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ABSTRACT 

Given the growing prevalence of computational methods in chemistry, it is essential that 

undergraduate curricula introduce students to these approaches. One such area is the application 

of machine learning (ML) techniques to chemistry. Here we describe a new activity that applies 

ML regression analysis to the common physical chemistry laboratory experiment on the electronic 

absorption spectra of cyanine dyes. In the classic version of this experiment, students collect 

experimental spectra and interpret them using the Kuhn free electron model, based on the quantum 

mechanical particle-in-a-box (PIB). Our new computational activity has students train regression 

models of increasing complexity to predict the wavelength of maximum absorption for different 

cyanine dyes using a set of 13 molecular features. In addition, the activity introduces methods for 

evaluating and interpreting regression models. Ultimately, students are prompted to use their 

regression analysis results to generate hypotheses for what molecular properties underlie cyanine 

dye absorption, leading them naturally to the PIB model. In this report, we provide a dataset, 

reference code implementations in Mathematica and Python notebooks, and an example lab 

protocol with an introduction to cyanine dyes and the ML techniques. This activity can be 

completed in a single 3-hour lab period by upper-level undergraduate students with relatively little 

prior programming experience. Although intended to complement the experimental measurement 

of cyanine dye spectra, this activity can also be performed on its own; alternatively, it can form 

the basis of more involved projects in a computational chemistry or ML course. 
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Introduction: 

 

Some common physical chemistry laboratory experiments have been taught in largely the 

same manner for decades. Although these experiments illustrate fundamental concepts, they can 

be enhanced by supplementation with modern computational methods. This has the two-fold 

advantage of not requiring new instrumentation and of training students in programming and 

computational chemistry, which are increasingly recognized as key skills for chemists to possess.1–

7 One classic physical chemistry experiment explores the UV-visible absorption spectroscopy of 

cyanine dyes. Cyanine dyes contain a conjugated polymethine chain, consisting of alternating 

single and double carbon-carbon bounds, bounded by two nitrogen atoms, one of which is an 

iminium cation.8 Due to the conjugated -electron network, cyanine dyes have strong electronic 

absorption in the visible portion of the electromagnetic spectrum; the wavelength of maximum 

absorption (max) shifts toward longer wavelengths as the polymethine chain length increases. In 

the classic experiment, students record absorption spectra of a series of cyanine dyes and use the 

Kuhn free electron model,9 based on the one-dimensional particle-in-a-box (PIB), to explore the 

relationship between chain length and max. This lab dates back at least 50 years,10 and numerous 

variations or extensions have been reported in this Journal.11–17 Its popularity derives from the use 

of inexpensive instrumentation and reagents as well as the direct connection to one of the first 

model Hamiltonians that students see in quantum chemistry. However, opportunities exist to 

connect this classic wet-lab activity to modern areas of computational chemistry. 
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Machine learning (ML) approaches are increasingly applied in many areas of chemistry 

research,18–20 yet are still not widely incorporated into undergraduate chemistry curricula. These 

techniques use algorithms that can generalize from an example dataset to make predictions about 

new data. In ML regression analysis, a model is used to predict the numerical value of a dependent 

variable using one or more independent variables. Even simple regularized linear regression 

models suffice to predict chemical properties as diverse as molecular atomization energies,21 

molecular orbital energies,22 and interatomic potentials,23 or to analyze photocurrent spectroscopy 

experiments.24 In fact, simple linear models built with an appropriate combination of input features 

are often better at extrapolating to novel examples.25 Recent articles in this Journal have described 

activities to introduce chemistry students to ML techniques, including the use of ML classifier 

models to distinguish functional groups in IR spectra,26 modeling the response of metal 

nanoparticle colorimetric sensors using neural networks,27 chemometric analysis of wines,28 and 

unsupervised clustering of FTIR and mass-spectrometry data for whisky, tea, and fruit.29 In 

addition to teaching practical skills, these activities also implicitly teach students to be aware of 

limitations and possible failures of ML, including issues with data quantity and quality (e.g., 

dataset imbalances, domain shifts) and effects on prediction quality.  However, it is equally 

important to teach students how to use ML models not merely to make predictions but also as tools 

for determining underlying scientific hypotheses. Several recent reviews discuss trends in 

interpretable and explainable ML methods in chemistry.30–32 

Here we report a computational activity, designed to be completed in a single 3-hour lab 

period, to complement the classic cyanine dye/PIB experiment for undergraduate physical 

chemistry students. In this activity, students apply ML regression analysis to predict max for 

different cyanine dyes using a set of 13 molecular features. The analysis starts with simple linear 

regression, which chemistry students are likely to have seen previously, before introducing more 

advanced types of regression models, including multiple regression, regularized regression, and 

tree-based regression models. In addition to predicting max, students analyze feature correlation 

and feature importance to gain insight into the model results. The final goal of the activity is for 

students to integrate the regression results with their prior chemistry knowledge to generate a 

hypothesis for what factors govern cyanine dye absorption and to identify the PIB as an appropriate 

model system. While our specific example of cyanine dye spectroscopy is not of significant 

practical importance, the types of model interpretation and feature selection methods taught in this 
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lab have been applied to a wide range of applied research problems, guiding the exploration of 

superhard materials,33 antimicrobial conjugated oligoelectrolytes,34 and halide perovskite crystal 

growth modifying additives.35 Given its ubiquity in physical chemistry curricula, cyanine dye 

spectroscopy thus provides an opportunity to introduce these methods in a familiar context. 

 

Purpose of the Activity: 

 

This experiment is intended to promote student understanding of both ML regression 

analysis and the electronic absorption of cyanine dyes, in addition to increasing student comfort in 

reading and modifying code in a computational notebook environment. The learning goals are that, 

by the end of the activity, students will be able to: 

 

• Explain the workflow of ML regression analysis 

• Describe different ML regression algorithms 

• Apply different methods for evaluating regression model performance and feature 

importance 

• Generate hypotheses for factors that govern cyanine dye absorption 

• Read and modify code in a Mathematica or Python computational notebook 

 

Methods: 

 

Dataset: 

 Successful ML analysis requires a diverse dataset of cyanine dye spectra, which can be 

generated computationally. However, accurate calculation of the excited electronic states of 

cyanine dyes is challenging,36 necessitating attention to the computational method, solvent 

interactions, and conformational degrees of freedom, and is typically performed using 

computationally-intensive time-dependent density functional theory (TD-DFT) calculations.37 ML 

methods for excited states provide an alternative approach,38 and deep-learning based methods can 

take into account conformational and solvent effects and reproduce high-quality TD-DFT 

calculations with trivial computational cost.39,40 We have used these new methods to generate the 
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dataset used in this work. These tools can also be useful for possible student explorations, as the 

ML based calculations can be performed interactively.41 

 A dataset was generated by searching PubChem for entries whose name contains 

“cyanine”; 112 unique molecules remained after removing duplicates (including molecules that 

differ only by the counterion of the salt). We augmented this dataset by examining dyes with end 

groups separated by polyene linkers, mix-and-matching the end groups, and generating 

hypothetical molecules with diene, butadiene, and hexatriene linkers, resulting in a total of 147 

unique molecules. The absorption maxima were computed with the UVVisML package,39,42 using 

the default settings and with the solvent set as methanol to match typical experimental procedures. 

This package does not generate a full spectrum for the molecule, but only predicts max, which is 

sufficient for our analysis. Thirteen different cheminformatics descriptors for each molecule were 

computed using Mathematica 13.2. The dataset deliberately includes several entries with large 

numbers of aromatic rings or anomalous sizes to serve the learning goal related to outlier 

identification. The complete dataset is available in CSV format at the GitHub repository for the 

project.43 

 

Machine Learning: 

 Regression analysis seeks to predict a target value, the dependent variable or y, in terms of 

one or more features, the independent variable(s) or X. The most basic type of regression analysis 

is simple linear regression, which uses a single independent variable to predict the dependent 

variable. In this approach, the line of best fit is determined, usually by minimizing a cost function, 

such as the residual sum of squares (RSS), which measures the difference between the observed 

and predicted values. This approach can be generalized to a multiple linear regression using two 

or more independent variables to predict a single dependent variable. Although generally more 

accurate, because the model has more information available to make predictions, multiple 

regression analysis is prone to overfitting, in which the model becomes too specialized to the 

training data and fails to generalize well to new data. Regularized (or penalized) regression models 

include a penalty term to minimize the complexity of the resulting model and avoid overfitting. 

This activity explores two common regularized regression models, Ridge Regression and Lasso 

Regression. In addition, there are alternatives to linear regression models, including tree-based 
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regression models like Decision Tree and Random Forest, in which a tree structure is used to model 

the data.  

 Supervised ML algorithms, including regression models, require a training dataset for 

which the desired target values are already known; this dataset is used to adjust the model 

parameters to give the best agreement with the target values. It is important that this training dataset 

is representative of the data to which the resulting model will be applied, or else the model may 

generalize poorly to new data; for example, the training dataset should sample the full range of 

feature and target values. After model training, a separate dataset with known target values, the 

test dataset, is used to evaluate the ML model performance. A qualitative assessment of model 

performance can be obtained by plotting the actual values against the predicted values for the test 

dataset. In addition, the actual and predicted values for the test dataset can be used to generate 

quantitative performance metrics. This activity introduces four such metrics: mean absolute error 

(MAE), mean squared error (MSE), root mean squared error (RMSE), and coefficient of 

determination (R2). MAE, MSE, and RMSE values closer to 0 indicate better model performance; 

for R2, values closer to 1 indicate better model performance. 

 In addition to evaluating the performance of the regression models, this activity prompts 

students to analyze the correlation and importance of the different molecular features. In Pearson 

correlation coefficient analysis, the relationship between each of the 13 features and the target 

variable is determined. Values close to +1 or ˗1 indicate strong positive or negative correlation, 

whereas values close to 0 indicate no correlation. In addition to assessing the correlation of each 

feature with the target variable individually, the contribution of each feature to the overall multiple 

regression model is evaluated based on the importance of that feature in the resulting model. For 

linear models trained with normalized data, feature importance is assessed by examining the 

magnitude of the weight of each feature in the resulting model; larger weights indicate greater 

importance. For non-linear models, a model-agnostic approach called SHapley Additive 

exPlanations (SHAP)44 is used to determine feature importance. 

 

Code Implementation: 

 The Python implementation of this activity can be executed in Google Colaboratory or any 

Jupyter notebook environment; it was tested with Python version 3.10. It uses standard Python 

libraries available in the Google Colaboratory environment for working with datasets (pandas45), 
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performing numerical calculations (NumPy46 and SciPy47), visualizing data (Matplotlib48 and 

Seaborn49), performing machine learning analyses (scikit-learn50), and molecular visualization 

RDKit51). The Mathematica implementation used version 13.0 (but has also been tested on 13.2);52 

no additional libraries are required. Representative results shown here are taken from the 

Mathematica implementation, but similar results are obtained in Python. The latest versions of all 

notebooks are available on GitHub.43 

 

Results: 

 

Cyanine Dye Absorption Spectra: 

 The electronic absorption spectra of cyanine dyes feature strong maxima in the UV-visible 

wavelength range. For a series of dyes that share the same end group, max shifts to longer 

wavelengths as the length of the polymethine chain increases. Figure 1A shows the structures of a 

series of common cyanine dyes, which differ only in chain length: 1,1ʹ-diethyl-2,2ʹ-cyanine, 1,1ʹ-

diethyl-2,2ʹ-carbocyanine, and 1,1ʹ-diethyl-2,2ʹ-dicarbocyanine. The corresponding UV-visible 

absorption spectra (Figure 1B) reveal the expected shift in absorption, with max increasing from 

approximately 525 nm to 605 nm to 707 nm as the chain length increases. In addition to the primary 

absorption peak, the spectra contain secondary peaks or shoulders at shorter wavelength due to 

vibronic transitions,11 which are neglected in the simple Kuhn free electron model analysis. 

 

Cyanine Dye Computational Dataset: 

 To validate our UVVisML dataset, we compared experimental max values to those 

calculated with UVVisML for 11 different cyanine dyes and found good agreement (Figure 1C; 

R2 = 0.88), justifying this computational approach for the full dataset of 147 molecules. Six 

randomly selected molecules are shown in Figure 2 to illustrate the diversity of end groups, 

conjugated chain lengths, and presence of other functional groups (such as azides or alkynes). 
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Figure 1. (A) Structures of three cyanine dyes with the same end groups but different conjugated 

chain lengths. (B) Experimental UV-vis absorption spectra for the three dyes in (A). (C) 
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Comparison of experimental and calculated max values for 11 different cyanine dyes. Dashed gray 

line: x = y. 

 

 

Figure 2. Six randomly selected molecules from the computational cyanine dataset with 

corresponding InChIKey identifiers in parentheses. 

 

Regression Models: 

 Students first train simple linear regression models using a single feature to predict max. 

By comparing the actual and predicted max values for different features in a parity plot, students 

can begin to develop intuition for which molecular characteristics have better predictive power. 

For example, molecular mass (Figure 3A) does not predict max as effectively as conjugated linker 

length (Figure 3B). In addition to a graphical assessment of model performance, students compute 

various quantitative performance metrics for the different models. A comparison of these metrics 

for the molecular mass and linker length models is consistent with the graphical assessment; for 
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example, R2 = -0.02 for molecular mass vs. R2 = 0.23 for linker length. Performance metrics for 

simple linear regression models with the 13 different features are shown in Table S1.  

 After testing different simple linear regression models, students then train multiple 

regression models that incorporate all 13 molecular features as independent variables. An 

unpenalized multiple linear regression model gives better performance than any simple linear 

regression model for this dataset (Figure 3C; R2 = 0.48). In addition, students test two different 

regularized regression models, Ridge and Lasso, with different regularization penalties. These 

models provide small improvements on the unpenalized multiple linear regression model as the 

regularization penalty is increased (corresponding to larger values of the penalty parameter ). 

Introduction of regularized models helps illustrate the concept of model overfitting by showing 

that a simpler model can sometimes generalize better to the test data. Performance metrics for 

unpenalized and regularized multiple linear regression models are shown in Table S2. As an 

optional extension, students test two tree-based regression models, Decision Tree and Random 

Forest. For this dataset, Random Forest gives the best performance (R2 = 0.66). Performance 

metrics for tree-based models are shown in Table S3. 

 

 

Figure 3. Actual vs. predicted max values for (A) simple linear regression using the 

MolecularMass feature, (B) simple linear regression using the LinkerLength feature, and (C) 

multiple linear regression. Dashed gray line: x = y. 

 

Feature Correlation and Feature Importance Analysis: 
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 To study what molecular features govern cyanine dye absorption, students analyze feature 

correlation and feature importance. Pearson correlation coefficient analysis reveals the correlation 

between each individual feature and max. As expected, several related features, including the 

linker length and the longest conjugated  chain, are among the most highly correlated with max 

(Figure 4A). Students should identify the extent of the conjugated -electron network as the 

physically relevant feature that governs cyanine dye absorption. In a complementary approach, 

students analyze feature importance in the multiple linear regression model by looking at the 

different coefficient weights (Figure 4B). This analysis reveals which features contribute the most 

to the model, although it can be complicated by correlations between the features. As a result, the 

features with the strongest individual correlation do not have the highest contributions to the 

model. In an optional extension of the activity, students use an alternative method, SHapley 

Additive exPlanations (SHAP), to analyze feature importance; this advanced approach can also be 

applied to non-linear models, like Regression Tree and Random Forest. SHAP analysis for the 

Decision Tree model is shown in Figure S1. 
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Figure 4. (A) Pearson correlation coefficient and (B) coefficient weight analysis for the 13 

molecular features. 

 

Implementation: 

 

 This activity was tested in the Fall 2022 and Spring 2023 semesters in physical chemistry 

lab courses at Fordham University and Whitman College, with class sizes of 9 and 4. It is designed 

for an upper-level physical chemistry lab course running either concurrent with or following a 

semester of quantum chemistry. It is implemented in the form of a computational notebook, which 

combines explanatory text, hyperlinks to other resources, executable and editable code blocks, and 
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output figures and tables. In addition to scaffolding the analysis for students, computational 

notebooks can also be easily shared with instructors for troubleshooting or assessment. The 

notebook is divided into two parts: Part I introduces simple and multiple linear regression, 

regularized regression, and feature correlation and importance analysis, and can be completed in a 

single 3-hour lab period. Part II includes more advanced topics, including feature engineering, tree 

models, and SHAP analysis. Part I forms the core of the activity, with the topics in Part II intended 

for more advanced students or for classes where a second lab period is available. There are prompts 

throughout the notebook for students to write new blocks of code to accomplish specific tasks, 

such as performing the analysis with different models or parameters. To facilitate adoption by 

instructors, we have created an instructor version of the notebook, which includes the solutions to 

these coding tasks. 

 The computational notebooks are provided in both Python and Mathematica. There are 

several options for executing Python notebooks, including the free web-based Google 

Colaboratory platform or a Jupyter Notebook application. We recommend the use of Google 

Colaboratory to ensure that the necessary Python packages are compatible and up to date. For 

expert users who wish to run the notebooks locally, we have included a pip “requirements.txt” file 

in the GitHub repository43 that specifies appropriate package versions. However, we note that other 

Python compatibility issues may still arise. The Mathematica notebook can be executed in either 

the desktop or online version of Mathematica; although Mathematica is not free, many institutions 

have a campus license. The two versions have the same content and structure, except for minor 

differences due to the use of different programming languages. Thus, instructors may choose 

which version to use based on student background or on the programming language used in their 

course or department. Writing the programs to perform basic chemical data analysis tasks like 

these might soon be handled using interactive large language models (LLMs) such as GPT-3,53,54 

and so the most important goal is to help students to think critically about reading, modifying, and 

debugging code, independent of language. 

 In the Fordham University physical chemistry lab course, we conducted anonymous pre- 

and post-lab surveys to assess student background and student impressions of the activity. Based 

on the pre-lab survey, almost all respondents (7/8) had heard of ML and regression analysis, but 

fewer than half (3/8) were aware of specific applications of ML inside or outside of chemistry. A 

few students (3/8) had taken a previous computer programming class, but the physical chemistry 
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course was the first exposure to programming in general, and to Mathematica specifically, for most 

students. Although the post-lab survey response rate was lower, more than half of students Agreed 

or Strongly Agreed (on a 5-point Likert scale from Strongly Disagree to Strongly Agree) that they 

understood the basic steps in an ML regression task, some of the factors that affect regression 

analysis, and possible applications of ML to chemistry. Most students also Agreed or Strongly 

Agreed that they were more able to read and write Mathematica code after completing the activity. 

 From the instructor perspective, the activity was broadly successful in meeting its learning 

goals. Almost all students at both Fordham University and Whitman College completed the core 

steps in the exercise in the allotted time, with some students moving on to the advanced topics. 

Likewise, all lab groups generated reasonable hypotheses for the underlying chemical principles 

that govern cyanine dye absorption and, with some instructor assistance, identified the PIB as an 

appropriate quantum mechanical model for the system. However, some students struggled with 

the programming aspect of the activity. At Fordham University, the exercise was performed early 

in the first semester of the physical chemistry lab course, and despite an introduction and 

opportunities to practice in the lecture course, students were still developing their proficiency in 

Mathematica. Instructors may wish to implement this activity with students who have had a longer 

exposure to programming or else to provide greater scaffolding for the programming components 

of the activity. 

This exercise was implemented as a one-day module to complement a separate 

experimental measurement of cyanine dye absorption spectra, but it could be adapted to other 

contexts. For example, in a computational chemistry or cheminformatics course, students could 

compute their own spectra using TD-DFT or generate novel molecular features to use in the 

regression analysis, connecting the core regression activity to more advanced computational 

chemistry topics. The activity could instead be simplified to make it accessible to introductory 

chemistry students by creating a streamlined version of the computational notebook without the 

programming tasks; in this case, the goal would be for students to gain experience working with a 

computational notebook and to understand the basic workflow of the regression analysis, but not 

to generate their own computer code. This simplified activity could serve as a stepping-stone to 

more advanced computational chemistry and programming content later in the course or in 

subsequent courses. At Fordham University, the regression analysis and experimental 

measurements were part of a three-day sequence, with the third lab period dedicated to electronic 
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structure calculations of cyanine dye molecular orbitals and absorption spectra. Alternatively, this 

activity could be performed as a purely computational exercise without an experimental 

component. 

 

Conclusion: 

 Here we report a new computational activity designed to introduce students to ML 

regression analysis in the context of the classic physical chemistry lab experiment on the 

absorption spectra of cyanine dyes. Student and instructor feedback indicate that this exercise was 

successful in introducing students to ML regression analysis and in strengthening student 

programming skills. Supplementing classic experiments with activities that expose students to 

modern research tools can help instructors balance the competing demands of teaching the physical 

chemistry canon while also ensuring that curricula stay relevant and engaging. 
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