
 1 

Copper-Catalyzed Cross-Coupling of Organozincs with Carboxylic Acids 
via Acyloxyphosphonium Ions: Direct Access to (fluoro)Ketones 

Md Nirshad Alam,[a] Aanya Jindal,[a]  Daniel J. Hubin,[a] Morgan L. Haynes,[a] Nicholas M. Edwards,[a] 
Tomohiro Kimura[a] and Socrates B. Munoz[a]* 

[a] Department of Chemistry, Kansas State University, Manhattan, KS-66506 (USA) 

Graphical Abstract: 

 

ABSTRACT: Acyloxyphosphonium ions readily and conveniently prepared in-situ from parent -difluorinated carboxylic 
acids and commodity chemicals are established as convenient acyl electrophiles that to be used in a copper-catalyzed cross-
coupling protocol with organozinc reagents as carbon nucleophiles to smoothly afford -difluoroketones. Several carbox-
ylic acids can be employed efficiently using this copper-catalyzed protocol.  In the case of CF2H- and CF3-ketones di- and tri-
fluoroacetic acid can be employed under copper-free conditions. The transformations proceed under mild reaction conditions 
(0 oC-RT), produce the target compounds in short reaction times (45 min) and exhibit good chemoselectivity and functional 
group compatibility. Notably, this methodology was also demonstrated useful for the synthesis of non-fluorinated ketones 
(benzophenones) directly from benzoic acids.

Ketones play a focal role in organic chemistry, and they are present in many naturally occurring compounds and active phar-
maceutical ingredients (APIs). 1  Furthermore, their role in organic chemistry is further highlighted by their utility in a wide 
variety of chemical elaborations.1b Conventionally, ketones can be accessed via direct uncatalyzed or transition-metal-cata-
lyzed acylation using acyl electrophiles such as acyl halides,2 (thio)esters,3 activated amides,4 or anhydrides. 5 However, these 
protocols require preparation/isolation of these substrates, usually from the parent carboxylic acids. Thus, streamlined, and 
direct access to ketones from readily available carboxylic acids or through their in-situ (pre)activation is still highly sought-
after.6  

On the other hand, even though fluorine is 13th most abundant element in the earth’s crust 7 only a handful of naturally occur-
ring organofluorine compounds have been identified.7c Accordingly, access to organofluorine compounds rely on synthetic 
methodologies to incorporate fluorine or fluorinated motifs into organic molecules. Thus, development of streamlined meth-
ods to access organofluorine compounds represents a highly desirable and worthwhile endeavor.   

Because of their enhanced lipophilicity, membrane permeability and increased metabolically stability, organofluorine com-
pounds including ,-difluoroketones have increasingly found widespread applications in pharmaceuticals, material science, 
and agrochemicals.8 (Figure 1).  

Accordingly, considerable efforts have been devoted to developing methods for accessing RCF2-ketones (R = H, Ar, Alkyl). 
Along these lines, optimal synthetic methods toward these targets should be designed with the fluorine atom supply chain in 
mind.9 Historically, most synthetic methods to access -difluoro ketones rely on electrophilic α-difluorination of (di)car-
bonyl compounds or derivatives (imines/enamines),10 electrophilic fluorination of alkynes,11 transition-metal-catalyzed,12a-d 
metal-free,12e-f or visible photoredox-catalyzed13  functionalization of gem-difluorinated (silyl)enolates, amongst other meth-
ods.14  
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Figure 1. Biologically relevant -difluoroketones. 

Despite the availability of the above-mentioned strategies, the development of a synthetic strategy that directly utilized -
difluorinated acids under mild and practical conditions would bring significant advantages into the synthetic chemist toolbox.  
However, although conceptually simple, current reports following this strategy present serious drawbacks. For example, 2.4 
equiv. of BuLi must be added to difluoroacetic acid (DFA) at -78 oC over a period of 3 h to obtain only 48% of the target CF2H 
ketone.15a  Similar cryogenic conditions must be used in the case of RLi or RMgX addition to -difluoro esters15b or amides.15c-

e The high reactivity of these organometallic reagents calls for a strict control of the reaction conditions in order to prevent 
double addition by-products, and in most cases, the use of cryogenic conditions is required, thereby hampering the method’s 
synthetic utility, particularly for large scale applications. To circumvent these limitations, considerable efforts have been 
made in recent years that rely on difluoroalkylation of acyl electrophiles. For example, Dilman and coworkers reported a Cu-
catalyzed cross-coupling between dithiocarbamates with gem-difluorinated organozinc reagents16a as well as the reaction of 
acyl chlorides with Ph3P=CF2

16b. Similarly, (NHC)AgCF2H,16c PhSCF2TMS16d and TMSCF2H16e have been employed for difluoro-
methylation of acyl chlorides or Weinreb amides. However, these processes necessitate the preparation and isolation of acyl 
electrophiles and/or the use of expensive nucleophilic difluoroalkylation reagents (Scheme 1A).   

Scheme 1. Representative routes to -Difluoro ketones from acyl electrophiles and our work from carboxylic acids. 

 

An important breakthrough was recently disclosed by Amgoune and coworkers where a Pd-catalyzed cross-coupling of N-
difluoroacyl glutarimides with ArB(OH)2 afforded the target products after 16 h at 80 oC.17a This work stands as the first report 
on direct installation of the RCF2C(O)- (R = Ar, H) motif into carbon nucleophiles through a catalytic process.17b However, it 
still presents some limitations as the required N-difluoroacyl electrophiles must be prepared from the parent -difluoro 
carboxylic acids and are obtained in low to moderate (44-75%) yields. A similar strategy was recently disclosed by Ban, Dai 
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and coworkers17c using fluorinated thioesters under Liebeskind-Strogl coupling conditions.3b In this fashion CF2H-, CF3- and 
CF2CF3-ketones were accessed under Pd/Cu co-catalyzed conditions from ArB(OH)2 at room temperature after 18 h of reac-
tion time. In this case, no information of the yield of required thioester electrophiles was provided (Scheme-1B).    

Stemming from our interest in organofluorine chemistry18 and inspired by our recent report on deoxygenative di/trifluoro-
methylation of carboxylic acids via copper-mediated coupling of acyloxyphosphonium ions19 and (DMPU)2Zn(CF2H)2

20a 
(Scheme 1C) we set out to develop an improved protocol to access -difluoro (as well as non-fluorinated) ketones directly 
the parent carboxylic acids.  
 
In pursuit of a synthetic protocol of practical utility, several factors had to be addressed: (i) avoid any isolation of acyl elec-
trophiles, (ii) take advantage of the widespread availability of -difluoro acids (and carboxylic acids in general), and (iii) 
capitalize on the enhanced stability, balanced reactivity and low cost of non-fluorinated organozinc reagents.20b-d Accordingly, 
we envisioned that acyloxyphosphonium ions I derived from inexpensive gem-difluoro acids and formed in-situ upon the 
reaction with PPh3/NXS (X = Cl or Br) reagent system, would be suitable electrophilic coupling partners to achieve a facile 
difluoroacylation of organozinc reagents as carbon nucleophiles. (Scheme 1D).  Despite the development of several synthetic 
methodologies in recent years, to the best of our knowledge, the synthesis of CF2H- or CF2Ar-ketones directly from α,α-
difluoro carboxylic acids under practical conditions (0 oC-RT) remains elusive. 19g In this work, we delineate our results in the 
development of such a protocol. 
 
Initial investigations were performed using commercially available α,α-difluorophenylacetic acid 1a under our previously 
optimized conditions for deoxydifluoromethylation of benzoic acids (PPh3/NBS; 1.4 equiv each).  The α,α-difluoroacyloxy-
phosphonium ion generated under this conditions, delivered ketone 2a  in only 39% yield (19F NMR) upon reaction with 
Ph2Zn (1.2 equiv) in the absence of Cu-catalyst. After extensive optimization studies,21 optimal results were obtained by treat-
ment of 1a with N-chlorosuccinimide (PPh3/NCS; 1.4 equiv each) and PhZnCl (2.4 equiv) under catalytic amounts of CuI (20 
mol%). In this case, 2a was smoothly generated in 64% yield as determined by 19F NMR spectroscopy in only 45 min. With 
these conditions in hand we explored the generality and scope of different organozinc halides, and the results of this Cu-
catalyzed procedure are shown in Scheme 2.  
 

Scheme 2. Cu-Catalyzed Synthesis of α,α-Difluorophenyl Ketones[a] 

 
[a] Conditions: 0.25mmol of 1a (1 equiv), PPh3 (1.4 equiv), NCS (1.4 equiv), RZnCl (2.4 equiv) and CuI (0.05 mmol); isolated yields. [b] Yields in paren-
thesis as determined by 19F NMR using PhOCF3 as internal standard. See Supporting Information for full experimental details. 

First, the scope of arylzinc chlorides was studied using 1a as the model substrate. ArZnCl nucleophiles bearing electron-do-
nating, electron-neutral and electron-withdrawing groups all afforded the target ketones 2a-2k in satisfactory yields in fast 
reaction times. Methyl and methoxy substituents afforded 2b-2d in good yields. Chloro- and Fluoro-substituted ArZnCl at 
different positions all cleanly afforded the corresponding ketones 2e-2g in good yields. Electron-deficient arylzincs were also 
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well tolerated and 4–CN-, 4–CF3 and pentaflurophenylzinc halides gave the target products 2i, 2j and 2k in 80-93% yields as 
determined by 19F NMR. In some cases, product loss during purification could not be avoided (2j, 64% isolated yield). Though 
a modest isolated yield of 2j was obtained, this result is notable as it is in stark contrast with the results described by Amgoune 
in which attempts to prepare 2j using N-difluoroacyl glutarimide and C6F5-B(OH)2 were unsuccessful.17a As expected, the 
bulkier mesityl group led to low yields of 2k. Gratifyingly, alkylzinc halides (benzyl, phenethyl and cyclohexyl) were also well 
tolerated under our reaction conditions and in these cases, excellent yields of 2l and 2n were obtained, albeit phenethyl de-
rivative 2m was obtained in slightly lower yield (59%). At the present stage, our method does not tolerate the 3-pyridyl 
functionality which represents some limitations. Current investigations are underway to overcome these limitations.   

 

Motivated by the success of different types of aryl- and alkylzinc nucleophiles, we were eager to explore the generality or our 
protocol using zinc acetylides as nucleophilic coupling partners. Alkynes are a versatile functional group for the synthesis of 
valuable organic compounds22 and the corresponding propargylic ketones would represent valuable handles for further 
chemical elaborations affording products containing a gem-difluoro tag. In this context, propargyl ketones (2o-2p) were iso-
lated upon reaction with the corresponding alkynylzinc halides. The parent phenylethynylzinc chloride as well as the 4-OMe 
substituted organozinc nucleophile afforded 2o and 2p in synthetically useful isolated yields (56% and 59%, respectively).  

Implementation of this strategy using widely available difluoroacetic acid (DFA) as the engender of difluoroacetyl functional-
ity enabled us to access valuable difluromethyl ketones 3 in a practical and expedient fashion (Scheme-3).  Notably, in this 
case, the reaction proceeds well in the absence of Cu catalyst, likely due to the high electrophilicity of the -difluoroacylox-
yphosphonium species II. This contrasts with the need of Cu-catalysis for smooth preparation of products 2. Furthermore, in 
this case, PPh3/NBS in combination with diorganozinc reagents (1.2 equiv) was found to provide the best results under oth-
erwise identical conditions to those used for -difluoro acids 1.21 

Aromatic diorganozinc reagents (Ar2Zn) bearing electron-neutral (3a) and electron-donating groups such as 4-OMe and 4-
Me (3b-3c) smoothly afforded the target CF2H ketones in high yields. Similarly, diorganozincs with 3-OMe, Fluoro-, Chloro- 
and electron-withdrawing groups such as 4-CN and 4-CF3 were equally effective to achieve this transformation (3d-3i). De-
spite the excellent yields as determined by 19F NMR spectroscopy, in some cases, the high volatility of the CF2H ketone product 
precluded us from obtaining high isolated yields (3e). As expected, sterically encumbered mesityl-substituted CF2H ketone 3j 
could be obtained only in modest isolated yield (46%). However, it should be noted that the previously reported route to 3j 
relies on a multistep sequence of reductive difluoroalkylation of Mesityl-CHO with BrCF2CO2Et/Et2Zn, oxidation, and decar-
boxylation (78% over three steps).23  Even though a modest yield of 3j was obtained here, our method can certainly be con-
sidered complementary given its operational simplicity (single step, 45 min) and the ready availability and low cost of the 
starting materials. 

 
Scheme 3. Synthesis of Difluoromethyl Ketones[a] 

 
[a] Conditions: 0.25mmol of DFA, PPh3 (1.4 equiv), NBS (1.4 equiv) and R2Zn (1.2 equiv); isolated yields shown. [b] Yields in parenthesis as determined 
by 19F NMR using PhOCF3 as internal standard. [c] Unoptimized results; from PhZnCl and TFA. See Supporting Information for full experimental details. 
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More reactive dialkylzinc reagents pleasingly afforded the target products 3k and 3l without double addition by-products 
being detected, a common side reaction commonly encountered with electrophilic fluoroketones and carbon nucleophiles.14g 
Similarly to the synthetic protocol towards products 2, this protocol currently has a limitation and 3-Pyridyl organozincs 
failed to deliver the corresponding products.  The reasons for these unsatisfactory results are yet unclear. On the other hand, 
dialkynylzinc reagents cleanly afforded propargyl CF2H ketones 3m-3q in good isolated yields.  Interestingly, electron-defi-
cient zinc acetylides afforded 3p and 3q cleanly. This contrast to the results obtained with α,α-difluorophenylacetic acid 1a, 
which heralds to the enhanced electrophilic power of -difluoroacyloxyphosphonium ion II derived from DFA. This is fur-
ther highlighted by the fact that reaction of II with organozinc nucleophiles, proceed smoothly in the absence of Cu or other 
transition-metal catalysts. To our delight, the use of trifluoroacetic acid under otherwise identical conditions (Cu-free) af-
forded trifluoromethyl ketone 4a in 62% yield by 19F NMR (unoptimized conditions).  

In pursuit of a simple strategy for ketone synthesis and spurred by the success in the synthesis of fluoroketones 2-4 from 
fluorocarboxylic acids, we were prompted to interrogate the hypothesis of whether benzoic acids 5 would also be amenable 
substrates under the current strategy. If successful, the corresponding ketones would be rapidly accessible and this transfor-
mation would represent a complimentary approach to the well-established Pd-catalyzed Fukuyama ketone synthesis, 
Weinreb ketone synthesis, Liebeskind-Srogl coupling as well as the other previously established methods for ketone synthesis 
from acyl electrophiles2,3,4,5,6. Importantly, we have previously unambiguously demonstrated that under these conditions, acyl 
bromides are not generated from benzoic acids, but instead, acyloxyphosphonium species III is the active electrophile.20a  

The preliminary results of our investigations in this context are shown in Scheme 4. Gratifyingly, acyloxyphosphonium ions 
III derived from 4-fluoro, 4-trifluoromethyl and 2-fluorobenzoic acids (5a-5c) all gave rise to the target benzophenones prod-
ucts 6 in high yields after 45 min. As it was expected, in this case, Cu-catalysis was required to smoothly achieve the transfor-
mation with PhZnCl as the nucleophilic coupling partner and control experiments showed that in the absence of Cu catalyst, 
no ketone could be obtained.24  

Scheme 4. Direct Synthesis of Benzophenones from Benzoic Acids  

 
[a] Conditions: 0.25mmol of benzoic acids 5, PPh3 (1.4 equiv), NBS (1.4 equiv), PhZnCl (2.4 equiv) and CuI (0.05 mmol); isolated yields shown. [b] Yields 
in parenthesis as determined by 19F NMR using PhOCF3 as internal standard. See Supporting Information for full experimental details. 

 

In conclusion, a novel process to generate ArCF2-, CF2H-, CF3- and aryl ketones (benzophenones) directly from the parent 
carboxylic acids has been developed. The protocol delineated herein represents an expedient and efficient method for ketone 
synthesis that complements previously reported methods using other acyl electrophiles. Implementation of this process, with 
di- and trifluoroacetic acid, enabled a Cu-free direct di/trifluoroacetylation of organozinc reagents using inexpensive di- and 
trifluoroacetic acid. The key reactive intermediates, acyloxyphosphonium ions I-III are expediently prepared in-situ from the 
parent carboxylic acids and commodity chemicals (PPh3, NXS). An additionally important feature of these protocols include 
the fast reaction times (30-45 min) and the mild reaction conditions. More importantly, the use of organozinc reagents which 
have much greater functional group compatibility than other reactive organometallics (RMgX, RLi) allows for an overall en-
hanced practicality and functional group compatibility. We foresee that utilization of these protocols will be a useful addition 
to the synthetic chemist toolbox. Mechanistic investigations and further implementation of this versatile strategy for utiliza-
tion of carboxylic acids in catalysis are currently underway in our laboratory.  
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