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Torsional motions along the FCCO and HOCC dihedrals lead to the five unique
conformations of 2-fluoroethanol, of which the gauche conformer along both dihedrals
has the lowest energy. In this work, we explore how nuclear quantum effects (NQEs)
are manifest in the structural parameters of the lowest energy conformer, in the
intramolecular free energy landscape along the FCCO and HOCC dihedrals, and
also in the infrared spectrum of the title molecule, through the use of path integral
simulations. We have first developed a full dimensional potential energy surface using
the reaction surface Hamiltonian framework. On this potential, we have carried
out path integral molecular dynamics simulations at several temperatures starting
from the minimum energy well to explore structural influences of NQEs including
geometrical markers of the interaction between the OH and F groups. From the
computed free energy landscapes, significant reduction of the torsional barrier is found
at low temperature near the cis region of the dihedrals, which can be understood
through the trends in the radii of gyration of the atomic ring polymers. We find
that the inclusion of NQEs in the computation of infrared spectrum is important to
obtain good agreement with the experimental band positions.
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I. INTRODUCTION

A quantum description of nuclear motion is important for a complete description of
molecular vibrations. Typical approaches towards this include the eigensolutions of the
rovibrational Hamiltonian for spectroscopy or wavepacket simulations for chemical dynam-
ics. However, such routes are computationally impeded due to the high dimensionality to
be addressed even for medium-sized molecules, despite modern hardware. A well-known
alternative approach is based on the path integral formalism,1 where the classical isomor-
phism between a quantum particle and a chain of classical particles is employed.2 This allows
the use of molecular simulation techniques to address nuclear quantum effects (NQEs), and
has enjoyed much success in the recent years.3 Path integral molecular dynamics (PIMD),4–6

centroid molecular dynamics (CMD),7–9 and ring polymer molecular dynamics (RPMD)10–12

methods and their variants have been applied to wide variety of systems.13–27

The present work explores the NQEs in 2-fluoroethanol (2FE). As part of the set of
2-X-ethanols (X=F, OH, NH2), 2FE has been well-explored from both experiments and
theory with regards to its various conformations – preference of the gauche form, whether
there is an intramolecular O-H· · ·F H-bond and strength of intramolecular interactions –
and vibrational spectroscopy.28–36 These studies have pointed to insufficient experimental
and theoretical evidence in favour of intramolecular H-bonding. However, Rosenberg36 has
suggested in recent work on 2-X-ethanols on the basis of analyses of non-covalent interactions
and contrast of inter versus intramolecular H-bonding energetics and geometrical parameters
that, albeit weak, they may be termed as intramolecular H-bonds. In particular, as the
XCCO torsion goes towards 0◦, an enhancement of the O-H and X interaction is observed,
including the appearance of a bond critical point from QTAIM analysis below a certain
angle.

Theoretical studies on 2FE conducted so far have been computations of various stationary
points, their relative energies and relaxed potential energy landscapes along the FCCO
torsion.31,32,35,36 An aim of the present study is to analyse how the NQEs affect the O-H
and F interaction. Consequent to zero-points energy effects and competing influences that
determine its magnitude, shortening of the donor-acceptor distances and elongation of the
OH bond occur for typical strength H-bonds.16,37–39 Despite the relatively weak OH and F
intramolecular interaction in 2FE, we wish to understand how nuclear quantization affects
the distances and angles between the OH and F groups.

Another aspect of interest is the modulation of the conformational landscape of 2FE
due to NQEs. While relaxed ab initio and classical free energy profiles along its large
amplitude motions may be similar, the inclusion of ZPE effects may further modify the
relative energies of the minima as well as barriers, and thereby affect dynamics. For 2FE,
conformational isomerization upon CH or OH excitation and the intramolecular vibrational
energy redistribution that drives it have been studied previously via experiments.40–44 The
work of Durig et al. provides an effective one-dimensional FCCO torsional model potential,
fitted through torsional transitions of 2FE.34 However, to the best of our knowledge, there
has been no direct theoretical exploration of the free energy landscape in the space of the
FCCO and HOCC dihedrals so far for this model molecule. The second aim of this work is to
compute and contrast such landscapes from classical and path integral quantum simulations.
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It is worth mentioning that path integral treatments on systems with large amplitude
motions, including torsional modes and reaction coordinates, have been of recent interest.
For example, the study of the three torsions of glycine by Miller and Clary45 showed that
conformer populations are significantly affected by NQEs compared to a classical treatment.
Drechsel-Grau and Marx found that the barrier for collective proton tunneling in hexagonal
ice crystals is somewhat reduced by NQEs at 300 K compared to classical simulations, but
very strongly lowered at 50 K where the system enters a deep tunneling regime with an
effective barrier of about a fifth of the classical one.20 Earlier work of Markland et al. found
similar low temperature tunneling behaviour in the diffusion of H and Mu atoms along
the c-axis of hexagonal ice.46 Access to a similar quantum regime was also found in recent
work by Mendez et al. for the exchange of dangling and H-bonded hydrogens (bifurcation
pathway) in H2O-H2O, H2O-CH3OH and H2O-NH3 dimers in the 20-50 K range, where they
additionally explored isotope effects.23,25 Videla et al. showed the reduction of such exchange
barriers at 75 K for both (H2O)3 and (D2O)3 compared to classical simulations.21 Bajaj et
al. explored similar quantum effects for the I−·(H2O)2 and its perdeuterated analogue and
also found a systematic lowering of barriers along the bifurcation pathway.22 Sauceda et
al. showed how delocalization of the methyl hydrogens in toluene upon quantum treatment
leads to an effective higher barrier for the torsional motion.26 The study of the free energy
landscape of 2FE draws inspiration from such studies. As noted further above, prior ab
initio calculations have shown evidence for strengthening of the OH and F interaction as the
FCCO torsional angle is reduced.36 This suggests the possibility that attendant quantum
effects may further favour the interaction and lower the direct barrier between enantiomeric
forms of 2FE. A comparison of classical and quantum (path integral) free energy landscapes
would reveal the extent of such effects. In a future work, ethylene glycol will be similarly
explored;47 the work of Rosenberg predicted a favourable interaction at lower values of the
OCCO dihedral in this molecule as well.

A fruitful treatment of NQEs requires a high-quality potential energy surface (PES)
on which the simulations are carried out. One approach is the use of on-the-fly ab initio
calculations to compute the energies and forces directly. Of course, this becomes quickly
expensive for systems beyond a few atoms and as the number of ring polymer beads in
the path integral simulations increase (e.g. at very low temperatures). The development
of a high-quality model PES allows for both longer simulations and the use of more beads
to converge the quantum effects. Noting that a full-dimensional PES for 2FE is not yet
available in the literature, we have built one in this work, along with a dipole moment
surface (DMS). We have computed the infrared spectrum of 2FE from classical and path
integral simulations. This would provide a direct analysis of the role and importance of
quantum effects in a measurable property, which constitutes the third aim of this work.
The experimental spectral band centres from the study by Durig et al. provide the data for
comparison.34

This paper is organized as follows. Section II discusses the various stationary points
of 2FE and the modelling of a full-dimensional PES based on a reaction surface Hamilto-
nian approach as well as a dipole moment surface along similar lines. Details of quantum
mechanical simulations carried out on it, viz. path integral molecular dynamics (PIMD),
path-integral well-temperated metadynamics (PI-WTmetaD) along the FCCO and CCOH
dihedrals, umbrella sampling simulations along the FCCO dihedral, and the computation
of infrared spectrum with thermostatted ring polymer molecular dynamics (T-RPMD) are
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G+g− G+t G+g+

Tg+ Tt Cc

FIG. 1. Stationary points of 2FE. The geometries are optimized at the MP2/aVTZ level of theory.

The G+g− structure and its equivalent form G−g+ (not shown, obtained by the transformation

(ϕ1, ϕ2) → (−ϕ1,−ϕ2)) are the minimum energy conformers. Other gauche and trans conformers

and their equivalent forms are higher energy minima, while Cc is a saddle point. The upper-

case/lowercase notation refer to the FCCO/HOCC torsions. The relative energies and geometrical

parameters of the structures is given in Table I.

given. Section III begins with the quality of the PES and DMS developed, followed by results
from the PIMD, WT-metaD, umbrella sampling and infrared spectrum calculations along
with the discussion of the observed quantum effects. Section IV provides a brief summary.

II. METHODOLOGY

A. Stationary points

Fig. 1 shows the key stationary points of 2FE. There are nine minima, arising from
combinations of gauche and trans conformations of the FCCO (ϕ1) and and HOCC (ϕ2)
dihedrals. Four pairs are symmetrically equivalent through the transformation (ϕ1, ϕ2) →
(−ϕ1,−ϕ2); one member of each pair is depicted in Fig. 1. The global minima are the
equivalent gauche structures G+g− and G−g+. The upper- and lowercase notation refers
to the FCCO and HOCC dihedrals, respectively. The minima and all other optimized
structures in this work have been obtained at the MP2 level of theory with the aug-cc-
pVTZ (aVTZ) basis using the Gaussian 16 package.48 The relative energies of all minima
are given in Table I along with their internal coordinates. Relative energies of the minima at
other method/basis combinations is provided in Table S-1 (Supplementary Material). Also
given in both tables are the energy and structure of the Cc transition state (TS) that lies
between the two global minima and is the highest energy saddle point in the (ϕ1, ϕ2) space.
The MP2/aVTZ normal mode frequencies for all structures are given in Table S-2.
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TABLE I. Energies and geometries of stationary points of 2FE at the MP2/aVTZ level of theory.

The energies (in cm−1) are relative to the global minimum structures, G+g− and G−g+. All bond

lengths are in Å while all angles and dihedrals are in degrees. Equivalent structures that have the

same energy are obtained by the transformation (ϕ1, ϕ2) → (−ϕ1,−ϕ2) and attendant changes in

internals, some of which remain the same , and others are exchanged; see text.

G+g− G+t Tt Tg+ G+g+ Cc

ϕ1 ϕ(F4C2C1O3) 63.6 72.2 180.0 178.9 65.2 0.0

ϕ2 ϕ(H9O3C1C2) −58.0 −167.2 180.0 76.1 63.2 0.0

E 0.0 685.6 755.6 813.6 861.0 2386.8

R1 r(C2C1) 1.5045 1.5019 1.5105 1.5145 1.5071 1.5454

R2 r(O3C1) 1.4181 1.4209 1.4233 1.4226 1.4181 1.4161

R3 r(F4C2) 1.3991 1.3901 1.3916 1.3922 1.3880 1.3986

R4 r(H5C2) 1.0888 1.0894 1.0885 1.0885 1.0919 1.0870

R5 r(H6C2) 1.0898 1.0901 1.0885 1.0908 1.0912 1.0870

R6 r(H7C1) 1.0895 1.0951 1.0921 1.0918 1.0956 1.0905

R7 r(H8C1) 1.0936 1.0925 1.0921 1.0876 1.0883 1.0905

R8 r(H9O3) 0.9640 0.9616 0.9615 0.9623 0.9628 0.9642

R9 θ(O3C1C2) 111.8 108.2 105.6 110.3 113.6 112.9

R10 θ(F4C2C1) 108.5 110.4 108.6 109.1 110.6 110.0

R11 θ(H5C2C1) 111.1 110.3 110.8 110.7 111.2 111.7

R12 θ(H6C2C1) 111.4 110.3 110.8 111.1 110.1 111.7

R13 θ(H7C1C2) 109.2 108.2 109.5 109.9 108.2 109.3

R14 θ(H8C1C2) 109.4 109.0 109.5 109.7 109.3 109.3

R15 θ(H9O3C1) 107.0 108.6 108.4 108.3 108.4 107.3

R16 ϕ(H5C2C1F4) −117.8 −119.1 −119.0 −119.3 −119.4 −118.3

R17 ϕ(H6C2C1F4) 118.6 119.0 119.0 118.9 119.3 118.3

R18 ϕ(H7C1C2O3) 117.8 120.5 120.4 124.0 124.5 121.0

R19 ϕ(H8C1C2O3) −123.7 −121.4 −120.4 −117.1 −117.9 −121.0

Equiv. struct. G−g+ G−t Tg− G−g−

Figure 2 shows the relaxed potential energy surface as a function of the (ϕ1, ϕ2). The
plot indicates lower barriers for the ϕ2 torsion compared to those for ϕ1, which points to
the relative ease of rotation of the OH group about the CO bond. The plot also suggests
that the G+ ↔ T ↔ G− is more feasible than direct interconversion through Cc. One of
the goals of this work is to explore how NQEs modify this landscape. To this end, we begin
with the development of a full-dimensional model potential energy surface for 2FE.
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FIG. 2. Relaxed ab initio MP2/aVTZ potential surface for 2FE as a function of the FCCO (ϕ1)

and HOCC (ϕ2) dihedrals. Both angles were sampled at 15◦ intervals.

B. PES modelling

Drawing from the reaction surface Hamiltonian approach,49–52 we write the potential
expansion for 2FE as

V (S, ϕ1, ϕ2) = Vrs(ϕ1, ϕ2) + Vb(S|ϕ1, ϕ2). (1)

Vrs is the dihedral potential surface obtained by relaxing all other internals, while Vb ac-
counts for displacements along these internals from the relaxed geometries. The optimization
leading to Vrs is carried out at the MP2/aVTZ level of theory. The energies so obtained are
used to model Vrs as a double Fourier expansion:53

Vrs(ϕ1, ϕ2) =
Mmax∑
m=0

Nmax∑
n=0

A(1)
mn cos(mϕ1) cos(nϕ2)

+
Mmax∑
m=1

Nmax∑
n=1

A(2)
mn sin(mϕ1) sin(nϕ2).

(2)

The form satisfies the required symmetry relation Vrs(ϕ1, ϕ2) = Vrs(−ϕ1,−ϕ2). The coef-
ficients of the expansion are determined by generalized linear least squares fitting with a
sufficient number of unique sample ab initio data points in (ϕ1, ϕ2) space, including those
listed in Table I.

Before discussing the rest of the potential expansion, we dwell on the symmetry of physical
quantities of 2FE. This is ascertained by the effect of the transformation π̂ : (ϕ1, ϕ2) →
(−ϕ1,−ϕ2). Quantities are denoted even/odd if they retain/change sign upon the action of
π̂:

π̂Ye(ϕ1, ϕ2) = Ye(−ϕ1,−ϕ2) = Ye(ϕ1, ϕ2),

π̂Yo(ϕ1, ϕ2) = Yo(−ϕ1,−ϕ2) = −Yo(ϕ1, ϕ2).
(3)
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TABLE II. Definition of symmetrized internals on 2FE and their symmetry with respect to the

operation π̂ : (ϕ1, ϕ2) → (−ϕ1,−ϕ2).

Coord. Definition Sym

S1 R1 even

S2 R2 even

S3 R3 even

S4 (R4 +R5)/
√
2 even

S5 (R4 −R5)/
√
2 odd

S6 (R6 +R7)/
√
2 even

S7 (R6 −R7)/
√
2 odd

S8 R8 even

S9 R9 even

S10 R10 even

S11 (R11 +R12)/
√
2 even

S12 (R11 −R12)/
√
2 odd

S13 (R13 +R14)/
√
2 even

S14 (R13 −R14)/
√
2 odd

S15 R15 even

S16 (R16 +R17)/
√
2 odd

S17 (R16 −R17)/
√
2 even

S18 (R18 +R19)/
√
2 odd

S19 (R18 −R19)/
√
2 even

In accordance with the symmetry, the dihedral expansion for an even quantity is given as

Ye(ϕ1, ϕ2)
(even)

=
Mmax∑
m=0

Nmax∑
n=0

A(1)
e;mn cos(mϕ1) cos(nϕ2)

+
Mmax∑
m=1

Nmax∑
n=1

A(2)
e;mn sin(mϕ1) sin(nϕ2),

(4)

while that for an odd quantity is given as

Yo(ϕ1, ϕ2)
(odd)

=
Mmax∑
m=0

Nmax∑
n=1

A(1)
o;mn cos(mϕ1) sin(nϕ2)

+
Mmax∑
m=1

Nmax∑
n=0

A(2)
o;mn sin(mϕ1) cos(nϕ2).

(5)

These expansions up to orders (Mmax, Nmax) along (ϕ1, ϕ2) are extensively used in the present
work.

The Vb term in Eq. (1) involves displacements in all other (19) internals. Denoting the
bond distances, angles and dihedrals as R, their values at the optimal geometries as a
function of (ϕ1, ϕ2), denoted R◦, are given in Table I. As for Vrs, symmetry dictates that
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Vb(ϕ1, ϕ2) = Vb(−ϕ1,−ϕ2). Furthermore, terms involving internals in Vb are required to
be even with respect to π̂. The internal coordinates associated with the C, F, O, and
hydroxyl H atoms are even. For instance, it is readily observed that the hydroxyl bond
length is invariant to π̂, i.e. R◦

8(ϕ1, ϕ2) = R◦
8(−ϕ1,−ϕ2). In contrast, the bond distances,

angles and dihedrals belonging to the CH hydrogens are neither even nor odd. This oc-
curs because the values of the internals are exchanged between the H atoms attached to a
given C atom. For instance, for C2H5 (R◦

4) and C2H6 (R◦
5) optimal bond lengths one finds

R◦
4(ϕ1, ϕ2) = R◦

5(−ϕ1,−ϕ2) and R◦
5(ϕ1, ϕ2) = R◦

4(−ϕ1,−ϕ2). However, simple linear combi-
nations S4,5 = (R4 ±R5) /

√
2 do show even and odd symmetry: S◦

4(ϕ1, ϕ2) = S◦
4(−ϕ1,−ϕ2)

while S◦
5(ϕ1, ϕ2) = −S◦

5(−ϕ1,−ϕ2). Similar symmetry-adapted coordinates are defined for
the other bonds, angles and dihedrals for the CH hydrogens, while the internals of the F, C,
O and hydroxyl H are merely relabelled. The full set S of symmetry adapted internals are
defined in Table II.

With their symmetry defined, the optimal value of each symmetry-adapted internal on
the dihedral surface S◦

j (ϕ1, ϕ2) can be expanded to high accuracy using Eq. (4) or (5) as
appropriate. These are then used to define displacements δSj = Sj − S◦

j (ϕ1, ϕ2) as displace-
ments relative to the dihedral surface. It is convenient to use dimensionless coordinates,
sj = Sj/{ℏ2Gjj/Fjj}1/4, where Gjj and Fjj are diagonal elements of Wilson F and G ma-
trices defined at the G+g− global minimum.

The Vb term can be expanded in terms of dimensionless displacements as follows:

Vb(S|ϕ1, ϕ2) =
∑
i≤j

f
(2)
ij (ϕ1, ϕ2)δsiδsj

+
∑
i≤j≤k

f
(3)
ijk (ϕ1, ϕ2)δsiδsjδsk

+
∑′

i≤j≤k≤l

f
(4)
ijkl(ϕ1, ϕ2)δsiδsjδskδsl

+
∑′′

i

8∑
n=5

f
(n)
i δsni

+
∑′′′

i,j

8∑
n=5

n∑
m=0

f
(n)
ij;mδs

n−m
i δsmj .

(6)

Each fij... term above is in energy (cm−1) units. The primes on the summations indicate
index restrictions. The first three terms on the RHS are the quadratic, cubic and quartic
expansion terms. The quartic derivatives are restricted to three-body terms. The last two
summations of Vb involve one-body high order expansion terms for all bonds and angles only,
which were found necessary to include for better accuracy at large displacements. The fourth
term is restricted to coordinates Sj that are identical to the parent internals Rj, while the
fifth term is restricted to coordinate pairs (Si, Sj) that are symmetry-adapted ones through
linear combinations of (Ri, Rj) pairs; see Table II.

Each term on the RHS involves a product of powers of δs’s, which is either even or odd.
Correspondingly, the expansion of each force constant term in terms of (ϕ1, ϕ2) would be
even or odd, so that Vb is even. In order to obtain the expansion, the force constants were
first obtained at a sufficient number of points on the dihedral surface. The quadratic force
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constants were computed by transforming the Hessians in Cartesian form to those in terms
of dimensionless symmetrized internals. Cubic and quartic force constants were obtained
by five-point numerical differentiation of quadratic ones obtained at Sj displaced from the
relaxed dihedral surface, for which step sizes of 0.002 Å for bonds and 0.1◦ for angles and
dihedrals were found to yield stable derivatives.

We note that while the quadratic terms of Vb were obtained at the MP2/aVTZ level, we
have used the aug-cc-pVDZ (aVDZ) basis instead to obtain the cubic and higher derivatives
of Vb. Given the need to compute derivatives at a few hundred points in the dihedral space
and hence a large total number of high order derivatives to be calculated, the larger aVTZ
basis was found very expensive. The smaller aVDZ basis strongly reduces the computational
time. For the correct evaluation of the third and higher derivatives, the dihedral surface
has been reoptimized at the MP2/aVDZ level. In effect, we have developed a full auxilliary
potential with the smaller basis and then used its third and higher order terms along with
Vrs, S

◦ and quadratic terms of Vb at the MP2/aVTZ level. We have also verified from
sample calculations at select points that the difference between higher derivatives obtained
with the two bases is small compared to the size of the corresponding term. Consequently,
an accurate PES is obtained with this approach, as will be shown further below in Section
IIIA.

For the higher order derivatives, ab initio MP2/aVDZ energies at one-mode displaced
geometries along each (unsymmetrized) stretch and bend were computed at large displace-
ments. We used R◦

j − 0.3Å ≤ Rj ≤ R◦
j + 0.45Å with a step size of 0.0375Å for all stretches,

R◦
j−32◦ ≤ Rj ≤ R◦

j+40◦ with a step size of 4◦ for all bends, except the COH bend for which
a larger range of R◦

j − 45◦ ≤ Rj ≤ R◦
j + 50◦ with a step size of 5◦ was used. The quintic

up to octic terms were fitted along each such Rj after subtracting the previously obtained
contributions up to quartic order (at the MP2/aVDZ level). The computation of one-mode
high order derivatives assumes that high-order coupling terms involving two or more Rs is
negligible. Finally, the derivatives were transformed to Sj, leading to the last two terms of
Vb.

With various derivatives obtained at a sufficiently large set of points on the dihedral
surface, they are fitted to even or odd expansion (see Eqs. (4) and (5)). The (Mmax, Nmax)
values are chosen by trial and error to be large enough for high accuracy while avoiding
overfitting. The full-dimensional potential for 2FE as defined by Eqs. (1) and (6) uses two
basis sets, which we denote as the MP2/aVTZ+DZ PES for this molecule. The quality of
this PES is discussed in Section IIIA.

C. DMS modelling

Towards the computation of infrared spectra for 2FE via path integral simulations, we
have fitted a dipole moment surface of the form

µ = µrs + µb

=
∑
k

qrs,k(ϕ1, ϕ2)rk +
∑
k

qb,k(δS|ϕ1, ϕ2)rk.
(7)
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The above partitioning of µ into reaction surface and remainder components is carried out in
the same manner as done for the potential (Eq. 1). As shown in an earlier work54 , the dipole
moment surface may be modelled through the set of scalar atomic charges (qk = qrs,k + qb,k,
where k is the atom number) that are functionally dependent on internal coordinates and
atom positions (rk). Presently, we expand the charges in terms of the reaction surface modes
(ϕ1, ϕ2) and other internals (S) in a manner similar to terms in the potential.

The reaction surface atomic charges, qrs,k(ϕ1, ϕ2), are fitted to individual dihedral ex-
pansions. The reference values are taken as HLY charges obtained at the same geometries
used for the modelling of Vrs. However, the charges on the CH hydrogen atoms do not have
definite even/odd symmetry, just as their internals R also do not have definite symmetry. As
shown in Table II, the difficulty is readily overcome by taking sum and difference combina-
tions. We apply this to the atomic charges as well, which are then readily fitted to even/odd
expansions in (ϕ1, ϕ2) as per Eqs. (4) and (5). With suitable expansion sizes, accurate fits
for µrs are obtained.

For the fitting of µb, we have limited the expansion of other internals S in qb,k to first
order,

µb(δS|ϕ1, ϕ2) =
∑
k

qb,k(δS|ϕ1, ϕ2)rk

=
∑
k

∑
j

fb,kj(ϕ1, ϕ2)δsjrk,
(8)

since higher order expansions leads to a strong increase in the number of parameters to be
determined. The fb,kj are essentially the derivatives of the first qb,k along various dimension-
less internals, sj. Although we first attempted to use numerical derivatives of HLY charges,
these were found to have discontinuities in (ϕ1, ϕ2) space. Instead, we have directly fitted the
residual dipole function µab

b = µ−µab
rs, where the µ

ab
rs is the reaction surface dipole function

using the ab initio rather than fitted charges, as follows. (1) The residual µab
b is determined

at displacements of ±0.03 Å and ±0.04 Å for bonds and ±1.5◦ and ±2.0◦ for angles and
dihedrals from each of the reaction surface points used for µrs. (2) The molecular frame is
fixed by choosing the CC bond axis as x̂ and using the C-C-O plane to define the xy plane.
All geometries and hence dipole components are rotated to this frame. (3) Like the qrs,k for
the H atoms, the corresponding charges qb,k are neither even nor odd functions of (ϕ1, ϕ2).
By taking sum and difference combinations of the charges and also Cartesian coordinates
of CH hydrogen atoms, the equation is symmetrized. Consequently, the modified fb,kj ex-
pansion coefficients are even/odd functions in (ϕ1, ϕ2). (4) The expansion coefficients are
also constrained by a charge neutrality condition,

∑
k qb,k = 0. Note that such a restraint is

already present in the HLY charges used to fit the qrs,k. Using all the geometries discussed
above, a system of linear equations54 is prepared including the dihedral even/odd expansions
as appropriate, and solved using the singular value decomposition (SVD) method from the
Numpy package.55 With appropriate dihedral expansion (Mmax, Nmax) sizes, accurate µb fits
are obtained.
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D. Dynamical simulations

The NQEs in 2FE were studied using simulations techniques based on the path integral
approach, viz. PIMD4–6 and T-RPMD.10,12,56 With the former method, we have also used the
enhanced sampling methods of umbrella sampling57 and well-tempered metadynamics.58–61

For all simulations discussed below, home-built codes were used. Interfaces to PLUMED
2.8.062 were used for the enhanced sampling methods. The details of each of these simulations
are given in the following sections.

1. PIMD simulations

We have carried out PIMD simulations for 2FE at 50 K, 100 K, 200 K and 300 K for
both 2FE-h5 (normal form) and 2FE-d5 (perdeuterated form). For the 300 K simulations,
64 beads were used while 128 beads were used for all other temperatures; we note that these
choices for P were made for all path integral simulations in this work. All PIMD simulations
were carried out for 4 ns with a time step of 0.25 fs, starting from an initial random sampling
of bead positions assuming a thermal distribution in the normal mode space of the beads.
The temperature was controlled using massive Nosé-Hoover chains with a time constant of
10 fs. For classical simulations at the same temperatures, a Langevin thermostat was used
with a time constant of 25 fs. For various analyses, the trajectories were saved every 250 fs
in each case. The first 50 ps were treated as the equilibration time and not analysed.

From the PIMD and corresponding classical simulations at the above temperatures, dis-
tributions of internals and their average values were computed. These are defined for a
property A as

⟨A⟩ =
〈

1

P

P∑
k=1

Â(r
(k)
1 , . . . , r

(k)
N )

〉
. (9)

Choosing Â = R̂j(r1, . . . , rN), i.e. an internal from Table I, provides its PIMD average ⟨Rj⟩.
Also of interest is the all-bead distribution of the internal ρ(Rj), which is obtained by setting

Â = δ
(
Rj − R̂j(r1, . . . , rN)

)
. We have analysed in particular the distributions of two main

dihedrals ϕ1 and ϕ2 as well as distributions and averages of the OH bond lengths at various
temperatures.

2. Umbrella sampling simulations

We have computed the free energy profiles (FEPs) along the FCCO dihedral ϕ1 using
path integral umbrella sampling (PI-US) simulations at 50 K and 300 K. Harmonic biases are
applied along ϕ1 defined using the centroids of the atoms, with centers placed every 5◦ in the
interval from 0◦ to 180◦. The force constants used are provided in Table S-4 (Supplementary
Material). For each bias centre, PIMD simulations at both temperatures were carried out
for 2FE-h5, 2FE-d1 (monodeuterated, OD only) as well as 2FE-d5 (perdeuterated). Cor-
responding classical simulations with 2FE-h5 were also carried out for comparison. Each
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simulation was 200 ps long with a time step of 0.25 fs. The distributions of ϕ1 obtained
were converted to FEPs, denoted Fqm;c, via the Weighted Histogram Averaging Method
(WHAM).63 The convergence was analysed by comparing the FEPs using data up to 150 ps
versus up to 200 ps.

Although it is computationally less demanding to carry out PI-US simulations with the
bias potential applied on the centroid – and has consequently been often used in literature
– it is more rigorous to apply the bias to the beads:21,24,64

−βFqm;b(ϕ1) = ln

[
1

P

P∑
k=1

⟨δ(ϕ(k)
1 − ϕ1)⟩

]
, (10)

where β = 1/kBT. Direct simulations with such biases would require P independent sim-
ulations or very long simulations for a single bead. As an alternative, Lamaire et al.64

and Cendagorta et al.24 have shown that one can evaluate Fqm;b using the Fqm;c though
conditional probabilities as

e−βFqm;b(ϕ1;b) =

∫
p(ϕ1;b|ϕ1;c) e

−βFqm;c(ϕ1;c) dϕ1;c∫
e−βFqm;c(ϕ1;c) dϕ1;c

, (11)

where p(ϕ1;b|ϕ1;c) is the conditional probability of a bead having a dihedral of ϕ1;b when-
ever the centroid dihedral is ϕ1;c. This can be straightforwardly obtained from the PI-US
simulations by sampling the values of ϕ1 for the beads over the various bias windows along
ϕ1;c.

To complement the analyses of the free energy profiles, we have analysed the trends of
various internals using Eq. (9) as well as the radii of gyration of all atoms. The latter are
defined for the ith atom as

R2
g,i =

〈
1

P

P∑
k=1

∣∣∣r(k)
i − ri,c

∣∣∣2〉 , (12)

where ri,c refers to the position of the centroid of the ith atom. The radii are a useful
measure of the delocalization of nuclei and hence of NQEs along ϕ1.

3. WTmetaD simulations

In order to capture the effect of the NQEs on the entire (ϕ1, ϕ2) surface, we have employed
path integral well-tempered metadynamics (PI-WTmetaD) simulations on 2FE. These were
carried out by interfacing our simulation code with PLUMED 2.8.0.22,62,65 Using ϕ1 and
ϕ2 as the two collective variables (CVs), long simulations of 45 ns with 0.25 fs time steps
were performed for the normal and perdeuterated forms of 2FE at both 300 K and 50 K.
Classical simulations of 75 ns duration were carried out with the normal form of 2FE at
both temperatures. At 300 K, Gaussians with widths of 0.1 and 0.3 rad along ϕ1 and
ϕ2, respectively, were deposited once every 500 steps. These were lowered to 0.05 and 0.1
rad at 50 K with a deposition once every 300 steps. The Gaussian widths were chosen as
about one-third of the widths of the distributions around the G+g− basin of both dihedrals
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from unbiased simulations at the corresponding temperatures. The Gaussian heights were
initialized at 1.2 kJ/mol (0.2 kJ/mol) at 300 (50) K, which are roughly kBT/2. In WTmetaD,
the height of the deposited Gaussian decreases over time, which was monitored as one
of the measures of the sufficiency of the simulation length. We have used metadynamics
bias factors59 γ = 120 (20) at 50 K (300 K). By providing high effective temperatures, γ
improves the coverage in the dihedral space. Using PLUMED,62 the free energy surfaces were
computed in (ϕ1, ϕ2) space. Convergence of the surfaces were checked with block averaging
analyses using the last several ns of the simulations.

4. T-RPMD simulations

The role of NQEs on the infrared spectra of 2FE were analysed with thermostatted ring
polymer molecular dynamics (T-RPMD) simulations56 at 50 K and 300 K. The path integral
Langevin thermostat (PILE) was applied on the non-centroid modes. We have also used
the Cayley transform-based modification for the T-RPMD simulation recently proposed by
Miller and coworkers.66,67 This approach provides strong stability to the equations of motion
and also allows for larger time steps. Based on their study, the BCOCB scheme is used
(B: half-step momemtum update due to external potential; C: half-step Cayley-modified
integration for the harmonic motion of the free ring polymer; O: thermostat on non-centroid
modes for the full time step). A total of 53 and 52 initial conditions at 50 K and 300
K, respectively, were sampled every 10 ps from long PIMD trajectories. Each T-RPMD
trajectory was 100 ps long with a timestep of 0.5 fs. Counterpart classical simulations at
both temperatures were carried out from 100 initial geometries, each for a total time of 100
ps with 0.25 fs timesteps. In all cases, the trajectory was saved every 1 fs. The infrared
spectrum was calculated using the dipole moment surface for 2FE developed in this work.
The bead averaged dipole moment was computed at a given time step as5,10

µP (t) =
1

P

P∑
k=1

µ(r
(k)
1 , . . . r

(k)
N ). (13)

The correlation function Cµµ(t) = ⟨µP (0) · µP (t)⟩ was computed with ∆t = 1 fs and aver-
aged over simulations. No damping was applied. Fourier transformation of the correlation
function using 214 steps (∼ 1 cm−1 resolution) yielded the spectrum.

III. RESULTS AND DISCUSSION

A. PES fit and quality

Figure 2 shows the relaxed ab initio dihedral surface for 2FE at a grid of (ϕ1, ϕ2) points
with 15◦ step sizes along both dihedrals. As Vrc is even (see Eq. (3)), only half the points
need to be computed. Along with the special points in Table I, a total of 294 unique (ϕ1, ϕ2)
points are used. The figure shows that the starting from G+g−, the barriers to G+t and
further to G+g+ are lower (∼ 750−1000 cm−1) than the those to access the Tx basins, x=g±,
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FIG. 3. Accuracy of the full dimensional PES for 2FE against a test set of 7479 points. (a)

Distribution of ab initio (MP2/aVTZ) energies at the test points. (b) Distribution of the test points

in (ϕ1, ϕ2) space. (c) Comparison of fitted and ab initio energies. (d) Signed error, ∆E = Efit−Eai,

as a function of the ab initio energies of the test points. (Note: one test point at ∼ 18000 cm−1

with an error of ∼ 800 cm−1 is not shown in (d).)

TABLE III. List of (Mmax, Nmax) values for the dihedral expansion of various potential terms in

2FE; see Eqs. (4) and (5). For cubic and quartic terms, the expansion sizes were chosen based upon

the size of the variation of the term as a function of the dihedrals, defined as ∆f = fmax(ϕ1, ϕ2)−
fmin(ϕ1, ϕ2).

Term (Mmax, Nmax)

Vrs (8,6)

S◦ (8,6)

f (2) (8,6)

f (3), f (4) ∆f ≥ 5 cm−1 (8,6)

2 ≤ ∆f < 5 cm−1 (6,6)

0.1 ≤ ∆f < 2 cm−1 (5,5)

∆f < 0.1 cm−1 const

f (5)-f (8) (3,3)
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TABLE IV. Accuracy of the MP2/aVTZ+DZ-based PES for 2FE, measured using MP2/aVTZ

energies and forces at 7479 test data points. In addition to energies and forces, the comparison

of force magnitudes and angle between the ab initio and fitted force vectors is also provided. The

force errors are defined in Eq. 14.

Full Quartic

RMSE MAE RMSE MAE

E cm−1 49.3 33.4 422.2 157.6

Fabs cm−1/Å/dof 269.8 160.7 1785.8 464.0

Fmag cm−1/Å/atom 63.7 44.8 791.7 335.9

αab,fit deg 0.85 0.75 3.02 1.79

t (∼1500 cm−1). Direct conversion of G+ to G− can occur via the Cc transition state, which
offers the highest barrier of about 2500 cm−1. The plot suggests that OH dihedral motion
can be expected to be more vigorous than FCCO.

The 294 dihedral points are fitted using Eq. (2) with (Mmax, Nmax) = (8, 6), yielding
an RMSE (MAE) of 0.56 (0.44) cm−1. Given the high accuracy, the contour plot of the
fitted Vrs is indistinguishable from the ab initio plot of Figure 2 (and hence not shown
here). Additionally, optimized and symmetrized internals S◦ were also fitted to even or odd
expansions (Eqs. (4) and (5)) as appropriate using (Mmax, Nmax) = (8, 6), yielding accurate
fits. For example, the RMSE (MAE) of the fit with 294 points for S◦

8 (≡ rOH) was obtained
as 8.1× 10−6 (5.6× 10−6) Å, while that for S◦

15 (≡ θCOH) was found to be 0.0023◦ (0.0018◦).
The full list of RMSE and MAE values for all internals is given in Table S-3.

For terms in Vb, the expansion sizes used are collected in Table III. All quadratic terms
are expanded with (Mmax, Nmax) = (8, 6). The same size was also used for cubic and

quartic terms whose variation in dihedral space, defined as ∆f̃ = f̃max(ϕ1, ϕ2)− f̃min(ϕ1, ϕ2),
was larger than 5 cm−1. This set of terms includes several one- and two-body terms of
large magnitude. For terms whose variation was smaller, several lower expansion sizes were
attempted and the ones listed in Table III were found optimal. Note that terms with
too low a variation (0.1 cm−1), which typically constitutes terms of small or very small
magnitudes, were treated as constants. Lastly, for the quintic-octic terms, expansions with
(Mmax, Nmax) = (3, 3) were found sufficient. Note also that the ab initio data for the
quadratic terms is at the MP2/aVTZ level while the rest are at the MP2/aVDZ level, as
explained in Sec. II B

To measure the quality of the full dimensional PES, a test set of ab initio points was
prepared with the following approach. From long PIMD simulations at 300 K with the
potential truncated up to quartic terms, geometries of selected beads (every 16th) were
sampled at 0.5 ps intervals. The sample points were mainly in the G+g− basis, but a small
fraction were also from the G+t and G+g+ regions. The sample points were filtered based
on proximity. To this end, vectors composed of bond distances, bond angles and dihedrals
are constructed for each geometry. From these, magnitudes of difference vectors between
different geometries was calculated. Denoting these as lb, la and ld for a pair of geometries,
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it was ensured that at least two of the following criteria were satisfied: lb > 0.2 Å, lb > 5◦

and ld > 15◦. A total of 1077 sample points were selected in this manner.

In order to sample points at other minima that are not accessed by PIMD, we have
employed a sampling approach due to Brown68 that is based on the quantum harmonic dis-
tribution (QHD). At each minimum of 2FE, the quantity d(ν̃i, A) = h/(8π2cν̃i) coth(1/2A),
where c is the speed of light, provides the variance for ith mode with frequency ν̃i (in cm−1).
If A = kBT/hcν̃i, the exact QHD is obtained. However, A is treated as a dimensionless
parameter here. The variances along all modes at a given minimum are used in a mul-
tidimensional Gaussian distribution to obtain random displacements in all normal modes,
thereby generating sample geometries. By varying A, the spread of the distribution can
be controlled. As shown by Brown,68 using A instead of temperature T has two related
advantages. First, the sampling of low frequency modes is on a par with that for high
frequency modes. Second, to generate sufficiently displaced high frequency modes, high T
needs to be used. But this generates overly distorted geometries in low frequency modes.
Such a problem is avoided by using suitable values of A instead. Following Brown, we have
used A = 0.5, 1 and 2, and obtained geometries at the Tt, Tg+ and G+g+. The selected
geometries are such that (1) no internal is excessively displaced; geometries were discarded
if |Ri−⟨Ri⟩ | > 1.5σ(Ri), where the mean ⟨Ri⟩ and standard deviation σ(Ri) were estimated
from the PIMD simulation with the quartic potential, and (2) the chosen points satisfied
the same geometric non-proximity criteria as used for the PIMD sampling. A total of 4500
points (500 points per A value per minimum) were selected in this manner.

Additional points were sampled to cover other regions of the (ϕ1, ϕ2) landscape away from
the minima and not already covered by the PIMD sampling. For this, we took samples of
points in selected regions from the umbrella sampling simulations along ϕ1 amounting to
1402 points. From the last 3 ns of the classical 300 K WT-metaD simulations, an additional
points of 500 point were sampled. In the selection of these points, it was ensured that the
points are sufficiently apart from each other using the bond distance, angle and dihedral
criteria discussed above.

A combined test set of 7479 geometries are thereby obtained. Ab initio energies and
forces are computed at the MP2/aVTZ level. Figure 3(a) shows the spread of the sampled
points in energy. The peak of the distribution is close to the ZPE of 2FE. Part (b) of the
figure shows the distribution of the test points in (ϕ1, ϕ2) space. Owing to the symmetry,
one half of the space was not sampled. The comparison of the test set energies data to
those obtained with the fitted, MP2/aVTZ+DZ based potential at the same geometries is
provided in Figures 3(c) and (d) and Table IV. The former shows that errors at most points
lie within ±200 cm−1. Geometries close to the centre of the distribution are displaced along
many modes leading to the observed error. However, geometries with large ab initio energies
are likely to have dominant displacements in one or two modes, and their errors are evidently
smaller. Quantitative comparisons in Table IV using RMSEs and MAEs for the energies
and forces attest to the accuracy of the potential. The force errors are defined69 as

Fabs =
1
3N

N∑
i=1

∑
α=x,y,z

|Fiα; fit − Fiα; ai|

Fmag =
1
N
(|Fai| − |Ffit|)

αab,fit =cos−1(Fai · Ffit/|Fai||Ffit|),

(14)
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TABLE V. Errors in fitted atomic charges (in a.u.) at the 294 (ϕ1, ϕ2) geometries. Fits are carried

out with (Mmax, Nmax) = (10,8).

Atom MAE RMSE

(×10−3) (×10−3)

C1 2.56 3.58

C2 2.43 3.60

O3 0.49 0.65

F4 0.54 0.73

H5 0.80 1.14

H6 0.79 1.12

H7 0.82 1.15

H8 0.78 1.07

H9 0.27 0.33

TABLE VI. Comparising of the fitted µrs to the ab initio dipole moment on the dihedral surface.

All quantities are in a.u.

MAE RMSE

(×10−4) (×10−4)

µx 0.629 7.818

µy 1.623 2.006

µz 1.792 2.205

where Ffit/ai are the force vectors obtained from the PES and ab initio calculations. The
table also shows the need to introduce the quintic-octic terms in bond distances and angles;
there is a marked improvement in the PES quality with these terms. (See also Fig. S-1 for
a graphical representation of the errors for the quartic PES.)

As the aim of this work is the exploration of NQEs for 2FE with path integral simu-
lation, it is important to obtain a PES that is accurate at large displacements that are
typically accessed by beads in such simulations. The results presented above suggest that
our MP2/aVTZ+DZ based fitted PES is suitable for the objective. The PES is available on
Github; see the Supplementary Material section below.

B. DMS fits

Table V shows the quality of the fit to the atomic charges for 2FE using HLY charges at
294 reaction surface points. The fits used (Mmax, Nmax) = (10, 8). Using the fitted charges,
the dipole moments on the reaction surface are compared with ab initio dipole moments
componentwise in Table VI. Finally, Table VII provides a comparison of the µb part of
the dipole expansion at the displaced geometries from the reaction surface (see Sec. II C).
Overall, the fits are found to be satisfactory.
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TABLE VII. Comparison of the dipole moments at geometries displaced from the dihedral surface

(see Sec. II C). Large displacements refer to ±0.03 and ±0.04 Å in bonds and ±1.5◦ and ±2.0◦ in

angles and dihedrals, while small displacements are ±0.002 Å and ±0.004 Å in bonds and ±0.1◦

and ±0.2◦ in angles and dihedrals. All errors are reported in a.u.

MAE (×10−4) RMSE(×10−4)

∆µx ∆µy ∆µz ∆µx ∆µy ∆µz

Small displ 0.653 1.642 1.819 8.255 2.033 2.245

Large displ 1.322 2.811 3.215 3.125 4.195 5.214

Overall 0.988 2.227 2.517 2.285 3.297 4.015
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FIG. 4. Distributions of the (a, b) FCCO (ϕ1) and (c, d) CCOH (ϕ2) dihedrals as well as the

(e, f) OH bond length (rOH) from (a, c, e) classical and (b, d, f) PIMD simulations of 2FE-h5 at

various temperatures.

C. PIMD simulations

As a first assessment of the NQEs in 2FE, we present the distributions of the FCCO (ϕ1)
and CCOH (ϕ2) dihedrals and the OH bond length from classical and PIMD simulations at
various temperatures in Fig. 4. The simulations were initiated in the G+g− basin.

The plot for ρcl(ϕ1) in Fig. 4(a) shows narrow classical distributions. The widths increase
with temperature as more energy is available to sample a larger ϕ1 range. The all-bead
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FIG. 5. Trends of the average OH and OD distances as a function of temperature from classical

and PIMD simulations of 2FE-h5 and 2FE-d5. The sizes of the points correspond to the error

bars derived from block-averaging at that temperature. Shown also for 300 K are the values of the

OH distance for geometries in the G+g− and G−g+ minimum basins (circles) and Tt (squares) for

PIMD and classical simulations with 2FE-h5. Similar plots for other selected internals are given

in Fig. S-2.

quantum distributions ρqm(ϕ1) at various temperatures, shown in Fig. 4(b), are clearly
wider than their classical counterparts. Note also that the 50 K and 100 K distributions
nearly the same. This is because these temperatures are lower than the ZPE of this mode
(∼75 cm−1) and NQEs result in an almost temperature independent distribution over this
range. At higher temperatures, when the available energy exceeds the ZPE, thermal effects
are evident. The classical and quantum 300 K distributions span the other conformers, i.e.
G− and T. The trajectories show that the G− region is accessed from G+ through the T
region, which has a relatively lower barrier compared to a direct crossover; see Fig. 2. As
the G+ and G− are equivalent conformers, the peak heights of the distributions shown are
expected to be the same; we attribute the observed difference to be due only to the finite
trajectory length used. It should be pointed out that the G+ to T to G− transitions are still
rare on the timescale of the simulation and the residence times in the gauche basins along
ϕ1 are large.

Fig. 4(c,d) contrast the classical and quantum distributions for ϕ2. As the frequency of
this mode is roughly double that of ϕ1, the effects of temperature are small until 200 K.
At 300 K, it is evident that the g+, g− and t regions are sampled. We note that the peak
heights of the g+ and g− regions of ρ(ϕ2) are different. This is an artifact of the ϕ1 sampling
described above; to the extent that G+ and G− regions are not equally sampled due to finite
simulation length, the populations in the g+ and g− regions would also be expected to be
different.

Of special interest are NQEs on the OH bond distance as well as the OF and HF dis-
tances and OHF angle, which are markers of intramolecular interactions involving of the
O-H and F groups of 2FE. The distributions in Fig. 4(e,f) show the classical and quantum
ρ(rOH), respectively. While the classical distributions are again narrow and a function of
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FIG. 6. Averages of (a) ϕ1, (b) r(O-F), (c) r(H-F) and, (d) θ(O-H-F) as a function of temperature

for geometries restricted to the G+g− and G−g+ minima.

temperature, the quantum counterparts are essentially invariant with temperature since the
thermal energies are much lower than the ZPE for this mode. Fig. 5 shows the average rOH

from these distributions as a function of temperature. (Averages of other selected internals
is given in Fig. S-2.) The classical r̄OH is close to the G+g− equilibrium distance at low
temperatures and slightly increases at higher temperatures. The PIMD simulations show
expectedly larger averages for both OH (2FE-h5) and OD (2FE-d5) bond distances, with
a small temperature variation. The elongation between classical and quantum simulations
is significant, about 16-17% of the zero-point the amplitude of the OH or OD bond, re-
spectively. However, this effect is also seen for the CH stretches (Fig. S-2) and hence is
essentially due to the anharmonicity of the high frequency stretch modes at their ZPEs.

The observations above for rOH also hold true for trajectory points in the global minimum
region alone. This is achieved by considering only the points in the G+g− (30◦ ≤ ϕ1 ≤ 90◦

and −120◦ ≤ ϕ2 ≤ 0◦) and G−g+ (−30◦ ≥ ϕ1 ≥ −90◦ and 120◦ ≥ ϕ2 ≥ 0◦) basins.
The classical and quantum distribution for rOH so obtained (not shown) are practically
indistinguishable from those in Figs. 4(e) and (f). In Fig. 5, the circles indicate the averages
for rOH limited to the G+g− and G−g+ minima at 300 K, which are very close to unrestricted
average. (Note that at lower temperatures the classical and quantum simulations do not
sample the trans basin for ϕ1; see Figs. 4(a,b).) Also indicated with squares are the averages
of the bond length for the Tt geometry. From PIMD simulations, this value is very slightly
(less than 0.001 Å) smaller than the value in the minimum basin. This suggests that, in the
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global minimum region, the OH stretches show at best a weak NQE due to interaction with
the F atom.

Shown in Fig. 6 are the trends of ϕ1, the OF and HF distances and OHF angle in the
global minimum basins as a function of temperature for 2FE-h5. At each temperature, the
PIMD average ϕ̄1 is slightly larger by 0.5-0.6◦ compared to the classical average. The PIMD
average distances, r̄OF and r̄HF, are slightly smaller while θ̄OHF average angle is slightly
larger than the correponding classical MD averages at each simulated temperature. The
changes for these three marker variables between PIMD and classical simulations suggests
that zero point effects promote a weak favourable interaction between the OH and F groups
at all temperatures.

The all-bead distributions of ϕ1, rOF, rHF and θOHF in the global minimum basins at
various temperatures are shown in Fig. S-3. The classical distributions are expectedly narrow
at low temperatures, but approach the quantum distributions at high temperature. In
particular, the classical and quantum ρ(ϕ1) are almost the same at 300 K. As the OF and
HF distances are a function of ϕ1, their distributions follow that of ϕ1. The OHF angle is
evidently somewhat less modulated by ϕ1; its quantum distribution is seen to be less affected
by temperatures over simulated range.

Note also that all distributions are only not broader but more asymmetric at higher
temperatures. Those for the rOF and rHF are wider towards larger distances at high temper-
atures, while that for θOHF is wider towards smaller angles. These mirror the distributions
of ϕ1 itself and suggest that the average distances (angle) would be higher (smaller) for
larger temperatures. Indeed, this is the temperature trend seen in Fig. 6, which occurs
as an indirect consequence of the temperature effects on ϕ1 in both classical and quantum
simulations.

Though the temperature trends on the marker variables can be rationalized as above, it
must be stressed that the NQE magnitudes reported by them for the interaction between the
OH and F groups is still very small. This is further emphasized from the umbrella sampling
results on the same set of variables, discussed later in Sec. III E.

D. PI-WTmetaD simulations

A direct view of the quantum effects in (ϕ1, ϕ2) space can be obtained via metadynamics
simulations using the dihedral pair as the collective variables. We note that centroid-based
dihedrals were used for these calculations and the free energy surfaces (FES) so obtained
are noted ∆Fqm;c(ϕ1, ϕ2) = Fqm;c(ϕ1, ϕ2)− Fmin

qm;c. The c suffix indicates the use of centroids
for adding biases during the simulation.

Fig. 7(a) shows the FES obtained from well-tempered metadynamics simulations at 50
K for 2FE-h5, while part (b) shows the differences between the 50 K and 300 K surfaces.
While ∆F 50K

qm;c is qualitatively similar to Vrs(ϕ1, ϕ2) (compare Fig. 2), the differences between
the two are highlighted in part (c) of the figure. The FES is lower than the PES by up to a
few hundred cm−1 in the barrier regions. In particular, the Cc barrier energy is lowered by
about 150 cm−1.
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FIG. 7. Free energy surfaces in (ϕ1, ϕ2) space at 50 K and 300 K obtained from PI-WTmetaD

simulations and their differences with respect to the Vrs(ϕ1, ϕ2). Shown are (a) the free energy

surface at 50 K, and the differences between (b) 300 K and 50 K surfaces, (c) Vrs and 50 K surfaces,

and (d) Vrs and 300 K surfaces. The contour scales are in cm−1.

Fig. 7(d) contrasts the PES with the FES at 300 K. The differences are small everywhere
(±100 cm−1), including near ϕ1 = 0◦, where the FES is higher than the PES by about 100
cm−1. This corroborates the similarity in the difference patterns seen in parts (b) and (c)
of the figure. Overall, this suggests that through centroid-based biased simulations, small
quantum effects are found at low temperatures.

E. PI-US simulations

With barriers along the FCCO torsion being higher, we have explored the free energy
surfaces along this coordinate via path integral umbrella sampling simulations with a view
to carrying out a detailed analysis of NQEs. We first present results obtained with harmonic
biases applied to the centroid ϕ1;c, the parameters for which are given in Table S-4 for both
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FIG. 8. Centroid-biased free energy profiles, ∆Fqm;c(ϕ1) = Fqm,c(ϕ1) − Fmin
qm,c, at various tem-

peratures obtained by path integral umbrella sampling simulations along ϕ1. Classical simulation

results are shown alongside. (a) A comparison of profiles at 50 K and 300 K for 2FE-h5. (b)

Variation of Fqm;c(ϕ1) with isotopic substitutions, 2FE-d1 and 2FE-d5, at 300 K. (c) Same as (b)

but at 50 K. Notation: CHOH ≡ 2FE-h5, CHOD ≡ 2FE-d1, CDOD ≡ 2FE-d5.

50 K and 300 K simulations. Fig. 8 shows the free energy profiles (FEPs) ∆Fqm;c(ϕ1) =
Fqm;c(ϕ1)− Fmin

qm;c along with their classical counterparts.
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(a) ∆Fqm;b vs. ∆Fqm;c
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(b) ∆Fqm;b with H/D isotopic substitutions

0 30 60 90 120 150 180
1 (deg)

0
250
500
750

1000
1250
1500
1750
2000

F 
(c

m
1 )

QM,CHOH,50K
QM,CHOD,50K
QM,CDOD,50K

QM,CHOH,300K
QM,CHOD,300K
QM,CDOD,300K

FIG. 9. Bead-biased free energy profiles ∆Fqm;b(ϕ1) = Fqm;b(ϕ1)− Fmin
qm,b, obtained using Eq. 11.

(a) Comparison with centroid-based Fqm;c profiles at 50 K and 300 K for 2FE-h5. (b) Bead-biased

FEPs for various H/D isotopic substitutions at 50 K and 300 K. Notation: CHOH≡ 2FE-h5, CHOD

≡ 2FE-d1, CDOD ≡ 2FE-d5.

We first analyse the FEPs for 2FE-h5 in Fig. 8. Part (a) of the figure shows that over
a wide ϕ1 range spanning about 25◦-100◦, which encompasses the G+ minimum, all FEPs
are essentially identical. (50 K classical simulation results are not shown due to convergence
issues; see below and the caption of Table S-4.) Differences are visible near the C conformer
(ϕ1 = 0◦) and also at and beyond the G+-T barrier (ϕ1 ∼ 120◦). In the former region, only
the 50 K PIMD curve stands out as having a slightly lower barrier than the other quantum
and classical FEPs, all of which show essentially the same barrier.

However, the Fqm;c trends appear reversed for ϕ1 ≳ 100◦. The energy of the T minimum
(ϕ1 = 180◦) relative to the G+ is higher at 50 K. This is also true for the barrier around ϕ1 =
120◦. A partial explanation of the effect is suggested by the presence of two equienergetic
local basins at ϕ ∼ 120◦ with ϕ2 ∼ −80◦ and −180◦, respectively, that are separated by a
barrier around ϕ2 = 135◦; see Fig. 2). PIMD trajectories at 50 K in this region show that
infrequent jumps occur between these two basins, necessitating lower umbrella sampling force
constants and with higher simulation time. (Note that 50 K classical results are not shown
owing to insufficient sampling in this region yielding an unconverged FEP.) In contrast, the
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FIG. 10. Mean radii of gyration Rg of atoms in 2FE-h5, 2FE-d1 and 2FE-d5 as a function of ϕ1

at both (a, b) 300 K and (c, d) 50 K. Shown in (a) and (c) are the radii of the carbon and the

oxygen atoms, while those in (b) and (d) are the radii of the CH and OH hydrogens. See Fig. 1

for the atom numbering.

traversals between the local basins are more frequent at 300 K. Corroborating this analysis is
the distribution of ϕ2 at various ϕ1 values for the centroid along the umbrella sampling path,
shown in Fig. S-4 (Supplementary Material). The spread of ϕ2 is lower around ϕ1 ∼ 120◦ at
50 K compared to 300 K. In fact, this trend continues until 180◦ as well. These observations
suggest differences in the FEPs at the two temperatures due to varying extents of access to
different regions of torsional space.

Fig. 8(b) and (c) compares Fqm;c(ϕ1) for 2FE-d1 and 2FE-d5 at 300 K and 50K. There
is evidently no significant difference due to isotopic substitution at 300 K. At 50 K as well,
the plots are mostly similar, except near the C conformer. In this region, the Fqm;c barrier
increases in the order 2FE-h5, 2FE-d1, and 2FE-d5, while the fully classical simulations show
the highest barrier. Although the differences are small (the barrier height for quantum and
classical 2FE-h5 differ by ∼ 125 cm−1), it is significant that deuterating the OH hydrogen
only slightly raises the barrier, while deuterating all four CH hydrogens yields a larger
change.

As noted in Sec. IID 2, Fqm;b obtained from applying harmonic bias to the beads rather
than the centroid better encapsulates NQEs. Following recent work,24,64 we have used Eq. 11
to compute it using Fqm;c. Fig. 9(a) compares both types of FEPs at 300 K and 50 K. At

25

https://doi.org/10.26434/chemrxiv-2023-l9dt9-v2 ORCID: https://orcid.org/0000-0001-6848-867X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-l9dt9-v2
https://orcid.org/0000-0001-6848-867X
https://creativecommons.org/licenses/by-nc-nd/4.0/


(a) r̄OH(ϕ1) (b) r̄OF(ϕ1)

0 20 40 60 80
1 (degree)

0.965

0.970

0.975

0.980

r (H
9-O

3)
 (Å

)

Classical,300K
PIMD,300K
PIMD,50K

0 20 40 60 80
1 (degree)

2.6

2.7

2.8

2.9

3.0

3.1

r (O
3-F

4)
 (Å

)

Classical,300K
PIMD,300K
PIMD,50K

(c) r̄HF(ϕ1) (d) θ̄OHF(ϕ1)

0 20 40 60 80
1 (degree)

2.2

2.4

2.6

2.8

3.0

r (H
9-F

4)
 (Å

)

Classical,300K
PIMD,300K
PIMD,50K

0 20 40 60 80
1 (degree)

90

95

100

105

110

115

(O
3-H

9-F
4)

 (d
eg

)

Classical,300K
PIMD,300K
PIMD,50K

FIG. 11. Averages of the distributions of the (a) OH, (b) OF and (c) HF distances and the (d)

OHF angle as a function of ϕ1 for geometries obtained from umbrella sampling. The corresponding

trends of standard deviations of the distributions are provided in Fig. S-7. For the analyses, only

those geometries with −120◦ ≤ ϕ2 ≤ 0◦ for ϕ1 > 30◦ and −60◦ ≤ ϕ2 ≤ 60◦ for ϕ1 < 30◦ are

considered; see Fig. S-4 for the (ϕ1, ϕ2) distributions.

the higher temperature, the two FEPs are very similar, except for ϕ1 near 0
◦ and near 180◦.

In contrast, ∆Fqm;b is much lower than ∆Fqm;c at 50 K. In particular, the ϕ1 = 0◦ barrier
is strongly reduced from ∼ 2250 cm−1 to ∼ 1500 cm−1, pointing to a significant NQE in
this region. Also, the G+-T barrier for 50 K is lower than that for 300 K. Compared to
the behaviour of the centroids (see above), the beads are well-delocalized. We note that
torsional G+-G− and G+-T barriers obtained by Durig et al. through modelling of observed
torsional transitions are 1753 and 1005 cm−1, respectively.34

Fig. 9(b) compares ∆Fqm;b(ϕ1) for 2FE-h5, 2FE-d1 and 2FE-d5 obtained at both tem-
peratures. At 300 K, all FEPs are essentially the same, as also seen in Fig. 8(b) for the
centroid-based FEPs. Interestingly, the 50 K FEPs are also the very similar. In most regions
away from the global minimum, ∆Fqm;b is slightly higher with more deuteration.

In order better understand these observations, we have analysed the trends of the mean
radii of gyration Rg of all the atoms of 2FE as a function of ϕ1. Plots for various atoms at
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both temperatures and for various H/D isotopomers are shown in Figs. 10, S-5 and S-6. At
300 K, all atoms have practically invariant Rg values as a function of ϕ1. This corroborates
the similarity of all quantum FEPs at this temperature. However, at 50 K, there are salient
Rg trends. That of the H atom (H9) of the OH group increases to a fractional extent of 10-
15% when ϕ1 moves away from the global minimum. However, we note that all other atoms
also show significant trends. The Rg’s of CH hydrogens, carbons, and the oxygen atoms all
increase to a significant fractional extent near ϕ1 = 0◦. For example, Rg(C1) increases by
∼20%, Rg(H5) increases by about 35% and other CH hydrogens show a similar increase.
This suggests that the strong reduction of Fqm;b compared to the ab initio barrier may be
attributed to a combined effect of which the hydroxyl H is only a part. Note also there is a
small but notable increase in the Rg around the G+-T barrier region for all atoms, except
the hydroxyl H atom whose Rg increases roughly linearly in this region. Correspondingly,
the NQE in this region is small; though the barrier positions and shapes are a little shifted
between 50 K and 300 K FEPs, their heights are very similar.

We also note a particular trend for the radii of gyration of the C atoms with isotopic
substitution in 2FE. There is an overall lowering of the Rg at all ϕ1 values for 2FE-d5
compared to 2FE-h5 and 2FE-d1. That is, the deuteration of all the CH hydrogens reduces
the spatial spread of the beads of the C atom as well. There is also a reduction in the
Rg of the OH oxygen with successive deuteration steps albeit to a lesser extent. Note,
however, that these changes at 50 K due to H/D substitutions are only incrementally different
from the changes in the radii of gyration magnitudes between 50 K and 300 K. The small
differences between the ∆Fqm;b for 2FE-h5, 2FE-d1 and 2FE-d5 at 50 K, seen in Fig. 9, may
be understood in this light.

The FEPs and atom Rg’s along ϕ1 discussed above are key results of this work on the
NQEs in 2FE in its dihedral space. At ambient temperatures, the NQEs are minor at
all ϕ1 values as evidenced by the small differences between classical and quantum FEPs
and the practical invariance of the radii of gyration of all atoms. At low temperature, the
NQEs are notable through the same measures, especially as ϕ1 → 0◦. As mentioned in the
Introduction, Rosenberg has shown,36 through non-covalent interaction (NCI) analyses and
plots along ϕ1, that the intramolecular OH and F inteaction increases as ϕ1 decreases from
the minimum towards zero (including the appearance of a bond-critical point at ϕ1 ∼ 20◦).
The low temperature NQEs trends observed in the present work appear to follow this trail
of increasing intramolecular interaction strength as ϕ1 decreases. However, as ϕ1 is a large-
amplitude low-frequency motion and susceptible to temperature effects, the NQEs in the
dihedral landscape are effectively washed out at higher temperatures. We also note that the
NQEs on ϕ2 are effectively a function of ϕ1; the free energy landscape and hence distribution
of ϕ2 is a function of both temperature and value of ϕ1, as seen from Fig. S-4.

We briefly return to the markers of the OH and F interaction, viz. the OH bond length,
OF and HF distance, and the OHF angle. The average values of these internals as a function
of ϕ◦

1 are shown in Fig. 11. The trends of standard deviations of the distributions are plotted
in Fig. S-7. For the analyses, only −120◦ ≤ ϕ2 ≤ 0◦ points are selected when ϕ1 > 30◦ while
points with −60◦ ≤ ϕ2 ≤ 60◦ are chosen when ϕ1 < 30◦; see Fig. S-4 for the 2D (ϕ1, ϕ2)
distribution that justifies this choice. Over the wide range of the FCCO dihedral, r̄OH is
effectively invariant. In particular, the values of this internal are nearly the same for the
G+g− and Cc structures. As seen also in Sec. III C, beyond the zero-point effects, the OH
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bond length does not provide a marker of the change of interaction between OH and F as
a function of the FCCO dihedral. However, the rOF, rHF and θOHF change significantly.
The OH and OF distances are much shorter near ϕ1 = 0◦ and the OHF angle increases
substantially as well as ϕ1 decreases. However, the effect is largely classical; the results from
the PI-US simulations are very similar to it. The NQEs are thus small along the whole
umbrella sampling path, not just at the G+g− minimum that was discussed in Sec. III C.

F. T-RPMD simulations: Infrared spectra

Fig. 12 shows the spectra of 2FE obtained from T-RPMD simulations at 50 K and 300
K. The spectrum from classical simulations at 300 K is also plotted. The vertical lines
indicate experimental band centers taken from Durig et al.34 The band centers from the
present quantum simulations and experiments are compared in Table VIII. The close match
indicates the quality of the PES built in this work. The band assignments in Table VIII
are based on the normal mode motions visualized at the MP2/aVTZ level and with the
assumption that the modes are anharmonically shifted without change of order. Where
differently assigned from Durig et al., they are indicated with a # mark. It must be noted
that several modes are mixed and the assignments are indicative of the salient motions.

The FCCO (ϕ1) and OH (ϕ2) torsions agree well with the assignment by Durig et al.34

However, the 308 cm−1 and 516 cm−1 bands are better assigned to relative motions of
CH2OH and CH2F units of the molecule; the earlier assignment was to CCF and CCO
bends, respectively, but these angular motions are part of both normal modes computed in
the present work (symmetric and asymmetric combinations in the low and high frequency
bands, respectively). Bands in the mid-IR region are differently assigned in the present work.
For instance, the 1208, 1252 and 1351 cm−1 band assignments are reordered. Also, the 1088
cm−1 band is assigned to an an admixture of the CC extension with CO and CF compression
compared to the previous 888 cm−1 assignment for this mode. (A still earlier assignment
of a combination of CO and CF str is closer to the present result.29,41) These assignment
differences with Durig et al. may be due to the different levels of theory used (RHF/6-31G**
in their work) and choice of scaling of force constants; the latter significantly shifts certain
modes to lower frequencies. The experimental band at 1113 cm−1 is not directly visible
but may be part of the broad high frequency tail of the computed 1100 cm−1 band. The
descriptions of the bands for the CH2 wag motions are refined to symmetric and asymmetric
combinations, while the scissor motions at slightly higher frequency appear localized at the
harmonic level. All four CH stretches (∼ 3000 cm−1) in the computed spectrum appear as
part of a broad band (∼ 150 cm−1 FWHM). The OH stretch band is also broad.

In addition to the listed bands, we note low intensity features visible only in the 300 K
spectra, viz. small bands around 125 cm−1, 200 cm−1 and around 470 cm−1. These are
assigned to the FCCO torsion, CCOH torsion, and relative CH2OH-CH2F motion for the
Tt conformer based on the corresponding harmonic frequencies (see Table S-2). These as-
signments also corroborate the findings from the Raman spectra by Durig et al. A weak
feature at 275 cm−1 may also correspond to the Tt conformer (equivalent of the 308 cm−1

band for G+g−). The presence of these bands only in the 300 K spectra, both quantum
and classical, are indicative of differences in initial configurations as well as dynamics at
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FIG. 12. Infrared spectra at 50 K and 300 K computed with T-RPMD simulations. The classical

simulation spectrum at 300 K is also shown. The vertical lines indicate the experimental frequencies

taken from Durig et al.34 The spectrum is shown in the three parts over the ranges (a) 0–700 cm−1,

(b) 800–1600 cm−1, (c) 2800-3900 cm−1.

this temperature versus that at 50 K. The PIMD trajectories, from which the initial con-
figurations are sampled for T-RPMD, remain in the G+g− region at 50 K. The T-RPMD
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TABLE VIII. Comparison of experimental and computed (T-RPMD) 50 K and 300 K spectral band

centers. The former are taken from Durig et al.34 All values are in cm−1. The band assignments

are based on the corresponding harmonic modes at the G+g− minimum from the present work,

assuming that the order of frequencies is maintained. Differences with the experimental study are

indicated.

Descriptiona T-RPMDb Expt.

300 K 50 K

FCCO torsion 153 154 150

CH2OH–CH2F rel # 303 303 308

OH torsion 347 347 344

CH2OH–CH2F rel # 514 516 516

CH2 rock# 862 861 855
∗CH2 rock# 894 894 888
∗CF–CO asym str# 1045 1044 1039

CC, CO, ∗CF str# 1101 1102 1088

COH bend# 1207 1206 1208

*CH2 twist# 1260 1259 1252

CH2 twist# 1350 1354 1351

CH2–
∗CH2 asym wag 1383 1384 1376

CH2–
∗CH2 sym wag 1408 1415 1410

CH2,
∗CH2 scissor 1475 1481

{
1460

1467

CH str (all) 2990 2982


2931

2960

2983

OH str 3730 3710 3654

a Following Durig et al.,34 asterisks

are used to denote the carbon at-

tached to fluorine.
b The computed spectra (Fig. 12) are

not smoothed. Some bands below

1500 cm−1 therefore do not have

well-defined peaks (up to about ±5

cm−1 wide) and a mean value is re-

ported above. Those for CH and

OH stretches have still larger uncer-

tainty.
# Assignments different from those of

Durig et al.34

trajectories at 50 K also remain in this region. However, classical and PIMD trajectories at
300 K sample a much wider range of dihedrals, including the G+g− and Tt regions. (Note
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that ϕ2 conformers are accessed from these regions.) The classical 300 K trajectories start
in both regions and sometimes traverse across regions during the simulations. While the
300 K T-RPMD trajectories happen to be so initially sampled that all points are in the G
region along ϕ1, several of them do reach and explore the T region as well. These facets of
the dynamics are reflected in the computed spectra.

The comparison of the TRPMD and classical spectra with the experimental band cen-
tres suggests that the inclusion of NQEs is important to capture the experimental infrared
spectrum in 2FE. Note that both TRPMD and classical spectra are computed with the
same anharmonic PES. We parenthetically note that conformer population weighted har-
monic spectra (with unscaled frequencies) is blue-shifted relative to the classical spectrum,
as shown in Fig. S-8. However, the shift of band centres from the between these two spectra
is smaller than that between classical and TRPMD spectra, reiterating the role of NQEs.

The present work suggests that TRPMD offers a satisfactory route for the computation
of infrared spectra of molecules with large amplitude motions. Another common approach
is conformer population-weighted spectra. The spectra for individual conformers may be
obtained from scaled harmonic frequencies,70 vibrational second order perturbation theory,71

or more accurate methods.72 It is non-trivial to obtain reliable conformer populations, though
harmonic zero-point corrected relative ab initio energies are a good starting point. One
method is to optimize the populations to match spectra; a recent work by Koenis et al.
employs a genetic algorithm approach for this task.70 Another route, closer to the present
work, is the use of path integral methods to obtain the relative free energies of the conformers
at a given temperature, and hence the populations; early work by Miller and Clary used
the path integral Monte Carlo method specialized to torsional degrees of freedom45,73–75

while a recent work by Riera et al. used replica exchange PIMD.72 If the barriers between
conformations are not too large, so they can be traversed in the course of path integral
simulations, then TRPMD from a well-sampled set of initial conditions is the ideal choice
within the path integral framework.76 Of course, methods such as VSCF/VCI may offer
more accurate predictions.77

IV. SUMMARY

In this work, we have investigated the role of nuclear quantum effects (NQEs) on 2-
fluoroethanol (2FE). Through the use of path integral simulations, we have particularly tried
to address the role of NQEs (1) on the structure of the molecule in its equilibrium geometry,
including the markers of the OH and F interaction, (2) in the free energy landscape of the
FCCO and CCOH dihedrals, and (3) in the infrared spectra. As the first step towards such
simulations and analyses, we have constructed a full dimensional potential energy surface
(PES) in the reaction surface Hamiltonian framework, with special emphasis on the FCCO
and CCOH dihedrals. We have additionally modelled a dipole moment surface as well. On
the model PES, various quantum (path integral) and classical simulations are carried out.

From both PIMD and classical simulations, we find that the molecule is localized in the
minimum energy well at low temperatures (50 - 200 K), but explores other minima including
the trans FCCO geometry at 300 K. From the trajectory segments that are in the minimum
energy basin, we particularly analyse whether NQEs affect interaction between the OH and
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F groups via the trends in the OH, HF and OF distances and the OHF angle. The findings
suggest a weak favourable interaction promoted by the NQEs.

We have used biased simulation methods to explore how the free energy landscape differs
from the PES and as a function of temperature. Well-tempered metadynamics simulations
based on bead centroid biasing show a weak quantum effect with slightly smaller barrier at
50 K compared to 300 K. Focusing on the heavy atom and large barrier FCCO dihedral, we
have carried out path integral umbrella sampling simulations. With centroid-based biases,
weak quantum effects are seen. However, with bead-based biasing, a substantial decrease in
the barrier for FCCO at 0◦ is seen. Using the radii of gyration of the ring polymers of the
atoms as a metric, we found that this effect arises due to the combined effect of all atoms,
especially the CH hydrogens and carbons. Interestingly, a recent study by Rosenberg36 also
found an increase of interaction, as measured by the NCI values, between the OH and F
groups as the FCCO dihedral is decreased towards 0◦ . Our findings also indicate that
quantum effects do change as a function of the FCCO dihedral at low temperatures and
that the backbone C and H atoms play an important role in it.

Finally, we have also computed the infrared spectrum from thermostatted ring polymer
molecular dynamics simulations using our model dipole surface. Comparison with exper-
iments gave excellent agreement, indicating the quality of the underlying PES. Contrast
with the spectrum from classical simulations reveals the importance of including NQEs for
a better match with the experimental spectrum.

2FE may be considered as a model small molecule with a few torsional degrees of freedom
for detailed investigations of NQEs. Although the intramolecular interactions are generally
weak, our analyses suggest that NQEs nonetheless play a role, whose manifestations can be
noted in the structure, free energy landscape and spectra. It would be worth investigating
other related molecules with conformational flexibility in a similar vein.

SUPPLEMENTARY MATERIAL

A set of additional tables and figures are provided in the Supplementary Material. These
include a comparison of relative energies of minima at various levels of theory, harmonic
frequencies of various stationary points at the MP2/aug-cc-pVTZ level of theory, errors in
the fitted internals, umbrella sampling parameters, PES quality with a quartic potential,
trends of key internals from PIMD simulations, distributions of selected internals in the
minimum energy basins, 2D (ϕ1, ϕ2) distributions from umbrella sampling simulations, radii
of gyration of the ring polymers of all atoms as a function of ϕ1 at 300 K and 50 K from
umbrella sampling simulations, widths of the distributions of selected internals sampled
in the minimum basins as a function of ϕ1, and a comparison of harmonic, classical and
TRPMD spectra at 300 K. The Fortran 90 code for the PES for 2FE is available as a tar
file as well as here: https://github.com/arandharamrinal/2FE.
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