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Dynamics has long been recognized to play an important role in heterogeneous catalytic
processes. However, until recently it has been impossible to study their dynamical behavior
at industry-relevant temperatures. Using a combination of machine learning potentials
and advanced simulation techniques, we investigate the cleavage of the N2 triple bond
on the Fe(111) surface. We find that at low temperatures our results agree with the well-
established picture. However, if we increase the temperature to reach operando conditions
the surface undergoes a global dynamical change and the step structure of the Fe(111)
surface is destabilized. The catalytic sites, traditionally associated with this surface, appear
and disappear continuously. Our simulations illuminate the danger of extrapolating low-
temperature results to operando conditions and indicate that the catalytic activity can only be
inferred from calculations that take dynamics fully into account. More than that, they show
that it is the transition to this highly fluctuating interfacial environment that drives the catalytic
process.
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One of the remarkable features of industrial catalysts is their stability under
extreme conditions of temperature and pressure, while being at the same time

subjected to a constant flow of reactants and products. In fact, a heterogeneous
catalyst can be described as a functional material that continuously creates active
sites with its reactants under reaction conditions (1). To explain this behavior,
already forty years ago Spencer proposed a picture of heterogeneous catalysis (2) in
which a dynamical steady state is established. This can happen in two ways: either
surface atoms become highly mobile or, more dramatically, a surface instability sets
in. However, the study of catalytic processes in such a scenario is very challenging
and until recently has proven impossible (). In fact, experimental investigations have
been limited to studying temperatures and pressures much lower than industrial ones.
In the same way, theoretical studies have assumed idealized conditions, possibly
treating the dynamic effect as a perturbation. In the lack of other information,
the microscopic behavior of the catalyst in operando conditions had to be inferred
from the low-temperature low-pressure results or from indirect interpretation of
high-temperature kinetic data.

Only recently are new technologies providing access to in situ and in operando
characterization of catalytic materials (3–5), revealing the impact that such
conditions have on their structure and corresponding activity (6, 7). In parallel,
theoretical calculations have suggested that dynamics needs to be taken into
account (8–13). However, they are often limited either by the short timescales
investigated or by the fact that they treat dynamically only a subset of the system’s
degrees of freedom. To overcome such limitations, we have recently developed new
strategies combining machine learning potentials and enhanced sampling methods
to model reactive events in realistic conditions (14–17).

We shall make use of this progress to simulate a classical catalytic process, namely
the breakage of the N2 triple bond on the (111) iron surface. This is a crucial step
of the famed Haber-Bosch catalysis and as such it has been intensively studied
(18–35). We briefly summarize the available experimental and theoretical findings
that are mostly based on low temperature investigations. From a microscopic point
of view, Ertl and coworkers (20, 22) have investigated the nature of the molecularly
adsorbed N2, measuring the change of the bond vibration frequency.

Industrial catalysis is key to the green
revolution. However, the chemistry
underlying such processes is still poorly
understood due to the high tempera-
tures at which they take place. Using
state-of-the-art methods, we simulate
the dissociative chemisorption of nitro-
gen on a clean Fe(111) surface, which
is relevant to the Haber-Bosch process.
We find that the dynamical behavior
of the surface strongly influences how
the reaction occurs as a function of
temperature. The atomistic insight
gained suggests the importance of us-
ing dynamic approaches to accurately
describe catalytic processes.
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They concluded that the absorbed molecules are oriented
either perpendicular or parallel to the surface. This was
supported by the theoretical work of Itoh et. al. (36), which
showed that the N-N bond is weakened as a consequence of
the charge transfer from the 3d orbitals of Fe to the anti-
bonding orbitals π∗ of N2, whose amount depends on the
adsorption geometry. This interpretation was later confirmed
by Freund et.al. (25).

Later, Norskov and coworkers(28) performed static DFT
calculations, confirming the scenario suggested by Ertl, but
enriching it with new atomistic details. They distinguished
between two different vertically absorbed N2 sites (γ and
δ) depending on whether the molecule sits on top of a first
or second layer atom (Fig. 1). Similarly, they predicted the
existence of two different horizontal absorption sites. In one,
N2 is in a bridge position between first layer atoms (α), while
in the other it sits in a hollow position on top of an atom of the
third layer (α′). The latter state is particularly relevant since
it is believed to be the precursor to dissociation. According
to(28), such a state can be accessed either directly from the
gas phase or via the sequence γ → δ → α → α′. Along this
pathway, the triple bond is progressively weakened: in the
α state a first π bond is transferred to two surface atoms,
followed by another one in the α′ state (33). Indeed, in the
α′ site the molecule is in contact with seven-fold coordinated
iron atoms (C7) that can more easily donate electrons to the
N2 molecule.

δγ α α'

C7

Fig. 1. N2 adsorption sites on Fe(111) from T=0 K calculations, top and side view.
Iron atoms are colored as a function of the perpendicular z position. From left to
right: (γ) and (δ) refer to the N2 on top of first and second layer atoms, respectively.
(α) refer to a bridge site between first-layer atoms. (α′) refer to a hollow site on top
of the third layer.

The higher activity of the (111) surface has been attributed
to the step structure that stabilizes the α structure and the
high density and easy accessibility of C7 atoms in the open
Fe(111) surface (37, 38). Later on, we shall refer to the set
of Fe atoms that surrounds the N2 molecule in α′ as the
χ7 environment (Fig. 1). There are good reasons to regard
this set of atoms as a catalytic site. Indeed, when the N2
molecule moves towards the α′ position the amount of charge
transferred from the iron surface to the nitrogen molecule
increases. Furthermore, once inside the site, it can rotate
between different equivalent orientations until the electronic
orbitals are properly aligned for the reaction to take place.
Thanks to these classical experiments and calculations, it
can be said that the low temperature behavior of N2 on the
Fe(111) surface is quite well understood.

Unfortunately, there are no experiments or calculations
that can confirm the chemisorption mechanism of nitrogen in

the industrial temperature and pressure range, i.e., T=650-
850 K and P=10-300 bar. An attempt has been made to
extract such information from the kinetics of ammonia syn-
thesis, under the assumption that the rate-determining step is
N2(α) → 2N (39–41). However, the kinetic parameters thus
extracted appear irreconcilable with those fitted by Ertl at
low temperatures, suggesting a different microscopic behavior
influenced by the "chemical dynamics" (1, 2) emerging at high
temperatures and possibly also by lateral interactions with
other adsorbed nitrogen (18).

Here we use modern simulation methods to investigate
the temperature dependence of the surface dynamics and the
N2 dissociative chemisorption. A number of methodological
innovations have made possible to simulate such a challenging
process. The first hurdle to be cleared is that in a catalytic
process chemical bonds are broken and formed, thus the use
of an ab initio approach is essential. However, due to their
high computational cost, ab initio simulations can only be
carried out in small systems and for short simulation times,
while realistic modeling requires studying larger systems for
longer times. A satisfactory compromise between accuracy
and efficiency can be achieved if one follows the pioneering
work of Behler and Parrinello(42) and optimize a machine
learning potential (MLP) to reproduce a suitably chosen
set of quantum mechanical calculations. However, although
the use of ML-based potentials reduces the cost of ab initio-
quality simulations by orders of magnitude, these calculations
are still too expensive and it is not possible to explore
the time scales over which these reactive processes occur.
This makes the collection of reference configurations and
thus the construction of interatomic potentials challenging.
Combining this strategy with state-of-the-art enhanced
sampling methodologies allows the time scale problem to be
circumvented (14–17, 43–49). Enhanced sampling techniques
are used here not only to bridge the time scales but also to
harvest the appropriate set of configurations on which to train
the potential. It is the fruitful combination of these two sets
of techniques that allows performing DFT-quality reactive
simulations of rare events which would otherwise be outside
the scope of both classical and ab initio simulations. Here, we
use the recently developed On-the-fly Probability Enhanced
Sampling (OPES) method (50) which is an evolution of
the widely used metadynamics technique (51, 52). Once
the simulations were completed, due to the observed high-
temperature complex behavior new analysis methods were
required to understand and describe the catalytic behavior. In
particular, we monitor the charge transferred from the metal
to the molecule. To this effect, we trained a second machine
learning model that is able to predict the charges without
the need for expensive quantum mechanical calculations.

Armed with these tools, we study the dynamics of the
Fe(111) surface and its influence on the N2 adsorption and
decomposition function of temperature. In particular, we find
two contrasting behaviors. At low temperatures, the surface
is relatively rigid and the reaction proceeds as described in the
literature. However, at higher temperatures, the atoms on the
surface become highly mobile and the stepped structure of the
surface becomes unstable. The χ7 cavities are continuously
formed and broken, with the consequence that the precursor
state α′ is destabilized, altering the reaction profile. Still,
the transition state remains predominantly that discussed
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Fig. 2. Fe(111) morphology: room temperature vs in operando condition. Top
view of final structures obtained from 20 ns molecular dynamics simulations of the
Fe(111) at T=300K (left) and T=700K (right). Atoms are colored as a function of
the Z position. Bright regions indicate adatoms, while dark regions the formation of
vacancies on the surface. The atomistic snapshots are made with OVITO (53).

in the literature. This dynamical scenario is in agreement
with Spencer’s dynamical picture and shows that there are
not static active sites. Rather, the N2 dissociation takes
place when the mobile reagent encounters the crucial surface
fluctuations.

Results

A reliable potential to study N2 on Fe(111). The first step of
this work is the construction of a potential able to describe
the properties of iron surfaces and their interaction with N2
molecules during the adsorption and dissociation processes.
To this effect, we trained a neural network-based potential on
a set of single-point calculations so as to reproduce at best
DFT energies and forces. For this procedure to be successful a
careful choice of the training data set is needed, especially to
model correctly the reactive pathways. Following our previous
experience in modeling rare events with ML potentials (14–
16), we started from a combination of enhanced and standard
ab initio MD simulations. Then, we used an active learning
procedure accelerated by metadynamics (see Methods). In
this way, we are able to collect much more diverse and
uncorrelated samples than more conventional approaches
based on standard MD simulations and at the same time
have control over the uncertainty of our potential. In fact,

whenever a configuration is encountered in this procedure
that is not well described by the potential, an ab initio
calculation is performed and these data are added to the
training set. The result of this procedure is a collection
of all the relevant configurations for studying the surface
dynamics and dissociative chemisorption of nitrogen on
the Fe(111) surface. Using the Deep Potential Molecular
Dynamics (54, 55) scheme our potential obtains a mean
absolute error (MAE) on energies of 0.60 meV/atom and on
forces of 31 meV/A, while the Root Mean Squared Error
(RMSE) is 0.81 meV/atom and 40 meV/A for energies and
forces, respectively. In the Supporting Information (SI) we
report the detailed composition of the dataset (Table S1)
and extensive validation of the ML potential (Figs. S1-S3),
with emphasis on benchmarking the behavior of the surface
against the underlying DFT electronic structure calculations
(Fig. S4).

Temperature dependence of Fe surface morphology. We first
investigate the behavior of the pristine Fe(111) surface as
a function of temperature. This study offers a number of
surprises, as evident from Fig. 2 where we compare two surface
snapshots taken at T=300 K and T=700 K after 20 ns of MD
simulations. The former is hardly distinguishable from the
equilibrium structure, while the latter exhibits a considerable
amount of disorder. At high temperature the surface is no
longer flat, the formation of hills and holes is clearly visible,
and the ordered step structure of the (111) surface is at first
sight lost. However revealing, these snapshots are unable to
fully reflect the complex dynamics that takes place in the
operando range of temperatures, and the reader is invited
to see the movies illustrating the dynamics (supplementary
material).

We turn this initial impression into a quantitative study
and follow how the surface changes as a function of tempera-
ture. In Fig. 3a we plot the temperature dependence of the
density of surface exposed atoms along the (111) direction.
In the low-temperature regime we observe only the expected
thermal broadening. However, at temperatures above 500 K
a number of atoms move to the adlayer, leaving vacancies
behind. This signals a very different behavior between a low-
temperature regime T < 500 K and a high-temperature one

Fig. 3. Fe(111) morphology and dynamics analysis as a function of temperature. a) Atomic layer distribution of atoms belonging to the surface as a function of z. The
emergence of new peaks at high temperatures denotes a roughening of the surface with the formation of adatoms (rightmost peak at 0.9 Å) and vacancies (leftmost peak at
-2.2Å). The distribution is shown only for surface atoms dynamically identified at each time step by the Alpha-Shape method. b) Mean and standard deviation of the surface
roughness measured as the standard deviation of the surface atoms’ height. c) Logarithm of the diffusion coefficient of surface atoms as a function of inverse temperature
(main panel) and diffusion vs temperature (inset).
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T > 600 K, which is also reflected in the increase of surface
roughness (Fig. 3b). The change in these two properties is
accompanied by an increase of the surface atom diffusion
coefficient (Fig. 3c). At T = 500 K the surface begins to
disorder but since the diffusion is still slow its disorder is
basically static. Above T = 600 K, the surface dynamics is
fully developed and the self-diffusion coefficient reaches large
values. This is in agreement with the behavior of metallic
surfaces well below the melting point (56–60). Indeed, the
temperature at which surface diffusion sets in is known as
the Hüttig temperature, which, for iron, is estimated to be
around 600K (2). In addition, our simulations allow us to
further characterize the diffusion mechanism. Despite the
high mobility, the system maintains its crystalline order,
as can be clearly seen from the scatter diagram of atomic
positions in Fig. 4 (see also Fig. S6 for the other temperatures).
Indeed, the BCC structure is locally preserved (see Fig. S5)
and atoms undergo a jump-like diffusion between different
crystallographic sites (see Fig. S7) .

So far our description has been based on analysis tools that
are standard in surface physics. However, our main interest
is understanding how dynamics influences surface reactivity.
Thus, we study the temperature effect on the geometry of the
χ7 sites, which we recall are associated with the precursor α′

state. To this effect, we use the similarity measure S(χ, χ7)
between the atomic environments {χ} of surface atoms and
the χ7 environment as defined in the methods section. By
counting the number of surface atoms with high similarity,
we can identify the potentially active sites. From Fig. 5a it
can be seen that at the operando temperatures the number of
active sites decreases by about one-third as compared to low
temperatures. However, looking at the number of sites only
gives a partial view of the phenomenon. To fully capture
the behavior of the χ7 sites we need to measure also their
lifetime (Fig. 5b). In fact, the active sites are continuously
created and destroyed with a lifetime distribution that is far
from being Gaussian. As a consequence, the average values

T = 300 K

T = 700 K

Side view

Side view

Top view

Top view

Fig. 4. Scatter plot of atomic positions of Fe atoms. Results for the T=300 K (top)
and 700K (bottom) trajectories, both from a side and top view. The atom positions
are recorded every 2.5 ps. Even at low temperature, the Debye-Waller factor of
the surface exposed atoms appears to be larger than that of the bulk atoms. The
early occurrence of this dynamical behavior is facilitated by the lower density of the
(111) surface and the reduced coordination (4) of the atoms in the topmost layer.
At T=700K, a significant mobility is reached (side view), with the formation of an
adlayer, while the long range order is preserved (top view). Made with VMD (61).

Fig. 5. Number and lifetime of χ7 active sites. (top) Average and standard
deviation of the number of χ7 sites exposed on the surface with respect to ideal
surface. Inset: construction of reference environment χ7 from the α′ adsorption
site. (bottom) Violin plot with the distribution of lifetimes of χ7 sites. Line markers
identify the average lifetime, while the width describes the distribution of the points.

of the lifetime are not at all representative of the typical
dynamics of χ7 at high temperatures. In fact, the average
lifetime is of the order of the tens of picoseconds, but the
distributions have tails that reach the nanoseconds regime,
thus the reaction is still allowed.

Nitrogen adsorption and dissociation mechanism. We now
study the interaction of an incoming nitrogen molecule
with the surface, its adsorption and subsequent splitting.
Regarding the thermodynamic conditions, we study the
temperature dependence in the zero-coverage limit which
has been studied by Ertl’s group. The gas partial pressure
is taken into account by constraining the accessible volume
to the N2 molecule to a value compatible with a pressure
of P=10 bar. To study this process, we perform a set of
OPES simulations enhancing the fluctuations of two distinct
collective variables. One is the nitrogen-nitrogen interatomic
distance d(N, N), which is a necessarily part of the reaction
coordinate. The other is the coordination number between
Fe and N atoms, which is meant to account for the geometric
arrangement of the molecule relative to the surface.

While at low temperatures the adsorption geometries
are easily identified (see Fig. 1), at high temperatures the
continuous movement of surface atoms makes it difficult
to find a variable able to identify the N2 pose. Previous
experience (62) together with the findings of Itoh et. al. (36)
have shown that the electronic structure is a very sensitive
indicator of the atomic environment. For this reason, we
monitor the charge q transferred from the metallic surface
to the molecule. Partial charges are measured using the
Bader electronic density decomposition (63, 64) and defined
as the deviation of the Bader charges from their formal value.
To be able to compute them in large systems, we trained a
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neural network on a set of DFT calculations (see Methods) to
predict partial charges given only the atomic positions. This
allows us to monitor the MD simulations through the lens of
underlying chemical changes.

Performing the OPES simulations along these two collec-
tive variables results in effective sampling of all adsorbed
states and the dissociation process (see Fig. S12). The
resulting free energy surfaces (FES) are plotted in Fig. 6a
for two contrasting temperatures as a function of the N-N
distance d and the sum of the N charges q = q(N2). Let us
begin by analyzing the low-temperature one, where we clearly
find metastable states that are characterized by distinct N2
charges. In the gas phase we have q = 0, but as soon as
the molecule interacts with the surface the charge changes.
Indeed, it goes from a low value (q ≈ 0.3) when the molecule
is adsorbed perpendicular to the surface, be it δ-like or in a
γ-like vertical arrangement, to a medium value (q ≈ 1) which
corresponds to a α-like horizontal position, and finally to
the to a very high value (q ≈ 1.6) where one can recognize
the α’ precursor state. This is evident when looking at the
geometries in Fig. 6c, where atoms are colored on the basis
of their charge. In particular, we observe how the charge
transfer is asymmetrical between the two N atoms in the
vertical states and symmetrical in the horizontal ones. The
vertical adsorption states identified by calculations at T=0 K
(γ and δ) are characterized by the same charge transfer. To
resolve them, it is necessary to project the free energy along
the distance of N2 from the surface (Fig. S9). There we see
how, over the entire temperature range, the free energy barrier
between the two is so small that they can be considered as
part of the same metastable state. Furthermore, this shows
that the only possible path to reach the precursor α′ state is
to pass first a vertical position and then a horizontal one.

The free energy profiles reported in Fig. 6a also show that
the increase in charge transfer is accompanied by a weakening
of the N-N bond, as discussed by Ertl and collaborators (18,
36). If we focus on the dissociation barrier, we see that beyond
the high charge basins, a narrow tube leads the transition
state which is located at values q ≈ 2 and d ≈ 1.7 which are
highly consistent with the chemistry of the process (31).

If we analyze the free energy surface at high temperature
we find that the shape is about the same, with similar
metastable states as a function of charge and distance, albeit
less defined. However, there is no longer a correspondence
between free energy minima and classical adsorption states.
As can be seen from the snapshots of T=700 K geometries
shown in Fig. 6c, the metastable states now correspond to
an ensemble of mostly disordered and defected structures.
Consequently, if we set out to enumerate all the minima
of potential energy we would find countless geometrically
distinct states. Using the charge q as a collective variable
allows us to group all geometrically different configurations
according to their ability to weaken the N-N bond, which is
the driving force of the process.

We have computed similar two-dimensional free energy
plots in the range of temperature from 300 to 800 K (Fig. S10).
To make a detailed comparison between all these free energies
it is better to make a one-dimensional projection along the
minimum free energy paths. Remarkably these pathways
can all be superimposed in the (d, q) plane (Fig. S14) in
spite of the different underlying dynamical behavior. In
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Fig. 6. Adsorption and decomposition mechanism. (a) Free energy as a
function of N-N distance and the N2 partial charge. Local minima represent the
metastable states, and white dashed lines denote the minimum free energy pathways
in this plane. (b) Free energy calculated along the minimum free energy pathways
in the d − q space, from the gas phase (N(g)

2 ) to the adsorption states to the
dissociated state (2N ). See Fig. S15 for the free energies scaled by the thermal
energy kBT . The uncertainty on the free energy profiles is below 0.02 eV for all
temperatures; see Fig. S13 for a block average analysis. Free energies are shown
only up to an N-N distance of 2 Å, from which a harmonic restraint is applied.
(c) Snapshots of representative geometries of the adsorption states based on the
amount of charge transferred for T=300K and T=700K. Atoms are colored according
to charges predicted by the neural network model, with two different color scales for
the N and Fe atoms.
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Fig. 6b all these free energy curves are aligned to the α state
minimum and we see once again a strong difference in behavior
between low and high temperature (see also Fig. S15). The
low-temperature behavior is essentially that predicted by
Norskov and collaborators modulo the merging of the vertical
γ and δ states. Notably, the free energy barrier between
the α state and the dissociated one is close to that obtained
from static DFT calculations (28, 33, 35, 65). However, if
we increase the temperature above 500 K, things change
significantly. The free energy barrier to dissociate from the α
adsorption state increases by about 0.2 eV between low and
high temperatures. Even more importantly, it is the very
way in which the dissociative chemisorption occurs that is
altered. In fact, the α’ state, which is the low-temperature
precursor, is no longer metastable. As a result, the N2(α)
to 2N reaction changes from a two-step process, in which
the triple bond is progressively weakened (33), to one in
which the molecule must find a critical configuration that can
transfer all the necessary charge. The destabilization of the
precursor state is due to the temperature-induced disruption
of the χ7 cavities discussed earlier. In fact, if we artificially
fix the iron atoms, the α′ state remains metastable at high
temperature (see Fig. S11).

Transition state characterization. To deepen our analysis of
the fate of the α′ site we compute the distribution of the
similarity S(χN2 , χ7) between the environment of the Fe
atom that sits below the N2 (see Methods) and the activesite
reference χ7. We restrict this analysis to the high-charge
(precursor) region by selecting only configurations with q >
1.35 e. At room temperature the distribution peaks at values
close to 1, which means that N2 is effectively adsorbed inside
the χ7 environment (i.e. α′ state), see Fig. 7 top panel.
In contrast, at T=700 K, the distribution peaks at smaller
values, not compatible with the traditional site, and only
a small shoulder is associated with the χ7 site. Thus, at
T=700 K the probability of being adsorbed in the χ7 cavity is
highly suppressed relative to room temperature. In particular,
this reduction is greater than the decrease in the number
of active sites alone reported in Fig. 5. This reinforces our
argument that at high temperature we cannot rely on the
correspondence with local minima of potential energy at T=0
K, as surface dynamics leads to a distortion of adsorption
configurations.

We then study the nature of the states that pertain
to the transition region for N2 dissociation. For each
temperature, we performed a committor analysis on a
subset of configurations extracted around the maxima of the
minimum free energy pathways (see Methods). This allows to
identify an ensemble of transition state configurations, defined
as atomic realizations for which the probability to go into
the reactant or in the product states is equal. If we plot the
histogram of these configurations as a function of the charge
transferred, the resulting distribution is centered around the
q = 2 value at all temperatures (see Fig. S16). This is
a reassuringly meaningful value since the transfer of two
electrons is needed to break the N2 triple bond (31). In the
bottom panel of Fig. 7 we report the distribution of transition
states’ similarity with the χ7 arrangement for T=300 and
T=700 K. At low temperature the reactive configurations
are only of the χ7 type while at the higher temperature a
number of new atomic arrangements capable of transferring

two electrons are activated by the dynamical roughening of
the surface (see also the movie in the SI). However, even
in this second regime the distribution remains peaked at a
value compatible with the χ7 state, unlike in the previous
analysis of high-charge transfer configurations. This tells us
that although the dynamics of surface atoms significantly
suppresses the α′ state, the formation of the χ7 active site
remains crucial for nitrogen decomposition, in confirmation
of previous studies. We can thus describe it as the eye of the
needle through which the N2 must pass to break the bond.

Temperature dependence of chemical reactivity. In order to
understand the consequences that the increase of the free
energy barriers has on the chemical reactivity, we estimate
the rate coefficients of the N2(α) → 2N reaction step using
the Eyring-Polanyi equation:

k = κ
kBT

h
exp −∆G†

RT
[1]

where the ∆G† values at each temperature are taken from
the free energies computed from the MD simulations (Fig.

Fig. 7. High charge vs transition state configurations. Distribution of the similarity
between the neighborhood of the Fe atom on which N2 is located and the χ7
state for highly charged configurations (top) and for those in the transition state
ensemble (bottom). They are computed with a Gaussian kernel density estimation,
and reweighted to reflect the equilibrium distribution (see Methods). All curves
are normalized such that their integral sums to 1. The snapshots below the figure
are samples of the two peaks of the distribution of transition states at T=700K,
representing configurations with high similarity (χ7 type, right) and low similarity
(defected structures, left). More structures are shown in the SI (Fig. S17). Atoms are
colored according to the charge transfer with the same color scheme as in Fig. 6.
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Fig. 8. Kinetic rates for the N2(α) → 2N step. Logarithm of the reaction rates
as a function of inverse temperature. Red dots indicate the values estimated from
the free energy profiles using the Eyring-Polanyi equation. To highlight the existence
of two different behaviors, the solid red lines represent linear interpolations of the
data in the low (300-500 K) and high temperature (600-800K) regimes, while the
dashed red line connects the two regimes. Literature data are are calculated from
the Arrhenius equation k = A exp −Ea/RT , using the pre-exponential factors A

and the activation energies Ea from Refs. (18, 40, 66). High-temperature data are
plotted between 650 and 770 K, while low-temperature data between 275 and 325K.

6), and the transmission coefficient κ is taken equal to 1.
The corresponding rate coefficients are reported in Fig. 8.
Once again, one can clearly notice two distinct regimes where
the rates can be linearly interpolated. These results can be
contrasted with an extrapolation using only T=300 K data,
which overestimates the reaction rates at high temperatures
(Fig. S18).

We can also compare our results with available kinetic
models built to reproduce the experimental data, which
refer to two very different regimes. In the case of Ertl
et. al. (18) they were obtained from experiments done in
ultrahigh vacuum and low temperatures, between 120 and
150K for N2 molecular adsorption and between 214 and 423
K for dissociative chemisorption. In the case of Bowker and
coworkers (41) and Stoltze and Norskov (40), the kinetic
models were optimized to reproduce the rates of ammonia
synthesis under industrial conditions (650-770 K and 1-300
bar), thus also taking into account lateral interactions with
adsorbed species. Each model can therefore be applied only in
the narrow range of temperatures considered. Even consider-
ing the uncertainty in the modeling of the experimental data
and the different pressure conditions under which calculations
and experiments were performed, we find it rather satisfactory
that we can reconcile the two limiting behaviors in a single
model.

Conclusions. Dynamics has a disruptive effect on the mor-
phology of the Fe (111) surface, with great consequences on
the adsorption and dissociation of nitrogen molecules. This
results in a drastic change in the behavior of the catalyst
when going from low to high temperature, a change that
takes place in a highly nonlinear way. This shows the

danger of extrapolating high-temperature behavior from low-
temperature experiments or theories.

More generally, our work puts into question a static
approach to catalysis, especially industrial catalysis. It is
not a static atomic arrangement that induces catalysis, but
catalytic sites are continuously formed and disrupted. While
this may seem detrimental at first, this diffusive behavior will
be instrumental in establishing a catalytic steady state that
is essential for long-term stability (2).

Even though it was not our intention to unveil the
full complexity of the Haber-Bosch process, which involves
multiple reaction steps where lateral interactions, adsorption
intermediates as well as promoters play a crucial role, the
dynamical scenario unveiled here allows drawing important
conclusions. The transient existence of the dissociation site
for nitrogen might prevent the resulting reactive species from
forming a stable nitride (67) thus poisoning the catalyst.
Likewise, any co-adsorbate that hinders the dynamic rear-
rangement of the iron surface would act as a strong poison.
The extreme sensitivity of the catalysts (68) against oxygen,
water, or sulphur species reducing the performance, already
at concentrations way below the onset of phase formation as
oxide or sulphide, would find a functional explanation. The
detailed analysis of the charge re-distribution between iron
and nitrogen presented here defines a successful ammonia
synthesis catalyst to be bi-functional. As potent as the
high availability of negative charge is for the reductive
dissociation of di-nitrogen, as much a different active site
will be needed to allow bond formation between the resulting
nitrido-ion with the hydride form of activated hydrogen being
omnipresent on the catalyst surface. This request may explain
part (69) of the crucial role of “promoters” that was found (70)
experimentally. These promoters may function by forming
nitride-metallate (71) intermediates allowing hydrogenation
by partly anionic hydrogen species. The present work forms
an excellent basis for elucidating optimal configurations of
iron and its co-catalysts operating under realistic pressures
and temperatures with gases of realistic chemical composition
and opens a way towards circumventing the scaling relation
barrier (72) limiting the performance of metal catalysts for
ammonia synthesis.

Materials and Methods

DFT simulations. The database needed to train the ML poten-
tial consists of a set of ab initio molecular dynamics (AIMD)
trajectories, as well as single-point calculations of configurations
generated by the ML potential during the active learning procedure
(see below). In both cases, simulations are performed using the
PWscf code of Quantum ESPRESSO (73–75) supplemented by
the PLUMED plugin (76) which is an open-source, community-
developed library (77) for enhanced sampling calculations.

In the lack of a golden standard for metallic systems like iron,
we use PBE (78) as exchange-correlation functional. It has been
shown that it reproduces well both the bulk (79) and surface
properties (80) of iron. Of particular relevance here are surface
energies, which are in good agreement with experimental data (80).
It also provides a good description of both the interaction of
N2 with the surface (28) and the adsorption of nitrogen (29).
Furthermore, the interaction with other small molecules is also
well described, as reported by Carter and coworkers (81–83). We
note in passing that machine learning potentials can also be used
to investigate in a computationally efficient way the performance
of different functionals by learning corrections to the PBE model
in a delta-learning scheme(84).
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Ultrasoft RRKJ pseudopotentials (85) replace explicit core-
valence electron interactions, while electron density and wavefunc-
tions are expanded in plane waves with energy cutoffs of 640 and
80 Ry respectively. Occupation is treated by the cold smearing
technique of Marzari et al. (86) with a Gaussian spreading of 0.04
Ry. Spin polarization is included to correctly describe the magnetic
properties of iron. We checked whether there was an influence of
temperature and pressure on the lattice constant, and this was
negligible. Convergence against cutoff energy, Monkhost–Pack
sampling, and occupation was tested and the setup described
was chosen as a compromise between feasibility and accuracy.
Simulations were carried out with a time step of 1.0 fs in a constant
volume and temperature (NVT) ensemble using the stochastic
velocity rescaling thermostat (87). In order to span a larger portion
of the configurational space we simulated the systems at different
temperatures ranging between 600 and 800 K. Slab models with
5,8,and 12 atomic layers ( 45, 72 and 108 atoms respectively) are
built, and a vacuum layer of at least 10 Å is set in the z-direction,
thus avoiding the need to correct for dipole interactions. The
first two lowest Fe layers are kept fixed during optimization and
molecular dynamics calculations. The Brillouin zone was sampled
using a 2 × 2 × 1 Monkhost–Pack k-point grid (88). The same
setup is adopted to analyze the cleavage of the N2 bond on the
Fe(111) surface. Enhanced sampling simulations are employed
to speed up ab initio simulations and include configurations of
adsorption/desorption events and especially of the cleavage of the
N2 bond (more details below).

Machine learning potential. Given a set of DFT reference calcula-
tions we optimize a neural network-based potential as to reproduce
at best energies and forces given only the atomic positions and the
chemical species. We used the Deep Potential Molecular Dynamics
Smooth Edition scheme (54, 55) as implemented in the DeePMD-
kit software (89). The energy is decomposed as a sum of atomic
contributions that depend on local environments within a cut-
off range. Two different networks are used, one for embedding
the atomic positions into symmetry invariant descriptors and the
other for the regression task. The embedding network has three
hidden layers and [30, 60, 120] nodes per layer, with an embedding
matrix size of 20. The fitting network has three hidden layers
and [240,240,240] nodes per layer. The cutoff radius was set to
6.0 Å with a switching function that decays from 5.7 Å to ensure
continuity. The learning rate decays from 0.001 to 3.5 · 10−8

with a decay constant of 4 epochs. The loss function used is a
weighted root mean square error (RMSE) on energy and forces,
with prefactors varying during training from 0.02 to 1 for energy
and from 1000 to 1 for forces. The potentials used during the
active learning phase are trained for 200 epochs, while the final one
is trained for 800 epochs. The database is divided into training,
validation, and test (80-15-5%). Four different models are trained
on different permutations of the training and validation databases,
while the test portion is used only to assess the accuracy of the
model at the end of the fitting procedure.

Active learning protocol. After training an initial ML model on
standard and enhanced AIMD simulations, an active learning
strategy is used(90). This means using the ML model to collect new
configurations through MD simulations, rather than from AIMD.
Specifically, we can use the standard deviation of predictions
provided by a committee of NN models as a proxy for uncertainty.
This allows us to select for DFT calculations only a subset of
structures that are not already well described by the potential
and add them to the training set. Nevertheless, performing
active learning using only standard MD simulations is of limited
effectiveness in this context, as it does not allow the reactive events
to be thoroughly sampled. For this reason, we have coupled this
procedure with enhanced sampling methods which allow to collect
all the relevant geometric structures, providing an ab initio-grade
description of the whole reaction pathway (16).

We used the metadynamics method to accelerate the sampling
of the adsorption/desorption process as well as the cleavage of the
N2 bond using the collective variables and the parameters described
below. Starting with the training set generated at T=700 K, we
performed simulations at the other temperatures as well to be sure
that both the surface and the N2 chemisorption are well described

throughout the temperature range. To minimize the number of
costly single-point DFT calculations, only configurations for which
the standard deviation of a force component (calculated from 4
models) is greater than 200 meV/A are considered. In total, 5
different active learning iterations were performed. At each round,
we selected about 2k configurations for which we computed single-
point DFT calculations, resulting in a total of about 10k structures
collected via active learning.

Molecular dynamics simulations. Classical molecular dynamics
simulations were performed with Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software (91), patched
with DeepMD-kit 2.1 (89) and PLUMED (76). NVT simulations
were performed with an integration time step of 0.5 fs. The
temperature was controlled using stochastic velocity scaling
thermostat (87) with a coupling constant of 100 fs.

During the active learning phase, simulations of small systems
were performed with a 3 × 3 × Nl slab and Nl is the number of
layers equal to 5, 8 or 12, such that their energy and forces can be
computed with DFT calculations. When the potential is optimized,
simulations lasting 20 ns were performed with an 8 × 8 × 12 slab
corresponding to 768 Fe atoms together with an N2 molecule for
the adsorption/dissociation simulations. In all simulations, the
bottom two layers were fixed to impose a boundary condition that
mimics a semi-infinite slab. Periodic boundary conditions were
applied in the x- and y-directions, while along z a reflecting wall
was applied above the surface. The distance of the wall from the
top layer of the surface depends on the temperature and is such
that a partial pressure of N2 equal to 10 bar, according to the
equation of state for ideal gases, is maintained.

Surface analysis. To analyze the morphology and dynamics of
the iron surface, we first apply the Alpha-Shape method (92), as
implemented in OVITO (53), to reconstruct the surface from the
atomic positions. This method constructs a three-dimensional
surface mesh using a virtual sphere to identify the surface
separating the accessible volume (void) from the inaccessible
volume (slab). The radius of the sphere used is equal to 2 Å.
This makes it possible to identify the atoms that belong to the
surface at each time step and limit the subsequent analysis to
these, even if they change over time as is the case here due to high
mobility.

Surface roughness is calculated as the standard deviation of
the heights of the atoms on the surface:

Sq(t) =

√√√√ 1
n

Ns(t)∑
i=1

(zi − z̄)2 [2]

where the sum runs over the Ns(t) surface atoms identified by the
Alpha-Shape method at time t.

The diffusion coefficient of surface atoms is computed from the
time-lagged displacement as follows:

D =
⟨(x(t + τ) − x(t))2⟩surf

2τ
[3]

where the average is calculated only on surface atoms. In SI we
show the dependence of the diffusion coefficient on the lag-time
and its asymptotic convergence. Similar values can be extracted
from the asymptotic behavior of the mean square displacement;
however, we believe this method is better suited to the nature of
diffusion, which occurs as jumps between lattice sites.

Environment Similarity. To compare the environment around an
atom with a reference, we use the environment similarity measure
introduced by Piaggi and Parrinello (93). This measure can be
viewed as a non-rotationally invariant version of the popular SOAP
(Smooth Overlap of Atomic Positions) kernel (94). First, we
define a smooth local density around the central atom by fitting a
Gaussian to the position of each neighbor i:

ρχ(r) =
∑
i∈χ

exp
(

−
|ri − r|2

2σ2

)
. [4]
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Here σ is a broadening parameter and ri the position of atom i
with respect to the central atom. We then define the environment
similarity between χ and a reference χref as:

S(χ, χref ) =
∫

drρχ(r)ρχref (r) [5]

which becomes:

S(χ, χref ) =
1
n

∑
i∈χ

∑
j∈χref

exp
(

−
|ri − r0

j |2

4σ2

)
[6]

once we perform integration and we normalize the kernel such that
S(χref , χref ) = 1. Here n represents the number of atoms in the
environment χref .

The environment chosen here as reference for the analysis of
active sites is the χ7 environment defined in Fig. 5. This is the
environment of a surface atom of the third layer corresponding to
the cavity in which the N2 is adsorbed in the α′ state, surrounded
by 7-coordinated Fe atoms. As for the computational parameters,
we included all Fe neighbors up to 3.5 Å for constructing the local
density. To remove thermal fluctuations, we first performed a
moving average of the atomic positions with a window of 2.5 ps.
Furthermore, we used different values of the broadening parameter
σ depending on the simulation temperature. Specifically, we used
σ = 0.15 for T ≤ 500 K, σ = 0.17 for T = 600, σ = 0.185 for
T = 700 and σ = 0.2 for T = 800 K. These numbers were chosen
so that the position of the peak of χ7 atoms is approximately
the same for the ideal case (i.e., for a surface with only thermal
fluctuations and no observed diffusion, see the dashed lines in
Fig. S8).

Once we have calculated the environment similarity for each
atom on the surface, we define the sites χ7 as those environments
that have S(χ, χ7) ≥ 0.8. The choice of the threshold value is based
on the minima of the ideal distribution of environment similarity
at each temperature (Fig. S8) where the ideal environments are
defined above.

Neural network charge model. In order to predict the atomic charges
from the atomic positions generated by the MLP-based molecular
dynamics, we fitted a second neural network on a data set of charges
computed with DFT. This allows us to predict the charges given
only the atomic positions and the chemical species. To extract
the charges from the electron charge density, we used the Bader
decomposition scheme (63, 64) to compute the number of valence
electrons. Then, charges were defined as the deviation of Bader
charges from their formal value. Here the reference values were
taken to be equal to 8 e and 5 e for Fe and N atoms, respectively.
The charges were computed for a subset of configurations taken
from those used to train the potential, for a total of about 10k
configurations, which were split into training and validation sets
(80-20%).

To fit the charges, we used the deep tensor neural network
SchNet architecture (95), which was proposed for fitting ML
potentials, as implemented in the SchNetPack library (96). To
represent the local atomic environment we used a SchNet module
with 5 interaction layers, a 3.5 Å cosine cutoff with pairwise
distances expanded on 30 Gaussians and 64 atom-wise features
and convolution filters. As for the output, we used an atom-wise
module with 2 hidden layers and (64,64) nodes per layer. The loss
function used was the mean square error between the predicted
charges {qi} and the reference ones {qDF T

i }:

L =
1

Nat

∑
i

(qi − qDF T
i )2 [7]

We trained the NN using the optimizer Adam (97) and a learning
rate of 0.001 with the early stopping criterion. The model obtained
with these parameters has a Root Mean Square Error on the
validation set equal to 10−4 e .

Enhanced sampling simulations. Even with the availability of a
machine learning potential, many important processes such as
chemical reactions continue to occur on time scales much longer
than those accessible to standard molecular dynamics simulations.

To enable these rare events to be simulated, numerous advanced
sampling methods have been developed, and in particular one
family of these is based on the so-called collective variables s(R)
(CVs). The CVs are functions of the atomic coordinates R and are
chosen to be the most difficult to sample modes of the system. Once
they are identified, an external bias potential V (s(R)) is added to
the system. The role of the bias is to enhance the s fluctuations and
speed up their sampling. Thus, with an appropriate choice of s large
energy barriers can be overcome so that rare events are accelerated
and take place in an affordable computational time. In this work,
we have used two such techniques: Metadynamics (51, 52) and
the more recent OPES (50). The bias potential was added to
the MD engine via the PLUMED plugin (76), be it Quantum
Espresso (73–75) or LAMMPS (91).

Metadynamics is a well-established method (51) in which
a history-dependent bias potential V (s, t) is constructed as a
sum of repulsive Gaussians centered at the visited points in the
collective space. The effect is to discourage the system from
visiting already explored configurations. In particular, we consider
its Well-Tempered variant (52), where the height of the hills is
decreased over time as a function of the already deposited bias with
a rate that is determined by the parameter γ. During the training
data collection with ab initio simulations, we used well-tempered
metadynamics to accelerate both adsorption and cleavage of the
N2 molecule on the Fe(111) surface. This allowed us to collect
configurations along the reactive paths and teach the NN how
to represent the potential along the chemical reaction. In these
calculations, we used as CV the distance in the z direction between
the N2 center of mass and the bottom of the slab to accelerate N2
adsorption, and the N-N distance to speed up N2 dissociation. In
both cases, a new Gaussian was deposited every 50 steps, with an
initial height equal to 6 kJ/mol and a standard deviation equal to
0.04 Å, with a γ = 30.

OPES. In the second stage in which we studied the adsorption
and decomposition of N2 with the ML potential, we used the
On-the-fly Probability Enhanced Sampling (OPES) method (50).
OPES is an evolution of metadynamics that converges faster and
requires fewer hyperparameters to be chosen. It also allows us to
limit the amount of bias that is deposited to avoid exploring high
free energy regions.(98) In this approach, rather than building on
the fly the bias V

(
s(R)

)
, the equilibrium probability distribution

P (s) is reconstructed using a Gaussian Kernel density estimator
(KDE). Given a preassigned target distribution ptg(s), the bias is
then defined as:

V (s) = −
1
β

log
ptg(s)
P (s)

. [8]

At convergence V (s) drives the s distribution to the target
ptg(s). The target distribution is chosen to be the well-tempered
one: ptg(s) ∝ P (s)

1
γ , in which the equilibrium distribution is

broadened and the free energy barriers are lowered by a bias
factor γ. OPES simulations for studying the adsorption and
decomposition of N2 used the N-N distance and iron-nitrogen
coordination number as collective variables. We used the iron-
nitrogen coordination number as a proxy for the charge transfer. As
can be seen in Fig. S12, these two quantities are highly correlated
in the N2 state, while the coordination number fails to describe
the charge transfer in the transition region and beyond. In this
second regime, the second collective variable used (N-N distance)
is able to describe the reaction progress, so it is essential to use
both. The coordination number is calculated in a continuous and
differentiable manner as follows:

CN,F e =
∑

i∈{N}

∑
j∈{F e}

1 −
( rij

r0

)n

1 −
( rij

r0

)m . [9]

The parameters used are r0 = 2.5 Å, n = 6 and m = 12. The
update of the OPES bias was performed every 1000 steps, with
the initial width of the kernels equal to 0.025 for d(N, N) and 0.25
for CN,F e. The barrier parameter was set to 80 kJ/mol. Finally,
it should be noted that a harmonic restraint was applied at d ≥ 2
Å with an elastic constant equal to 2000 kJ/mol/Å2. This was to
facilitate the reversible sampling of the adsorption states and the
dissociation barrier, without the need to wait for the recombination
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to occur. Note that the equilibrium value of the N-N distance in
the 2N state is greater than 2 Å and therefore it is not sampled.

Free energy calculations. At convergence, the free energy surface
(FES) along the collective variables used for biasing can be
recovered from the OPES simulation as:

F (s) = −kBT log P (s). [10]
A more general way, which also allows the FES to be calculated

along CVs other than those used for bias, is through a reweighting
procedure (50). When the bias is in a quasi-static regime, we can
recover the expectation value of any quantity such as:

⟨O (R)⟩ =
⟨O (R) eβV (s(R))⟩V

⟨eβV (s(R))⟩V

. [11]

In particular, if we are interested in the free energy profile along
a given collective variable s we have P (s) = ⟨δ(s − s(R)⟩. To
approximate P (s) from the simulation data, we use a weighted
Gaussian density estimator, with the weights corresponding to
wt = e−βV (st). For the calculation of the minimum free energy
pathways from the two-dimensional FES we used the MEPSA
(Minimum Energy Path Surface Analysis) package (99).

Committor analysis. To identify the transition state (TS) config-
urations, we selected a range around the dissociation barrier in
the minimum free energy path and randomly chose within this
range n configurations from the simulation trajectories at each
temperature. For each of the selected configurations, m short
MD simulations are started by initializing the velocities with
a different random seed. The committor probability pc, i.e.,
the probability of first committing to the dissociated 2N state
rather than falling back into the N2 state, is then monitored.
Configurations that have a committor probability pc ≈ 0.5 are part
of the transition state ensemble. In practice, at each temperature
studied we extracted n = 500 configurations and for each of
them we tested the committor behavior running m = 50 unbiased
simulations with different initial velocities. We classified as
belonging to the transition state ensemble those configurations
for which 0.25 ≤ pc ≤ 0.75. In such a way we harness 100-150
transition state configurations for each temperature.
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