q)

∂QαΓ

)
0

∣∣∣∣∣Ψ̃MΓ

〉
, (16)

W NΓ′MΓ
αΓβΓ′

=

〈
Ψ̃NΓ′

∣∣∣∣∣
(

∂ 2H̃e(r,Q)

∂QαΓ∂QβΓ′

)
0

∣∣∣∣∣Ψ̃MΓ

〉
. (17)

V NΓ′MΓ
αΓ is nonvanishing when the decomposition of the direct product Γ′×Γ contains Γ 48. V MΓ

αΓ :=

V MΓMΓ
αΓ and W MΓ

αΓβΓ′
:= W MΓMΓ

αΓβΓ′
represent the linear and quadratic diagonal VCCs, respectively.

V MΓ
αΓ is nonvanishing when Γ is totally symmetric irrep in a non-degenerate electronic system 48.
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The VCC between mixed-spin states can be expressed using the pure-spin basis. A mixed-spin

state is written as a linear combination of pure-spin states,

|Ψ̃MΓ⟩= ∑
k

CkM |ΨkΓ⟩ , (18)

where CkM is the mixing coefficient that depends on the SO coupling constant (SOCC) and elec-

tronic energy gap between pure-spin states. The pure-spin states with the same irreps are mixed.

CkM is determined by diagonalizing H̃e(r,0) represented by the pure-spin CA basis,

⟨ΨℓΓ′ |H̃e(r,0)|ΨkΓ⟩=
(

EkΓ(0)δℓk +λ ℓΓ′kΓ
)

δΓ′Γ, (19)

λ ℓΓ′kΓ = ⟨ΨℓΓ′ |HSO(r,0)|ΨkΓ⟩ . (20)

Here, λ ℓΓ′kΓ is the SOCC between pure-spin states at the reference nuclear configuration. This is

nonvanishing when Γ′×Γ contains the totally symmetric irrep since HSO is totally symmetric35.

Eq. (19) is block diagonalized concerning the irreps of pure-spin states. This method to varia-

tionally determine the mixing coefficients can be used even for degenerate and pseudo-degenerate

cases and has broader applicability than the non-degenerate stationary perturbation theory 25.

From Eqs. (2), (16), and (18), the linear VCC between mixed-spin states is expressed as

V NΓ′MΓ
αΓ = ∑

k,ℓ
C∗ℓNCkM

(
V ℓΓ′kΓ

αΓ +ξ ℓΓ′kΓ
αΓ

)
, (21)

where V ℓΓ′kΓ
αΓ is the linear VCC between pure-spin states,

V ℓΓ′kΓ
αΓ =

〈
ΨℓΓ′

∣∣∣∣(∂He(r,Q)

∂QαΓ

)
0

∣∣∣∣ΨkΓ

〉
. (22)

Also, ξ ℓΓ′kΓ
αΓ is the first-order dependence of the SO coupling on the nuclear coordinates,

ξ ℓΓ′kΓ
αΓ =

〈
ΨℓΓ′

∣∣∣∣(∂HSO(r,Q)

∂QαΓ

)
0

∣∣∣∣ΨkΓ

〉
. (23)

V ℓΓ′kΓ
αΓ and ξ ℓΓ′kΓ

αΓ are nonvanishing when the decomposition of the direct product Γ′×Γ contains

Γ48. V kΓ
αΓ := V kΓkΓ

αΓ represents the diagonal linear VCC of a pure-spin state. In a non-degenerate

electronic system, V kΓ
αΓ is nonvanishing when Γ is totally symmetric irrep48. Thus, the selection

rule of V ℓΓ′kΓ
αα is the same as that of V NΓ′MΓ

αα . Similar expressions can be obtained for the quadratic

VCC (Section S1.2).

The irrep of pure-spin state can be decomposed as that of spatial part Γ1 and spin part Γ2 using

the representation of double group35,

|ΨkΓ⟩= |ΨkΓ1,Γ2⟩ . (24)
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This representation clarifies the transition channel based on the selection rule. For example, the

selection rule of SOCC (Eq. (20)) can be separated into the spatial and spin parts; the SOCC is

nonvanishing when the decomposition of Γ′1×Γ1 and Γ′2×Γ2 contains one of the irreps for the

three-dimensional rotations to which the orbital and spin angular momentum operators belong

(Section S1.3)35. Similarly, the linear VCC between pure-spin states (Eq. (22)) is nonvanishing

when the decomposition of Γ′1×Γ1 contains Γ as well as Γ′2 and Γ2 are the same (Section S1.3).

The VCC between pure-spin states with different spin multiplicities is vanishing because the vi-

bronic coupling operator does not operate on the spin function2.

C. Rate Constant of Intersystem Crossing

Thus far, the general expression for the nonradiative rate constant is described. Supposing

that pure-spin states do not resonate by SO coupling, the nonradiative transition can be classified

into IC and ISC based on the spin multiplicities of the large components in the initial and final

mixed-spin states. Here, pure-spin states m and n are defined by the large components of initial

and final mixed-spin states M and N, respectively, indicating that CmM and CnN are larger than the

other mixing coefficients (c.f., Eq. (18)). The nonradiative transition when the spin multiplicities

of pure-spin states m and n are the same is called the IC (Fig. 1 (a)). In contrast, the one with

the different spin multiplicities of pure-spin states m and n is called the ISC. The IC rate constant

without the SO coupling effect, i.e., V NΓ′MΓ
αΓ ≈V nΓ′mΓ

αΓ (c.f., Eq. (21)), , was previously derived26.

In the following, the ISC rate constant is obtained by using several approximations, assuming that

the spin multiplicities of pure-spin states m and n are different.

The employed approximations are summarized as follows. (i) Only a linear off-diagonal vi-

bronic coupling, which is responsible for the one-phonon process, is considered as a perturbation

to induce the transition between mixed-spin states. In other words, the higher-order vibronic cou-

pling that involves more than the one-phonon process is neglected. From this approximation, the

ISC rate constant from initial mixed-spin state M to finial state N is given by

kISC
N←M = ∑

α,β
kISC

N←M,αβ , (25)

kISC
N←M,αβ =

2π
h̄

V NΓ′MΓ
αΓ V MΓNΓ′

βΓ′
ΘαΓβΓ′ , (26)
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FIG. 1. (a) Classification of nonradiative transition into ISC and IC. (b) Schematic of nonradiative transition

accompanied by one-phonon emission.

where ΘαΓβΓ′ is the nuclear part of the ISC rate constant defined by

ΘαΓβΓ′ = ∑
ν ,ν ′

PMν(T )⟨χNν ′ |QαΓ|χMν⟩⟨χMν |QβΓ′ |χNν ′⟩δ (ENν ′−EMν). (27)

This is the density of the final vibronic states weighted by the nuclear moment factor. In Eq. (25),

the ISC rate constant is decomposed by vibrational mode.

(ii) The vibrational wavefunction is approximated to the eigenfunction of the harmonic oscilla-

tor. This is valid when the Duschinsky rotation49 and anharmonic effects on the potential energy

surface are minor. (iii) The SO coupling effect on the diagonal VCC is neglected, i.e., V MΓ
αΓ ≈V mΓ

αΓ

and V NΓ′
αΓ ≈V nΓ′

αΓ , which is reasonable without the SO resonance of pure-spin states (Section S1.4).

This approximation corresponds to replacing the vibrational wavefunctions for mixed-spin states

M and N with the ones for pure-spin states m and n, respectively. Combining approximations (ii)
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and (iii), the initial and final vibrational Schrödinger equations are written as[
EMΓ(0)+∑

α

(
− h̄2

2
∂ 2

∂Q2
αΓ

+
ω2

αΓ
2

Q2
αΓ

)
−EMν

]
χMν(Q) = 0, (28)

and [
ENΓ′(0)+∑

α

(
− h̄2

2
∂ 2

∂Q2
αΓ

+V nΓ′
αΓ QαΓ +

ω2
αΓ
2

Q2
αΓ

)
−ENν ′

]
χNν ′(Q) = 0. (29)

Note that, for simplicity, the reference nuclear configuration Q = 0 is taken at the equilibrium ge-

ometry of pure-spin state m, resulting in V mΓ
αΓ = 0 because of the Hellmann–Feynman theorem50,51.

The angular frequency ωαΓ is obtained by diagonalizing the Hessian of pure-spin state m at Q = 0.

Final mixed-spin state N is displaced by V nΓ′
αΓ /ω2

αΓ along vibrational modeα with respect to ini-

tial state M, and the reorganization energy of final state N is given by |V nΓ′
αΓ |

2/2ω2
αΓ (Section S1.5).

Detailed information on the potential energy surface is unnecessary in the CA representation be-

cause the CA basis does not explicitly depend on the nuclear coordinates; hence, the geometry

optimization of the final electronic state is not required.

(iv) The dependence of the SO coupling on the nuclear coordinates (Eq. (23)) is neglected

because this is considered to be smaller than vibronic coupling (Eq. (22))8,15. Then, the off-

diagonal VCC between mixed-spin states is written as (Section S1.4)

V NΓ′MΓ
αΓ =C∗nNCnMV nΓ′

αΓ + ∑
k ̸=n

C∗nNCkMV nΓ′kΓ
αΓ + ∑

ℓ̸=m
C∗ℓNCmMV ℓΓ′mΓ

αΓ . (30)

From Eqs. (21) to (30), CmM and C∗nN are supposed to be larger than the other coefficients, i.e.,

the product of the small mixing coefficients is neglected, and V mΓ
αΓ is set to 0 by taking Q = 0 at

the equilibrium geometry of pure-spin state m. The three terms in Eq. (30) have the same order.

The first term corresponds to the direct transition in the pure-spin CA representation. The second

and third terms correspond to the indirect transitions mediating pure-spin states k and ℓ, having

the same spin multiplicities as n and m, respectively (Figs. S1, S2, and Table S2). The compari-

son in the transition matrix element between the mixed-spin and pure-spin CA representations is

discussed in Section S1.6 based on the effective Hamiltonian approach52,53, wherein the mixing

coefficients are expressed using the non-degenerate stationary perturbation theory. The difference

mainly appears in the direct transition term, which becomes the SOCC between electronic states

m and n in the pure-spin CA representation and the diagonal VCC of pure-spin state n in the

mixed-spin CA representation. In other words, the ISC rate constants within the mixed-spin and

pure-spin CA approximations give similar numerical results when the direct SOCC is vanishing.
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The selection rule of the ISC rate constant, which can be divided into that of the electronic

and vibrational parts (Eq. (26)), is described. A vibrational mode that gives non-zero off-diagonal

VCC between initial and final electronic states, V NΓ′MΓ
αΓ , is called a promoting mode54. This mode

is responsible for electronic transition through one-phonon emission and absorption. In contrast,

a vibrational mode with non-zero diagonal VCC of final electronic state, V NΓ′
αΓ (approximated

to V nΓ′
αΓ in this study), is called an accepting mode54 because this mode, along which a potential

energy surface is displaced, mainly accepts excess electronic energy. The promoting and accepting

modes cannot be distinguished when the irreps of promoting and accepting modes are the same.

The nuclear part, ΘαΓβΓ′ , is nonvanishing when α = β or when both α and β are accepting modes
26. Thus, the ISC rate constant, kISC

N←M,αβ , is nonvanishing when α = β with α being a promoting

mode or when α ̸= β with α and β being both promoting and accepting modes (that is, when

promoting and accepting modes cannot be distinguished).

D. Nuclear Part of the Intersystem-Crossing Rate Constant

The nuclear part of the ISC rate constant is described. For tetracene, as discussed in Section

4.1, kISC
N←M,αβ with α ̸= β is vanishing because the promoting and accepting modes for the ISC can

be distinguished according to the selection rule of vibronic coupling. Therefore, only the diagonal

vibrational term is described below Omitting the irreps of electronic states and vibrational mode

for simplicity, Θα := Θαα can be written as 26

Θα = ∑
να

Pmνα (T )
[
(να +1)h̄

2ωα
F(α)(+h̄ωα)+

να h̄
2ωα

F(α)(−h̄ωα)

]
. (31)

Here, F(α)(E) is the FC envelope excluding vibrational mode α ,

F(α)(E) = ∑
ν ̸∋να

∑
ν ′ ̸∋ν ′α

∏
γ ̸=α
| ⟨ν̄ ′γ |νγ⟩ |2δ (EN−EM + ∑

γ ̸=α
h̄ωγ(ν ′γ −νγ)+E), (32)

where |νγ⟩ and |ν ′γ⟩ are the initial and final single-mode vibrational states, respectively, and EN−

EM is the electronic energy gap (Eqs. (S21) and (S22)). The multi-mode vibrational state, |χMν⟩, is

expressed as a product of the single-mode vibrational states, |νγ⟩, without the Duschinsky rotation

effect. Eq. (31) can be understood as an analogy to photon emission and absorption55,56. The first

term in Eq. (31) indicates that the ISC occurs at E =+h̄ωα through the one-phonon emission with

vibrational energy h̄ωα (Fig. 1 (b)), whereas whereas the second term with E = −h̄ωα indicates

the one-phonon absorption 26. The phonon emission and absorption processes are dominant when
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a final state is energetically lower and higher than an initial state, respectively. An example of the

latter cases is the reverse ISC from T1 to S1 utilized in thermally activated delayed fluorescence

for organic light-emitting diodes57. The phonon absorption occurs when the initial vibrational

excited states are populated, i.e., να ̸= 0, at a finite temperature. For the reverse ISC from T1

to S1, the indirect transition that mediates the triplets energetically higher than T1 is important

(Fig. S2 (c))58,59.

The FC overlap integral between the displaced harmonic oscillators is given by60,61

⟨ν ′γ |νγ⟩=

√
νγ !ν ′γ !

2νγ+ν ′γ
e−
|gn

γ |2

4

min[νγ ,ν ′γ ]

∑
l=0

(−1)νγ−l2l |gn
γ |νγ+ν ′γ−2l

l!(νγ − l)!(ν ′γ − l)!
, (33)

which depends on the dimensionless diagonal VCC defined by

gn
γ =

V n
γ√

h̄ω3
γ

. (34)

Note that ⟨ν ′γ |νγ⟩ = δν ′γ ,νγ when gn
γ = 0, or when the final electronic state is not displaced with

respect to the initial state. The accepting mode that gives nonzero gn
γ contributes to broadening

the FC envelope and, hence, receiving the excess electronic energy after the phonon emission and

absorption.

The computational cost of the FC envelope in the energy representation (Eq. (32)) is high be-

cause the summation over many vibrational quantum numbers is necessary. This problem can be

circumvented by the Fourier transformation of the FC envelope from the energy to time represen-

tations. The FC envelope in the time representation is given by 38,39

F(α)(E) =
1

2π

∫ ∞

−∞
dτ ρ(α)(τ)ei(EN−EM+E)τ , (35)

where τ is the time divided by h̄ and ρ(α) is the correlation function of vibrational states without

including vibrational mode α . For displaced harmonic oscillators, ρ(α) is given by 62,

ρ(α)(τ) = ∏
γ ̸=α

ργ(τ), (36)

ργ(τ) = exp

(
−
|g2

γ |2

2
(2nγ +1)+

|gn
γ |2

2
(nγ +1)eih̄ωγ τ +

|gn
γ |2

2
nγe−ih̄ωγ τ

)
, (37)

where nγ = (eh̄ωγ/kBT − 1)−1 (kB is the Boltzmann constant) is the number of excited vibrations

of mode γ in thermal equilibrium. nγ → 0 in the limit of T → 0 K. In nature, the density of final
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vibronic states is continuously broadened by neglected interactions, such as rovibronic interac-

tions and interactions with the surrounding environment. This broadening can be approximately

expressed using the Gaussian function with linewidth σ ;

F(α)(E) =
1

2π

∫ ∞

−∞
dτ ρ(α)(τ)e−σ2τ2/2ei(EN−EM+E)τ . (38)

The Gaussian function is usually employed to describe inhomogeneous broadening arising from

various interactions with different strengths 2,38.

E. Vibronic Coupling Density

The irreps of electronic states and vibrational modes are omitted for simplicity. The VCD is

given by an integrand of the VCC27–29,

V NM
α =

∫
dx ηNM

α (x), (39)

where x= (x,y,z) is the three-dimensional Cartesian coordinate and

ηNM
α (x) =

 ∆ρNM(x)× vα(x) (N = M)

ρNM(x)× vα(x) (N ̸= M)
. (40)

ηN
α (x) := ηNN

α (x) is the diagonal VCD and ηNM
α (x) with N ̸= M is the off-diagonal VCD.

∆ρNM(x) and ρNM(x) are the electron density difference and overlap density between electronic

states ℓ and k, respectively (Section S1.6). vα(x) is the potential derivative of vibrational mode

α . The VCD elucidates the local picture of vibronic coupling from electronic and vibrational

structures separately.

III. METHOD OF CALCULATION

The ISC rate constant of tetracene was calculated using Eqs. (25) and (26), wherein the off-

diagonal VCC was evaluated from Eq. (30) (the mixing coefficients are obtained by diagonalizing

Eq. (19)) and the nuclear part from Eqs. (31), (36), (37), and (38). The Fourier transform in

Eq. (38) was performed using FFTW3 63. Photoluminescence quantum efficiency (PLQY) was

evaluated from the ISC, IC, and fluorescence rate constants (Section S1.7). The SOCC, VCC,

and VCD were computed using in-house codes. The computational method for the SOCC was

described in Ref. 64 and for the VCC and VCD were described in Refs. 29 and 44.
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The ground and excited electronic structures of tetracene were calculated at the B3LYP/6-

31G(d,p) and TD-B3LYP/6-31G(d,p) within the Tamm–Dancoff approximation, respectively,

based on density functional theory (DFT). The solvent effect was included through the polarizable

continuum model (PCM) 65. B3LYP best reproduces the experimental energy difference of S1–T1

for tetracene 66,67 among B3LYP, M06-2X, and ωB97XD functionals (Table S3). Also, B3LYP

reproduces well the lineshape and wavelength of the experimental fluorescence spectrum66 (Fig.

S3). These results indicate that this functional is suitable for the calculations of tetracene. A

linewidth of the Gaussian function that reproduces the lineshape of the experimental fluores-

cence spectrum is 200 cm−1 (Table S4). This computational condition for the density of final

vibronic states is used to calculate the fluorescence, IC, and ISC rate constants. The electronic and

vibrational structures were computed using Gaussian 16 Revision C.01 68.

IV. RESULTS

A. Rate Constant of Intersystem Crossing

The electronic structures of tetracene in cyclohexane solution were calculated. The geometry-

optimized structure in the S1 excited state was D2h symmetry, which was confirmed to be stable

by vibrational analysis. The irreps of the spin functions in D2h symmetry are given by (Tables S5

and S6)

E1/2,g⊗E1/2,g = {Ag}⊕B1g⊕B2g⊕B3g, (41)

where { } represents the antisymmetric product. A table of Clebsch–Gordan coefficients 69,70

shows that the spin-singlet belongs to Γ2 = Ag, whereas the spin-triplet belongs to Γ2 = B1g, B2g,

and B3g. The spin-triplet with B1g irrep is of the spin projection 0. The linear combination of the

spin triplets with the B2g and B3g irreps gives those of the spin projections ±1.

Figure 2 (a) shows the energy levels of pure-spin states at the S1 optimized structure. The spin-

singlets from S1 to S3 and spin-triplets from T1 to T5 are considered as a model space to obtain

the mixed-spin states. The nonvanishing SOCCs are for S1-T3 (0.52 cm−1), S1-T4 (1.41 cm−1),

and S3-T1 (1.36 cm−1) in the x component of the angular momentum operator (Table S7). Table I

summarizes the irreps of the pure-spin states The pure-spin states with the same irreps Γ are mixed

by the SO coupling. Specifically, S1, T3, and T4 constitute the mixed-spin states with the B1u irrep,

and S3 and T1 constitute the mixed-spin states with the B2u irrep.
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Figure 2 (b) shows the energy levels of the mixed-spin states, which can be classified into those

whose large components are spin-singlet and spin-triplet since the pure-spin states do not resonate

by the SO coupling (see Table S8 for the mixing coefficients).

TABLE I. Irreps of pure-spin state Γ, and its spatial part Γ1 and spin part Γ2. Γ is obtained by the direct

product of Γ1 and Γ2.

Γ Γ1 Γ2 Γ Γ1 Γ2 Γ Γ1 Γ2

S1 B1u B1u Ag T2 B2g B3g B1g T4 B3u B2u B1g

S2 B3g B3g Ag B1g B3g B2g Au B2u B2g

S3 B2u B2u Ag Ag B3g B3g B1u B2u B3g

T1 Au B1u B1g T3 B3u B2u B1g T5 B2g B3g B1g

B3u B1u B2g Au B2u B2g B1g B3g B2g

B2u B1u B3g B1u B2u B3g Ag B3g B3g

The ISC from the mixed-spin state 4B1u, whose large component is S1, to the energetically

close mixed-spin state 5Ag, which is equal to T2 because of no mixing with the spin-singlets, was

calculated. The mixed-spin states 4B1u and 5Ag are written as

|Ψ̃4B1u⟩=CS1 |ΨS1B1u⟩+CT3 |ΨT3B1u⟩+CT4 |ΨT4B1u⟩ , (42)

|Ψ̃5Ag⟩= |ΨT2Ag⟩ , (43)

where CS1 ≈ 1.00, CT3 ≈−8.80×10−5i, and CT4 ≈−1.93×10−4i (Table S8) represent the mix-

ing coefficients of S1, T3, and T4 in 4B1u, respectively. The ISC from 4B1u to 6B1g (|Ψ̃6B1g⟩ =

|ΨT2 ,B1g⟩) and 7B2g (|Ψ̃7B2g⟩ = |ΨT2 ,B2g⟩), which are degenerate with 5Ag, are symmetry-

forbidden, as discussed below. In addition, the ISC from 4B1u to the mixed-spin states whose

large components are T1, T3, T4, and T5 are < 100 s−1. Table II shows the calculated ISC

rate constant from 4B1u to 5Ag as well as the IC and fluorescence rate constants from S1 to S0

at T = 300 K. The computational results reproduce the experimental rate constants and PLQY

well40. The calculated IC rate constant is small because of the large energy gap between S1 and

S0 (2.55 eV), as predicted by the experiments1. Although in Table II the linewidth of the Gaussian

function is set to 200 cm−1, which reproduces the lineshape of the fluorescence spectrum, the

dependence of the rate constants on the Gaussian function is not strong (Table S9).
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FIG. 2. (a) Energy levels of pure-spin states at the S1 optimized structure. Irreps of the spatial part Γ1 are

given in parenthesis. The absolute values of the nonvanishing SOCCs between spin-singlets and -triplets

are written. (b) Energy levels of mixed-spin states with their irreps Γ. The left and right columns are the

mixed-spin states whose large component is the spin-singlets and spin-triplets, respectively.

The contributing factors to the ISC rate constant from initial mixed-spin state 4B1u to final state

5Ag are examined from its vibrational-mode decomposition. The reducible representation of the

vibrational modes of tetracene in D2h symmetry is decomposed as follows:

Γvib(D2h) = 15Ag +6B1g +7B2g +14B3g +7Au +14B1u +14B2u +7B3u. (44)
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TABLE II. Calculated rate constants of fluorescence and IC from S1 to S0, rate constant of ISC from 4B1u to

5Ag, and PLQY for tetracene in cyclohexane at T = 300 K. The density of final vibronic states is expressed

using the Gaussian function with a linewidth of 200 cm−1.

kf /s−1 kIC /s−1 kISC /s−1 Φ

Calc. 3.13×107 5.59×102 9.44×107 0.25

Exp.40 3.49×107 8.55×107 0.29

The off-diagonal VCC between mixed-spin states 4B1u and 5Ag is nonvanishing when the irrep

of the vibrational mode is B1u; the promoting mode belongs to B1u irrep. The diagonal VCC of

5Ag is nonvanishing when the irrep of the vibrational mode is Ag; the accepting mode belongs

to Ag irrep. Since the irreps of the promoting and accepting modes are different, the vibrational

cross-term (α ̸= β ) of the ISC rate constant is vanishing. Thus, the vibrational diagonal term, i.e.,

kISC
N←M,α := kISC

N←M,αα , is considered in the following.

The off-diagonal VCC based on the mixed-spin basis is expressed using the pure-spin basis.

From Eqs. (42) and (43), the off-diagonal VCC between 4B1u and 5Ag is given by

V 5Ag4B1u
αB1u

=CT3V
T2AgT3B1u
αB1u

+CT4V
T2AgT4B1u
αB1u

, (45)

which comprises the linear combination of the off-diagonal VCCs between T3 and T2 as well as

T4 and T2. This corresponds to the indirect transition from S1 to T2 mediating T3 and T4 in the

pure-spin representation. V T2AgT3B1u
αB1u

and V T2AgT4B1u
αB1u

in Eq. (45) are nonvanishing because the irrep

of the spin part of |ΨT2Ag⟩ is the same as that of |ΨT3B1u⟩ and |ΨT4B1u⟩, i.e., Γ2 = B3g (Table I).

The off-diagonal VCCs between 4B1u and 6B1g/7B2g are vanishing from the selection rule of the

spin part, which results in forbidding the ISC from 4B1u to 6B1g and 7B2g.

Figures 3 (a)–(c) show the rate constant and its electronic and nuclear parts for the ISC from

4B1u to 5Ag plotted with respect to vibrational modes (Eq. (26)). The numbering of the vibrational

modes is in the ascending order of the frequency. The promoting modes that give the largest

and second-largest contributions to the ISC rate constant are modes 4 and 20, respectively. In

particular, the ISC promoted by mode 4 is dominant because of the large nuclear part. The reason

is understood from the FC envelope without promoting mode 4, F(4)(E) (Fig. 3 (d)) (Eq. (38)).

The excess excitation energy after the phonon emission and absorption of promoting mode 4 is

accepted by the FC envelope at E =+h̄ω4 and E =−h̄ω4, respectively (Eq. (31)). The FC factor
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of the 0–0 transition, of which position corresponds to the energy gap between 4B1u and 5Ag, is

located at E = +5.9 meV. Since the energy gap is small, the excess excitation energy is mainly

accepted by the final vibrational ground state characterized by the 0–0 peak of the FC factor. The

accepting modes, such as modes 9 and 62 with the large dimensionless diagonal VCCs (Fig. S4),

contribute less to accepting the excitation energy in the present case. Note that the FC envelope

drastically decreases with respect to the energy. Therefore, the increase of the phonon emission

and absorption energies of the promoting mode leads to a small nuclear part (see Fig. S5 for the

FC envelope without promoting mode 20).

The FC envelope without promoting mode 4 has a larger value at E = +h̄ω4 than E = −h̄ω4

(Fig. 3 (d)), indicating that the ISC mainly proceeds through the phonon emission. In particular, the

phonon emission with ν4 = 0, which corresponds to the spontaneous emission in the photon case,

is a major process (Table S10). Nevertheless, the phonon emission and absorption with ν4 ≥ 1

also occurs because the vibrationally excited states of mode 4 with a small frequency of 161 cm−1

are populated to some extent at T = 300 K. In contrast, the phonon absorption of promoting mode

20 does not much occur because of the large frequency, ω20 = 620 cm−1 (Table S10).

Figure S6 shows the ISC rate constant plotted by changing the energy gap between S1 and T2

while fixing the other parameters. The ISC rate constant drastically decreases with the increase of

the energy gap. This behavior reflects the lineshape of the FC envelope that decays exponentially

concerning the energy gap, i.e., the energy gap law 6. The upper limit of the rate constant is

determined by the maximum value of the FC envelope that depends on the FC factors and energy

gap.

B. Vibronic Coupling Density Analysis

It was found that vibrational mode 4 is the primary promoting mode for the ISC from 4B1u to

5Ag. The overlap density between 4B1u and 5Ag is given by

ρ5Ag4B1u =CT3ρT2T3 +CT4ρT2T4 , (46)

where ρT2T3 and ρT2T4 are the overlap densities between T3 and T2 as well as T4 and T2, respec-

tively. T2 mainly comprises the HOMO-1–LUMO and HOMO–LUMO+1 transitions, whereas T3

comprises the HOMO-2–LUMO transition and T4 the HOMO–LUMO+2 transition (Table S11).

Hence, the overlap density between T3 and T2 can be approximately expressed as the HOMO-2–
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FIG. 3. (a) Rate constant, kISC
N←M,α , and its (b) electronic part, |V NΓ′MΓ

αΓ |2 and (c) vibrational part, ΘαΓ, for the

ISC from initial mixed-spin state 4B1u to final state 5Ag plotted with respect to vibrational modes. V NΓ′MΓ
αΓ

is nonvanishing when Γ = B1u. ΘαΓ is nonvanishing no matter Γ is. The primary promoting modes are

modes 4 and 20. (d) FC factors (vertical line) and envelope without ipromoting mode 4. 00
0 represents the

FC factor of the 0-0 transition. 90
1 and 620

1 represent the FC factors between the initial vibrational quantum

number 0 and final number 1 for the accepting modes 9 and 62, respectively.

HOMO product and the one between T4 and T2 as the LUMO+1–LUMO+2 product (the molec-

ular orbitals are shown in Fig. S7). Figure 4 shows the results of the off-diagonal VCD analysis

(Eq. (40)) between T4 and T2 at the S1 optimized structure. The overlap density has a large dis-

tribution on C2 (and its symmetric counterpart C3, C8, C9) as well as C5a (and its symmetric

counterpart C11a), which couples strongly with the potential derivative of mode 4 with C2–C3

and C5a–C11a vibrations. Consequently, the off-diagonal VCD is localized on C2 and C5a, in-

dicating that the off-diagonal VCC between T4 and T2 originates from these sites. Introducing
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4567

9

8

10 11 12
(a) (b) (f)

(c) (d) (e)

4a5a6a

12a11a10a

-2.20

-0.96
+0.73

-0.15+0.55

FIG. 4. (a) Atomic labels of tetracene, (b) vibrational mode 4, (c) overlap density between T4 and T2, ρnm,

(d) potential derivative of mode 4, vα , (e) off-diagonal VCD, ηnm,α , and (f) atomic decomposition of the

off-diagonal VCC in 10−4 a.u. Isosurface values of (c), (d), and (e) are 1× 10−3, 5× 10−3, and 5× 10−6

a.u., respectively.

substituents on C2, C3, C8, and C9 that withdraw the overlap densities on these sites is expected

to reduce the off-diagonal VCC values.

V. CONCLUSIONS

We derived an analytical expression for the nonradiative rate constant based on Fermi’s golden

rule within the mixed-spin CA approximation, wherein the nonradiative transition is regarded as

vibronically-induced phonon emission and absorption processes between mixed-spin states, or the

eigenstates of the electronic Hamiltonian that contains the SO coupling. The vibrational modes

are classified into the promoting and accepting modes, which are responsible for the phonon emis-

sion/absorption and accepting excess excitation energy after the phonon emission/absorption, re-

spectively, according to the selection rule of vibronic coupling. The ease of accepting the excita-

tion energy is governed by the FC envelope that depends on the FC factors and energy gap between

initial and final states. The mixed-spin CA representation provides a unified treatment of the pho-

tophysical processes, i.e., IC, ISC, fluorescence, and phosphorescence, aside from the differences

in the driving force (vibronic coupling or electron-photon coupling) and spin multiplicity change

for the transition. The ISC rate constants within the mixed-spin and pure-spin CA approximations

give similar numerical results when the direct SOCC between initial and final pure-spin states is

vanishing.
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The obtained expression was applied to tetracene. The calculated ISC rate constant from the

mixed-spin state whose large component is S1 to the one whose large component is T2 reproduces

the experimental result well. The primary promoting mode for the ISC process is mode 4 with a

frequency of 161 cm−1. The excess excitation energy after the phonon emission and absorption

of mode 4 is mainly accepted by the final vibrational ground state. The off-diagonal VCC of

mode 4 originates from the center and edge C atoms of tetracene. Thus, based on the quantitative

calculation of the rate constant, we identified the important vibrational mode for ISC and clarified

the origin of the vibronic coupling of that mode, which can be applied to rational molecular design

with the controlled ISC process.
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