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Abstract

Alchemical transformations can be used to quantitatively estimate absolute bind-

ing free energies at reasonable computational cost. However, most of the approaches

currently in use require knowledge of the correct (crystallographic) bond position. In

this paper we present a combined Hamiltonian replica exchange non-equilibrium al-

chemical method that allows to reliably calculate absolute binding free energies, even

when starting from sub-optimal initial binding poses. Performing a preliminary Hamil-

tonian replica exchange enhances the sampling of slow degrees of freedom of the ligand

and the target allowing the system to populate the correct binding pose when starting

from an approximate docking pose. We apply the method on 6 ligands of the first bro-

modomain of the BRD4 bromodomain containing protein. For each ligand, we start

non-equilibrium alchemical transformations from both the crystallographic pose and

the top-scoring docked pose that are often significantly different. We show that the

method produces statistically equivalent binding free energies making it a useful tool

for computational drug discovery pipelines.

Introduction

The calculation of accurate absolute binding free energies of protein-ligand complexes is an

essential and challenging task in computer-aided drug design1 (CADD). Many algorithms

have been developed for this purpose, ranging from end-point alchemical methods2–15 to

Collective Variable (CV) based enhanced sampling algorithms.16–19 Ease of use, speed, au-

tomation and reliability of the algorithm are particularly important aspects in the context of

drug discovery pipelines. In this respect, non-equilibrium alchemical techniques have been

shown to strike a good balance20–23 and be a valid alternative to traditional equilibrium al-

chemical techniques (FEP),24,25 while they are generally easier to automate than CV-based

enhanced sampling algorithms such as Metadynamics.26,27

While the absolute binding free energies predicted by alchemical methods are often in
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good agreement with experimental results, they still suffer from a number of challenges, most

notably a strong dependency on the initial binding pose and the difficulty in sampling slow

degrees of freedom.15 Slow side chain rearrangements and the presence of long-lived water

molecules are known to play a significant role in ligand binding.15,18 Thus, if the starting

structure used in the alchemical transformation does not include the correct number of long-

lived water molecules or its lateral chains are incorrectly positioned, the accuracy of the

predicted free energies can be adversely affected.

One way to overcome this issue is to perform very long simulations28 to fully sample

the slow degrees of freedom associated with long-lived waters and the repositioning of lat-

eral chains, but this approach is extremely computationally demanding. On the shorter

timescales that are routinely employed, it has been recently shown11 that carefully selected

restraints between the protein and the ligand greatly help the convergence. However, the

resulting binding affinities depend critically on the initial choice of binding pose, which

determines the accuracy of the predictions.29–31

In a real-world drug discovery scenario, a crystal binding pose is often not available

and calculations would often have to start from rough estimates of the pose such as those

obtained through docking.30,32–36 In this context, a method capable of providing consistent

binding free energy estimates when starting from a range of initial binding poses would be

highly desirable.

Feeding an ensemble of configurations generated by enhanced sampling to alchemical

transformations is one way to mitigate such challenges. We have recently introduced a

non-equilibrium technique called Virtual Double System Single Box (vDSSB),37,38 where a

Hamiltonian Replica Exchange (HREM)39–41 is performed on selected torsion angles prior to

the alchemical transformations. The method aims to pre-sample the Boltzmann distribution

of the ligand in the pocket and of the surrounding target residues and can be seen as an

evolution of the non-equilibrium work fast switching double annihilation method NEW-

FSDAM.42–46
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In this paper we further develop the vDSSB algorithm by extending the sampling in

the HREM stage, where both torsional angles and van der Waals interactions are scaled

and the conformational landscape of the binding site is explored even more thoroughly. The

proposed approach mitigates the effect of the initial binding pose on the free energy estimates

by sampling slow degrees of freedom related to the ligand orientation and the the binding

cavity conformation. Using a permissive restraint in the HREM simulations keeps the ligand

in the cavity while allowing a wide sampling of accessible binding poses. The implementation

of the algorithm in the HPC Drug python middleware (V. 2.0) makes it easier to automate

and include in ligand screening pipelines.

We test the method on a realistic and non-trivial set of protein-ligand systems consisting

of 6 ligands of the first bromodomain of the BRD4 bromodomain containing protein (hereon

BRD4 bromodomain) (Figure 1). The binding free energies for this system have been previ-

ously estimated by means of equilibrium alchemical transformations by Aldeghi et al.25 and

with non-equilibrium alchemical transformations by Gapsys et al.22 For the sake of clarity,

as we are using a subset of the ligands used in these papers, we keep the original numbering

(the ligands we use are 1, 6, 7, 8, 9, 11).

To highlight the capabilities of the method, we apply it both on the available crystal

poses and from docked poses to compare distributions from HREM and binding free ener-

gies. Notably, ligand 11 provides a real-world challenge as its crystallographic binding pose

is unknown, therefore one pose was modelled upon ligand 9 and the other one was obtained

by docking.25 Two other challenging cases are ligands 6 and 9 where the poses obtained from

docking are significantly different from the crystallographic ones, as they are flipped by 180

degrees. We show how the sampling provided by the HREM simulations produces compara-

ble conformational and orientational distributions when starting from different poses. The

calculated free energies are in good agreement with the experimental results and, more im-

portantly, the results from different poses are strongly correlated, highlighting the ability of

our algorithm to produce consistent and accurate free energy predictions even when starting
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from sub-optimal binding poses.
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Figure 1: Structure of the BRD4 bromodomain HOLO protein and the ligands that we
simulate. For clarity we kept the same ligand numbering as in the original paper by Aldeghi
et al.25 where we took the structures from.

Methods

The vDSSB37,38 is a multi-step algorithm where, initially, a Hamiltonian Replica Exchange

(HREM)39–41 is used to explore the conformational phase space of the system. A weak

position restraint is applied to the ligand so that it cannot escape from the binding pocket

while it is still able to explore different bound conformations.
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Subsequently, a number of snapshots is randomly extracted and used as the starting point

for non-equilibrium alchemical transformations. From them a swarm of fully independent

non-equilibrium alchemical transformations is run. One then extracts from these calculations

a set of alchemical work values on which one employs Crooks’ equation47 through Bennett’s

acceptance ratio (BAR).48 Here is a step-by-step description of the process.

Hamiltonian replica exchange HREM

This step requires the simultaneous simulation of a number of replicas where interactions

are progressively tweaked. It is performed in the following systems:

• HREM of the protein-ligand complex where the torsions and the VdW interactions of

the ligand and the first neighboring residues are scaled along 40 replicas according to

a geometric progression where i is the zero-based replica index 0.2i/39.

• HREM of the APO protein where the torsions and the VdW interactions of the residues

of the binding pocket are scaled along 40 replicas according to a geometric progression

where i is the zero-based replica index 0.2i/39.

• HREM of the ligand in water where torsions and the VdW interactions of the ligand are

scaled along 8 replicas according to a geometric progression where i is the zero-based

replica index 0.2i/7.

• HREM of the ligand in vacuum where torsions of the ligand are scaled along 8 replicas

according to a geometric progression where i is the zero-based replica index 0.2i/7, and

the VdW and coulombic interactions are set to zero.

The HREMs of the ligand in vacuum and in water are run for 40ns. In the case of the

complexes and the APO protein, each replica is initially equilibrated for 100ns applying

restrains on the heavy atoms of the protein and ligand. This allows the water molecules to

equilibrate. The HREM is then switched on with unrestricted atomic positions for a further
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100ns of equilibration, during which high index replicas can diffuse down the replica ladder,

allowing slow degrees of freedom sampling. The length of the equilibration is determined by

checking the distribution of configurations visited by replica 0. The equilibration is stopped

when the distribution becomes quasi-static (see Supporting Information (SI) Figure 1). As

expected, ligands 6 and 9 when starting from a flipped docked pose require longer HREM

equilibration times, respectively 400ns for ligand 6 and 300ns for ligand 9.

Finally, the production HREM simulations consist of three independent HREM runs of

100ns each, restarted from the equilibrated systems. The number of replicas was chosen

to strike a balance between computational cost and a reasonably high exchange probability

without creating diffusion bottlenecks between replicas.

Position Restraints

We perform the HREM runs with a weak harmonic restraint between the center of mass of

the binding pocket and the center of mass of the ligand. This restraint allows the ligand to

explore alternative binding poses while keeping it in the cavity.

The center of mass of the pocket is defined by a set of Cα atoms of some rigid residues

of the binding pocket that were selected by visual inspection (see Figure 2). The harmonic

constant of the restraint is K = 28.7 kcal mol−1 nm−2.

During the alchemical transformations, in order to prevent the ligand from diffusing

out of the binding pocket or rotating into nonphysical conformations, we freeze three non

collinear heavy atoms. To this end we use the isokinetic freezing algorithm49 in which the

mass of the three atoms is set to a high value (in our case 1020 atomic units of mass),

while their velocity is set to zero. It has been shown that isokinetic freezing does not affect

the final free energy values49 since the work done on the system to scale the mass and

velocity is equal and opposite to the work required to return the system to its initial state

W (A → B) = −W (B → A).

In a recent paper, Michel et al.11 have shown that applying an orientational restraint
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Figure 2: BRD4 bromodomain HOLO structure. The Cα atoms used to define the center of
the binding pocket are shown as red spheres.

on the ligand during bidirectional FEP24,25 calculations delivers more accurate binding free

energy estimates. This is due to the fact that the restraint keeps the ligand close to the

binding pose when the VdW interactions are almost fully decoupled, preventing it from

exploring less relevant poses during the alchemical transformation. To factor out the role of

the introduced restraint, we correct our free energy values with the equation suggested by

Gilson et al.13 (Equation 1) that for our setup returns ∆Gvol = −3.5 kcal/mol.

∆Gvol = RT ln

(
Vr

V0

)
Vr =

(
2πRT

K

)3/2

V0 = 1.661 nm3

RT = 0.593 kcal/mol

K = harmonic constant

(1)
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Alchemical transformations

In all alchemical transformations we switch on/off both the intermolecular and intramolecular

VdW and coulombic interactions,50 at the same time in a linear fashion. As we are using a

bidirectional approach, in one direction we mimic an unbinding process and in the other one a

binding process. In the former case, we annihilate the ligand from the protein pocket (bound

annihilation) and we create the ligand in a box of equilibrated water (unbound creation).

PLsolvated
∆Gbound annihilation−−−−−−−−−−−→ Psolvated + Lgas

Lgas
∆Gunbound creation−−−−−−−−−−→ Lsolvated

P = protein, L = ligand, PL = protein-ligand complex.

In the latter case, we create the ligand in the APO protein pocket (bound creation) and

we annihilate the ligand from a box of water (unbound annihilation). The strategy that

we use to fit the vacuum phase ligand in the pocket of the APO protein is akin to the one

adopted in Ref.23 A randomly chosen frame of the ligand in vacuum HREM, and a randomly

chosen frame of the APO protein HREM are combined. To orient the ligand properly in the

APO structure, we superpose it to a randomly chosen frame from the protein-ligand HREM.

We generate this way 200 starting conformations in total.

Psolvated + Lgas
∆Gbound creation−−−−−−−−−→ PLsolvated

Lsolvated
∆Gunbound annihilation−−−−−−−−−−−−→ Lgas

For the unbound case we execute 400 independent alchemical transformations of 0.5ns

each for each direction. For the bound case instead, we perform 200 transformations of 8ns

in each direction.

The rationale behind the length of the bound transformations lies on the necessity of

bidirectional calculations to have a sufficient superposition between forward and backward
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work distributions. Transformations 4ns long did not display a sufficient superposition for

ligands 1 and 11 (especially in the case of the docked poses), and in the case of ligand

8 the creation work distribution is a bimodal process and therefore tends to need longer

transformations to converge even in the presence of work superposition15 (see SI Figures 2,

3, 7, and 8).

Convolution of the probability distributions

The unbinding free energy is calculated from the convolution of the bound and unbound

works obtained from our separate and independent alchemical transformations, improving

the statistics with respect to the direct sum of the separate creation/annihilation free energy

contributions, as discussed in Ref.37 For comparison, the results without the application of

the convolution are shown in the SI Table 1.

Free Energy Estimates

To obtain the free energy from the alchemical work values, we estimate the dissociation free

energy by using Crooks’ theorem47 (Equation 2) through Bennett’s acceptance ratio,48 as

implemented in Pymbar.51

PA→B(W )

PB→A(−W )
= eβ(W−∆G) (2)

The 95% confidence interval (CI) (CI = 1.96 * STD) is calculated via bootstrapping

(10000 iterations with replacement). In the bootstrapping procedure, at every iteration we

sample with replacement the alchemical work values from the bound and unbound distribu-

tions and perform the convolution. Afterwards, we calculate the binding free energy at each

iteration in order to estimate the CI from the distribution of free energy values.
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System setup

The crystal structures of the protein ligand complexes, the two modelled structures of ligand

11, and the structure of the APO protein (PDB id 2OSS) are taken from Ref.25 The docked

systems were produced with Autodock v4.2.652,53 (see Figure 3).

The parametrization is done with the Amber99SB-ILDN force field54 for the protein

and TIP3P for water.55 For ligands, we use GAFF v2.0,56 AM1-BCC for charges57 and we

re-parametrize the dihedrals of the ligands with the ANI-2.X machine learning forcefield58

through Playmolecule’s web interface59 (https://www.playmolecule.com/parameterize/).

Simulation setup and parameters

All the molecular dynamics simulations were run with Gromacs-202260–67 patched with

Plumed-2.9.68–70 The input files can be found in the supporting material. For the equili-

bration of the complexes, an energy minimization with steepest descent was followed by

10ns of NVT and 10ns of NPT, for the ligand in water after the energy minimization 10ns of

NVT and 10ns of NPT were done, and for the ligand in vacuum after the energy minimiza-

tion 10ns of NVT were done. All the calculations were performed at standard temperature

and pressure.

Pre-processing, post-processing, and data analysis

Most of the pre-processing, post-processing, and data analysis was done with HPC Drug

(V. 2.0). The topology files for the HREM runs were created with a modified Plumed68–70

partial tempering script39 (see the supporting material section).

Results and Discussion

As can be seen in Figure 4 and SI Figure 1, the HREM simulations starting from the

crystal structures and from the docked poses converged to mostly equivalent conformational
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1 6

7 8

9 11

Figure 3: The crystallographic (coloured) and the docked (silver) poses of the 6 ligands. The
only exception is ligand 11, for which no crystallographic poses are available and we have
used the two modelled poses from Ref.25
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distributions, highlighting that our approach is able to recover the correct binding poses

even when starting from a sub-optimal docking pose. The case of ligand 11 is one of the

most remarkable. It reflects a typical real application where there is no crystallographic

information on the binding pose. The two independent HREM simulations starting from

different poses25 converge to comparable distributions in which a third pose is discovered

and dominates the landscape.

Table 1: The free energy results in kcal/mol for the crystallographic pose, the
docked pose, and the experimental value.

Ligand ∆Gcryst ∆Gdock ∆Gexp PDB Reference
1 8.0 +- 0.8 7.3 +- 0.7 9.8 +- 0.1 4OGI 71

6 9.3 +- 1.1 9.8 +- 1.1 8.2 +- 0.1 3U5L 72

7 3.9 +- 0.7 4.5 +- 0.5 7.8 +- 0.1 4MR4 73

8 7.8 +- 0.7 9.1 +- 0.7 7.4 +- 0.1 3U5J 72

9 4.0 +- 1.0 4.1 +- 1.3 7.3 +- 0.0 3SVG 74

11 3.7 +- 1.2 3.0 +- 1.2 5.6 Model 75

As shown in Fig. 5 and Table 1, the free energies obtained starting from the crystallo-

graphic or the docked poses are very close to the experimental values with mean unsigned

errors (MUE) of 2.1 +- 0.4 kcal/mol for the calculations starting from the crystallographic

poses and 2.5 +- 0.4 kcal/mol for those starting from the docked poses. They also agree well

with previous alchemical calculations (SI Figure 9).

Most importantly, the correlation between the results obtained starting from the crys-

tallographic and the docked poses shown in Figure 6 is outstanding (Pearson r = 0.96 +-

0.07). This highlights how our approach is able to address the issue due to starting from

sub-optimal binding poses. In particular, we also obtain a good correlation for ligand 11

where both starting poses are modeled and there is no experimental information on the

crystallographic binding pose.

In four out of six cases (ligands 1, 7, 9 and 11), the computed free energies underestimate

the experimental values. This was previously reported in the literature in Ref.76 where the

authors suggested that the discrepancy with experiment was due to the use of TIP3P waters.
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Figure 4: The probability distributions of the RMSD compared to the crystallographic pose
during the HREMs starting both from the crystallographic and the docked poses. The RMSD
of the docked pose is shown as a vertical green line for reference. As specified in the methods
section, for ligands 6 and 9 longer equilibration times were used. For ligand 11, Pose 1 is
modeled upon ligand 9 and Pose 2 is docked, both structures are taken from Ref.25
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   Crystallographic poses

Estimated vs Experimental

Docked poses

Estimated vs Experimental

Figure 5: The binding free energies obtained starting from the crystallographic and docked
poses compared to the experimental values.

It is clear that the quality of the force field, not only the one used for the water, but also

the one used for the ligand and the protein, has a crucial effect on the results.

Ligands 6 and 9

Here we focus on the cases of ligands 6 and 9, whose discrepancy between docked and

crystallographic poses makes them the most challenging and worth to analyze systems.

The preferred binding pose of ligand 6 appears to be different from the experimental

one. In fact, the HREM simulation starting from the docked pose has converged to a stable

probability distribution where the docked pose is the dominant one, while the HREM starting

from the crystallographic pose is slowly but steadily shifting towards the docked pose (see

Figure 4, SI Figure 1). In this docked pose, shown in Figure 7, the ligand is slightly deeper

in the binding pocket and fills better the pocket than the crystal pose.

As shown in SI Figure 1, the HREM of ligand 6 starting from the crystallographic pose
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Figure 6: Comparison between the free energies obtained from the crystallographic and the
docked poses.
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Ligand 6

Ligand 9

Figure 7: The crystallographic (colored) and docked (silver) poses of ligands 6 and 9. For
both ligands, both the crystallographic and the docked poses are well enclosed by the protein
surface. Therefore, for the ligand to go from one pose to the another, it cannot just rotate
but it has to slightly exit and re-enter the pocket. Throughout the process, neighboring
water molecules have to rearrange. The water molecules shown are those within a distance
of 0.35nm from the ligands.
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is the only one that does not reach a converged conformational distribution. An analysis

of the HREM trajectories shows that, for the the ligand to pass from one pose to another,

it is forced to slightly exit the binding pocket, rotate, and then re-enter while a number

of neighboring water molecules rearrange. The rather large size of the ligand 6 and the

presence of slow degrees of freedom that are not accelerated with our HREM setup such as

the movement of the water molecules can explain the difficulty for HREM simulations to

equilibrate. Because of this, in the case where one starts from the crystallographic pose,

most replicas need to flip the pose to reach the equilibrium Boltzmann distribution and

the process is difficult and time consuming. On the other hand, the case starting from the

seemingly more stable docked pose seems to be able to reach equilibrium faster.

An analogous line of reasoning can be applied to ligand 9 where the crystallographic and

docked poses are rotated respect to each other, but in this case ligand 9 is less bulky than

ligand 6 and can flip in an easier way. Therefore, 300ns of HREM equilibration are enough

to reasonably converge the conformational probability distributions for both binding initial

poses.

These examples showcase one of the well known limits of molecular dynamics sampling:

the presence of unknown slow degrees of freedom. HREM is helpful in alleviating this

problem by enhancing the sampling of a predefined set of known physical elements such as

torsional angles, but it is not built to pinpoint and accelerate each one of these degrees of

freedom. Their comprehensive identification often requires extensive analysis and the use of

advanced techniques77–80 while CV-based techniques are being developed to offer a solution

to the sampling problem.81–84 Notwithstanding its limitations, the fact that our method

produces comparable and correlated results starting from largely different binding poses for

all ligands, including the problematic ligand 6, is testament to the fact that it does manage

to effectively accelerate relevant slow degrees of freedom.
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Sampling slow degrees of freedom

A degree of freedom that plays a relevant role in our target is the opening of the ZA-loop

between the HOLO and APO structures.76,85 We estimate its opening and closing by evalu-

ating the RMSD of residue ASP88. The HOLO protein tends to be in its closed state while

the APO protein tends to be in its open state. In such a situation, bidirectional transfor-

mations are more robust to conformational changes between the APO and HOLO protein.23

To verify this, we compute monodirectional free energies on SI Table 2 and observe that

they are indeed systematically shifted towards higher values compared to the bidirectional

ones. Nevertheless, also the convergence of bidirectional transformations can be negatively

affected by complex APO/HOLO conformational changes and the presence of multiple water

configurations.15

In this work, HREM simulations on both on the APO and HOLO structures allow to

improve the situation by sampling rare fluctuations that are crucial to recover good quality

free energy values.86 In fact, as can be seen in SI Figures 10, 11, 12, we are able to visit

the rare cases where the ligand gets annihilated from an open (APO-like) protein, and

created in the closed (HOLO-like) protein. This is especially noticeable in SI Figure 12

where one can observe the RMSD of the ASP88 residue during the 200 non-equilibrium

alchemical transformations. While for both the annihilation and the creation transformations

the mean RMSD value is constant, it presents a rather large variance throughout the whole

transformations, indicating that a variety of configurations is visited and a number of paths

are taken.

As a consequence, our approach can better sample the tails of the forward and backward

probability distributions of the alchemical works, allowing to recover less biased and more

robustly converged results.86 The use of HREM, indirectly, also allows us to sample different

water configurations around the ligands, in analogy with the observations for the ZA-loop

motion, as shown in SI Figures 13, 14.

Therefore the free energy values obtained with our method are expected to be less in-
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fluenced by the convergence problems showcased in Ref.15 than results extracted with more

standard approaches.

Conclusions

In this work we have presented an approach combining HREM with non-equilibrium alchem-

ical transformations which is able to provide good estimates of absolute ligand binding free

energies, regardless of the quality of the initial binding pose. Decoupling the computed free

energy from the starting pose is important for real-world drug discovery campaigns where

the protein ligand binding poses are often obtained by docking to crystallographic poses,

and increasingly to predicted protein structures.87–90

Given that the starting pose is typically kept fixed with tight restrains in most alchemical

approaches, the uncertainty on the starting pose is a problem. One possibility is to repeat

the free energy calculations on various poses obtained by docking and use the average of

those free energy estimates (e.g. ligand 11 in Refs.22,25). For this approach to be successful,

at least one of the selected poses must belong to the lowest energy basin in the binding site,

while averaging between results obtained with different poses is only meaningful if these

poses have similar free energy values, as the probability of encountering a conformation

decays exponentially with its energy.

Our approach allows to directly use sub-optimal poses in alchemical calculations, as the

extensive conformation pre-sampling with HREM would explore the relevant binding poses.

Obtaining a set of initial conformations this way takes into account the highly dynamic nature

of binding, eliminating the dependence of the result on the choice of the initial binding pose.

The algorithm proposed in this paper can be directly applied to protein targets of interest

with new ligands in the absence of crystallographic data, and thanks to the automation

provided by our HPC Drug package can be easily integrated into computational pipelines,

making it a valuable tool for drug discovery.
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Data and Software Availability

Supporting informations: additional computational details, free energy results, data analy-

sis, and figures. HPC Drug is available at:

https://github.com/MauriceKarrenbrock/HPC_Drug

The Gromacs input files used, the docked structures, and the modified versions of the partial

tempering script are available on Zenodo at:

https://doi.org/10.5281/zenodo.8377371
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Martin-Samos, L.; Masetti, M.; Meyer, R.; Michaelides, A.; Molteni, C.; Morishita, T.;

Nava, M.; Paissoni, C.; Papaleo, E.; Parrinello, M.; Pfaendtner, J.; Piaggi, P.; Pic-

cini, G.; Pietropaolo, A.; Pietrucci, F.; Pipolo, S.; Provasi, D.; Quigley, D.; Raiteri, P.;

Raniolo, S.; Rydzewski, J.; Salvalaglio, M.; Sosso, G. C.; Spiwok, V.; Šponer, J.; Swen-
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