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ABSTRACT 

QSAR models capable of predicting biological, toxicity, and pharmacokinetic 

properties were widely used to search lead bioactive molecules in chemical databases. 

The dataset’s preparation to build these models has a strong influence on the quality of 

the generated models, and sampling requires that the original dataset be divided into 

training (for model training) and test (for statistical evaluation) sets. This sampling can 
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be done randomly or rationally, but the rational division is superior. In this paper, we 

present MASSA, a Python tool that can be used to automatically sample datasets by 

exploring the biological, physicochemical, and structural spaces of molecules using PCA, 

HCA, and K-modes. The proposed algorithm is very useful when the variables used for 

QSAR are not available or to construct multiple QSAR models with the same training 

and test sets, producing models with lower variability and better values for validation 

metrics. These results were obtained even when the descriptors used in the 

QSAR/QSPR were different from those used in the separation of training and test sets, 

indicating that this tool can be used to build models for more than one QSAR/QSPR 

technique. Finally, this tool also generates useful graphical representations that can 

provide insights into the data. 

 

Keywords: Clustering, Hierarchical clustering analysis (HCA), K-modes, Training and 

test sampling, QSAR, Computer-aided drug design, Python. 
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INTRODUCTION 

Research and development (R&D) in the context of drug design faces many 

challenges, such as high cost, limited number of substances that can be tested, difficulty 

in finding new active chemical structures, limited success in preclinical and clinical trials, 

and long periods to reach the market [1]. One solution to these problems is computer-

aided drug design (CADD), which is constantly evolving in terms of new techniques, 

algorithms, and software. CADD has become an essential part of the drug planning 

process by speeding up, reducing costs, and increasing the success rate [2]. The 

quantitative structure-activity relationship (QSAR) technique is one of CADD methods 

used in drug development and has gotten a lot of attention because of its applicability in 

the prediction of pharmacokinetic characteristics, biological activity, toxicity, risk 

assessment, screening of bioactive molecules in chemical databases and lead 

optimization [2, 3]. Several advances in medicinal chemistry and toxicology have been 

made with the application of QSAR models, highlighting the development of norfloxacin, 

the first fluoroquinolone with antibacterial activity to reach the market. In addition, the 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals 

for Human Use (ICH) has recommended the use of QSAR models in mutagenicity 

studies of drug candidates and their degradation products, providing more information 

and speeding up toxicity studies [4, 5].  

The main objective of QSAR studies is to create predictive models built on a 

mathematical-statistical correlation between structural features (independent variables 

or descriptors) and the desired property (dependent variable), generally a biological 

activity, however, other types of properties, such as physicochemical properties can also 

be predicted (in this sense, the so-called quantitative structure-property relationship, 

QSPR) [2, 3, 6]. In fact, QSAR modeling is widely utilized across academic, industrial, 

and governmental sectors for assessing the potential effects of chemicals, materials, and 

nanomaterials on human health and ecological systems. It can be used to predict various 

different properties, such as negative logarithm of the dissociation constant (pKa), n-

octanol–water partition coefficients (log P), ab initio properties (e. g., dipole moment), 

reactivity indicators (e.g., EHOMO e ELUMO), in vitro toxicity, multi-target in vitro toxicity, in 

vivo rat oral toxicity, drug metabolizing via cytochrome P450, reactivity (reaction rate), 

inhibition of G-protein-coupled receptors, antiviral and antibacterial activities and many 

others [6–8]. Furthermore, the obtained correlations could be employed to provide 

mechanistic interpretation for the modeled desired property and guide structural 

modifications to design more potent compounds. QSAR protocols are based on three 

fundamental steps: data preparation, model construction, and model validation. The data 

preparation strongly influences the other ones; in this step, one procedure requires the 
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original dataset must be sampled into training set (used for model training) and test set 

(used to further evaluate the predictive ability of the model) [3]. This sampling can be 

done randomly or rationally, but the rational or purposeful division is superior to the 

random method [2, 6, 9–11].  

Sampling steps in any analysis are critical for data quality and, consequently, for 

the quality of information derived from these data, since overall quality is closely related 

to the data representativeness [10]. Although random sampling can produce predictive 

models and its overall predictability is often comparable to rational selection, validation 

metrics show discrepancies when obtained by models built with the same randomly 

sampled dataset. This suggests that these models have low reproducibility and can lead 

to erroneous conclusions and only representative samples can provide reliable analytical 

information because the values may be too optimistic or too pessimistic, depending on 

the representativeness of this separation [3, 6, 10]. 

Compared to random selection, rational sampling of compounds with chemical 

properties covering the entire population of available data does not introduce any bias. 

It provides models that are more accurate and have a wider applicability domain [11]. 

The rational selection of compounds leads to the development of models that produce 

more reliable results and better values in internal and external validation metrics, 

allowing precise and statistically significant structure-activity correlations that would 

otherwise be insignificant due to random selection [3, 6, 9, 12, 13]. 

In QSAR context, many algorithms are used for the rational division of the dataset 

into training and test sets, including K-means clustering, based on activity selection, D-

optimal design, hierarchical clustering analysis (HCA), Kennard-Stone algorithm, 

minimal test set dissimilarity, Self-Organizing Maps (SOM, also known as Kohonen 

maps), and sphere exclusion algorithm [2, 3, 6, 14–17]. All of them are based on two 

principles: the training set must be structurally diverse enough to cover the entire 

descriptor space of the overall dataset, and the compounds in the training and test sets 

must be close together [6]. In general, among the algorithms used for rational sampling, 

there is no statistically significant difference, i.e., the effect on the statistical performance 

of a QSAR model is small. However, the predictive power of a QSAR model is strongly 

determined by the distribution of the training compounds in the chemical space, and 

ideally, the compounds should be uniformly distributed throughout the space [2, 9]. 

Furthermore, different QSAR methodologies utilize different descriptors, and the choice 

and use of these descriptors in sampling can bias the models. This can be observed in 

studies that use more than one QSAR technique, as well as when a screening of 

descriptors is performed to determine which descriptor can generate the best models. 
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In the literature, several works can be found describing the construction of 

predictive models for the most diverse biological activities using different QSAR 

techniques, including Hologram-QSAR (HQSAR), Comparative Molecular Field Analysis 

(CoMFA), Comparative Molecular Similarity Indices Analysis (CoMSIA), LQTA-QSAR 

(LQTA, Laboratório de Quimiometria Teórica e Aplicada), Multitarget-based-QSAR (e.g., 

QSAR-Co and QSAR-Co-X) and Machine Learning-Based-QSAR employing several 

algorithms, such as Random Forest (RF), Support Vector Machine (SVM), Gradient 

Boosting (GB), and Artificial Neural Networks (ANN) [15–27]. Several of these studies 

apply rational sampling in training and test sets based on hierarchical clustering analysis 

(HCA) of biological, physicochemical and structural chemical spaces. Although there are 

several implementations of these different algorithms in the literature, little effort has 

been put into developing open-source tools that automatically execute one of these 

algorithms to perform the splitting of the compound set into training and test sets based 

on the entire chemical space (including both dependent and independent variables of 

the dataset). 

We present in this paper an open-source, easy-to-use Python tool called MASSA 

Algorithm (“Molecular dAta Set SAmpling Algorithm”) [28] to perform the automatic 

sampling of datasets of molecules into training and test sets. This algorithm is based on 

hierarchical clustering analysis of physicochemical and structural spaces, as well as the 

dependent variables (biological activities). This tool, powered by RDKit [29], only needs 

a “.sdf” file with molecules and their respective structures and biological activities to 

select them proportionally to their physicochemical, structural, and biological diversity. 

MASSA uses the biological activity of compounds together with calculated Atom Pairs 

fingerprint and physicochemical properties, such as the number of hydrogen bond 

acceptors (HBA), the number of hydrogen bond donors (HBD), molar weight (MW), the 

number of rotatable bonds (nRotB), sp3 carbon fraction (Fsp3), topological polar surface 

area (TPSA) and Wildman-Crippen partition coefficient (log P). The algorithm employs 

the best-practice procedures for dataset sampling improving the overall quality of models 

build with any QSAR technique and generating graphical view of the distribution of these 

molecules. In addition to automatically generated plots (that can be useful for discussing 

the results obtained from the construction and interpretation of models), this tool allows 

the advanced user to explore and change algorithm parameters without sacrificing the 

basic user experience, which will use the default settings. We also presented a 

comparative analysis with multiple datasets between the results obtained from QSAR 

randomly sampled models and QSAR rationally sampled models using the proposed 

algorithm to introduce, describe, and validate the utility, reliability, and application of 

MASSA. 
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MATERIALS AND METHODS 

Implementation 

System Overview 

MASSA Algorithm is a Python script that calculates physicochemical (HBA, HBD, 

MW, nRotB, Fsp3, TPSA, and log P) and structural (Atom Pairs fingerprint) properties 

for a set of molecules contained in an SDF file. By using HCA, each one of these two 

domains (molecular properties), as well as the domain associated with biological 

activities, are individually and automatically clustered. A new clustering is performed with 

the previous cluster labels of the three domains using k-modes [30], resulting in a single 

cluster division that will be utilized to guide the rational sampling of the molecules. An 

SDF file containing the computed properties and the distribution of molecules is 

generated at the end of the sampling procedure together with graphical representations 

of the distribution and frequency of molecules in the clusters and subsets. The 

methodology used in each stage of the process is described below and summarized in 

Figure 1. 
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Figure 1. Illustration of the overall strategy used in the MASSA Algorithm for sampling 

the entire chemical and biological space of molecules. The symbols labeled in the image 

represent the main modules used in the Python script for each step. The pandas module 
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was also used to organize the data in multiple steps. A) Initial reading of the molecules 

file. B) Carrying out pre-processing before clustering. Data extraction for biological 

activity, physicochemical and fingerprint calculations, data normalization, and 

dimensionality reduction. C) Individual clustering of each domain (biological, structural, 

and physicochemical) and the final clustering. D) Stratified division of molecules between 

training and test sets, followed by a calculation of distribution frequencies between sets, 

domains, and clusters. E) Generation of plots and the final molecule file. 

 

Command line interface 

The first step involved in the construction of the algorithm is related to its 

interaction with the user to get the information needed in the process. For this, the 

argparse module [31] was used, which allows the development of easy-to-use command 

line interfaces and also generates useful help messages. 

The following information is obtained from argparse: path to the input and output 

files, percentage of molecules in each subset, number of biological activities and which 

columns they represent, the image file format of the generated representations, x-axis 

font size of the generated diagrams, number of principal components used in Principal 

Component Analysis (PCA), Singular Value Decomposition (SVD) solver parameter, and 

linkage method used in HCA. The input and output files are required parameters and the 

others can be declared or not, since the script can be run with default values, making it 

easier for basic users without compromising the experience of more advanced users. 

The number of principal components in the default settings is automatically determined 

by analysis of variance, as discussed further below, and the default font sizes were 

determined by multiple visual tests. According to prior studies, the HCA complete linkage 

method, the percentages of molecules in the training and test sets, and other parameters 

are used as the default. 

To achieve the goal of providing an easy-to-use interface for basic users, if the 

user does not provide the number and name of biological activities in the SD file, the 

script will behave as follows: the number of biological activities will be one, and the script 

will examine how many properties are described in the input file. Except for the name of 

the molecules, if the number of biological activities is equal to the number of described 

properties, these properties are considered biological activities automatically; otherwise, 

an input() function prompts the user to enter the name of the biological activities. The 

roles of the other parameters are discussed in detail in their respective sections. 
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Reading SD files 

 The input file in an SD format is read by RDKit calling the 

AllChem.SDMolSupplier() function. Then, each molecule is instantiated in a for loop to 

add the hydrogen atoms, preserving the 3D coordinates of the original file using of 

AllChem.AddHs() and passes True as the value of the addCords function argument. If 

an error occurs while reading the molecules, the script closes and the error is reported 

on the command line and in a log file; otherwise, the data processing and information 

extraction from the SD file will continue. 

 The data is organized using pandas.DataFrame object and each row are 

identified by the name of the molecule extracted by an RDKit function called GetProp(), 

which is also used to extract the values of the biological activities selected in subsequent 

steps. 

 

Descriptors’ calculation and pre-processing for clustering 

Since the name and biological activities of the molecules were extracted from the 

SD file, data on the physicochemical and structural spaces are still lacking to sample the 

entire chemical space. Fortunately, RDKit has functions to calculate certain fingerprints 

and descriptors that can be used to represent the structural and physicochemical 

domains, respectively. Therefore, Atom Pairs fingerprint was calculated using functions 

provided by rdMolDescriptors and cDataStructs modules, and HBA, HBD, MW, nRotB, 

Fsp3, TPSA, and WildmanCrippen Log P were calculated using the functions of the 

module “Descriptors”. 

Once the variables related to the biological, physicochemical, and structural 

spaces were calculated and organized in the data frame, it is possible to start organizing 

these data and then performing the clustering. An numpy.array was generated for each 

one of the three domains and the values of each variable, except the fingerprint, were 

normalized with the MinMaxScaler() function from the scikit-learn package [32]. 

In the next step, PCA was performed for the arrays that present the number of 

properties greater than the number of main components desired. For this, the scikit-learn 

package by the PCA() function was also used. In the step of passing command line 

arguments, the user can select the number of principal components and the svd_solver 

argument for the PCA() function. The default value for the svd_solver argument is ‘full’, 

which implies that the exact full SVD is computed using the standard LAPACK solver, 

and the components are selected by post-processing [33]. With svd_solver = ‘full’, the 

number of user-defined principal components is interpreted as follows: if the user-defined 

number is a decimal number between 0 and 1, the number of components is chosen so 

that the amount of variance to be explained is greater than the specified percentage; 
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otherwise, the number of components is the exact integer [33]. The number of principal 

components is 0.85 in the default settings, which means that the number of principal 

components is chosen to explain more than 85% of the variance of the dataset. 

 

Clustering 

After the data has been pre-processed, HCA can now be performed. First, 

hierarchical clustering analyses are separately performed on each of the three matrices 

(biological activities, fingerprints, and physicochemical properties). The linkage matrix 

for each HCA is built using the linkage() function from the cluster.hierarchy module of 

the scipy library [34]. The complete linkage method is the default, but the user can 

choose other options, such as complete, single, ward, average, weighted, centroid, and 

median. 

Euclidean distances are then calculated using the maxdists() function from 

scipy.cluster.hierarchy that calculates the maximum distances between any cluster [35]. 

These distances are plotted in a scatter graph and used in the elbow method to calculate 

the optimal clustering cutoff distance and the number of clusters. The elbow method is 

implemented by calculating the distance between each data point and a straight line 

drawn between the first point (representing a single cluster) and the twenty-first point 

(representing a division into 21 clusters), as described and further explained in Equation 

1. The points on the x-axis represent the number of clusters, while the points on the y-

axis represent the maximum Euclidean distance among the clusters. When the increase 

in the number of clusters (x) does not significantly affect the difference in Euclidean 

distance (y), a curve in the shape of an elbow is formed. This elbow-shaped curve 

indicates the optimal cutoff distance and the minimum number of clusters. 

 

distance =  
|(𝑦2 −  𝑦1)𝑥0 − (𝑥2 −  𝑥1)𝑦0 + 𝑥2𝑦1 − 𝑥1𝑦2|

√(𝑦2 − 𝑦1)² +  (𝑥2 − 𝑥1)² 
       (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏) 

 

In Equation 1, the coordinates x (number of clusters) and y (Euclidean distance) 

of the first point on the line are x1 and y1, respectively, while x2 and y2 correspond to the 

coordinates of the final one. Each one of the coordinates x0 and y0 will be used to 

compute the distance of each observation to the defined line. The curve point farthest 

from the straight line is then identified as the elbow, indicating the appropriate number of 

clusters and the correct cutoff distance for HCA. With these values, the flat clusters from 

the hierarchical clustering are generated by the fcluster() function from 

scipy.cluster.hierarchy [36].  

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


The dendrograms for each one of these analyses are only created after sampling 

in training and test to allow the identification in the representation of molecules that 

belong to the test. The dendrogram() function, which is also part of 

scipy.cluster.hierarchy, was used for this, and several graphical changes were made with 

the help of the matplotlib library to improve the presentation of the dendrogram and to 

generate relevant legends and identifications [37]. 

A new clustering utilizing k-modes was then done to gather the classification data 

from the three analyses in a single classification. While k-means algorithm groups 

continuous numerical variables based on their Euclidean distance, k-modes clusters 

data points based on the number of matching categories between these points, making 

it more appropriate for categorical variables. [30]. Thus, the HCA classifications were 

converted into categorical variables for the k-modes by transforming the integer into a 

string and appending the term “cluster” at the beginning of each string. 

The k-modes clustering is then performed with the number of clusters (x) ranging 

from 2 to 20, and the clustering cost (y), defined as the sum distance of all points to their 

respective cluster centroids. This is performed to define the ideal number of clusters by 

applying the elbow rule implemented with the previously described line-to-point distance 

equation [30]. After determining the number of clusters, the final cluster division is carried 

out, and each molecule is assigned to its final k-modes cluster, which will be utilized for 

sampling in training and test. 

 

Sampling 

 The selection of training and test sets was performed using the train_test_split() 

function of the sklearn.model_selection module. This function allows stratified sampling 

according to the final cluster distribution, ensuring that both sets have similar proportions 

[38]. The user can specify the percentage of molecules in each set using a two-digit 

decimal value on the command line. Otherwise, the default values of 80 percent (0.80) 

for the training set and 20 percent (0.20) for the test set will be used. The frequencies of 

each cluster in each set (training, test, and total) for the three domains (biological, 

physicochemical, and structural) and the overall classification are calculated after 

sampling into training and test sets. The computed frequencies for each one of these 

four classifications are used to build a bar graph that visually displays the distribution of 

molecules in clusters and sets. 

 Finally, a new SDF file is created with RDKit, preserving the previously existing 

properties, adding the set identification (training or test), the assigned cluster 

identifications, and the calculated physicochemical properties. 
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Availability 

MASSA Algorithm is fully free under the GNU Affero General Public License (v3) 

and is accessible in the Python repository: https://pypi.org/project/MASSA-Algorithm/. 

The source code is also available at the following link: 

https://github.com/gcverissimo/MASSA_Algorithm. 

Before installing this package, it is essential to have Python version 3.8 or higher 

installed. Additionally, other required packages, such as the RDKit distribution for 

Python, will be automatically installed during the installation process of this tool. To easily 

install the MASSA Algorithm, execute the following command: pip install 

MASSA_Algorithm. Once installed, run the program from the command line with the 

following command: “MASSA_Algorithm -i <path to the input file> -o <path to the output 

file>”. Alternatively, you can set the optional parameters as well. The complete 

description of optional parameters can be found in the program's help (command 

"MASSA_Algorithm -h") or on the source code's home page on GitHub. 

 

Datasets 

 To analyze the influence of the dataset separation method on the overall quality 

of the QSAR models, seven datasets of different sizes and nature of dependent variables 

(biological activities, enzymatic inhibition, and physicochemical properties) were 

collected from the literature [39–43]. These sets of molecules were chosen by searching 

for datasets in which HQSAR models had previously been reported, as it is a commercial 

QSAR technique that is simple to implement and has good reproducibility. 

From the seven selected datasets, the following eight activities/properties were 

used as dependent variables (Y) in the separation and construction of the QSAR models: 

half maximal inhibitory concentration (IC50) converted to the pIC50 scale (- log IC50) 

against angiotensin-converting enzyme (ACE), dihydrofolate reductase (DHFR), 

glycogen phosphorylase b (GPB) [39], mantle cell lymphoma (JEKO-1) [40], thyroid 

hormone receptors TRα and TRβ (TR) [41], cannabinoid receptor subtype CB1 (a 

member of G-protein-coupled receptor superfamily – GPCR) [42], and critical micelle 

concentration (CMC) converted to the pCMC scale (- log CMC) [43]. Except for activities 

against thyroid hormone receptors TRα and TRβ, in which both subtypes corresponded 

to the same set of molecules, all activities corresponded to a single separate dataset. 

Table 1 lists the properties and the number of molecules in each dataset employed in 

the analysis. 
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Table 1. Datasets, targets, dependent variables (y), and the number of molecules (n). 

Dataset Type of target y n 

ACE [39] Enzyme pIC50 114 

DHFR [39] Enzyme pIC50 361 

GPB [39] Enzyme pIC50 66 

JEKO-1 [40] Cell pIC50 35 

TR [41] 
TRα 

Nuclear receptors pIC50 68 
TRβ 

CB1 [42] GPCR receptor pIC50 75 

CMC [43] Physicochemical Property pCMC 120 

 

 The three-dimensional structures of all compounds in the ACE, DHFR, and GPB 

datasets were obtained from the original publication's supplementary material; the three-

dimensional structures of the molecules in the other datasets were represented in 

Discovery Studio Visualizer v21.1.0.20298 [44], followed by optimization and correction 

of the protonation state in biological pH using OMEGA 2.5.1.4 [45, 46] and QUACPAC 

1.6.3.1 [47]. 

 

Training and test separation 

 Five types of training-test splits were performed in five replicates for each dataset: 

a random distribution, a separation using the MASSA Algorithm, and three other rational 

samplings with Kennard-Stone, Sample Set Partitioning based on Joint X-Y Distances 

(SPXY) and Sphere Exclusion using astartes [48]. In the distribution with MASSA 

Algorithm, the following standard parameters were used: percentage of molecules in the 

training set = 80%, number of biological activities = 1, linkage method = complete, 

svd_solver = full, and number of principal components = 0.85 (85% of the variance is 

explained). However, there were a few exceptions: in the TR dataset, the two biological 

activities (pIC50 against TRα and TRβ) were used in the separation and, for the JEKO-1 

dataset, the variance to be explained by PCA was 80% because the number of 

molecules was too small for cluster distribution. Other distributions also considered the 

proportions of 80% of the molecules for the training set and 20% for the test set. The 

distance metric used by the astartes distributions was Euclidean distance, and in the 

Kennard-Stone and SPXY distributions, only one replicate was kept because the result 

is always the same across replicates. The distance cutoff used for Sphere Exclusion was 

the default (0.25). All rational sampling techniques are made using Atom Pairs fingerprint 

to maintain comparability with MASSA sampling. Each dataset's original distribution was 

also used in the development of models and statistical analyses. 
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HQSAR models 

 Models obtained from hologram quantitative structure-activity relationship 

(HQSAR) were created and validated using Sybyl X 2.1.1 [49] for all data distributions 

from 2D molecular holograms (independent variable – x) defined by the following 

parameters: (i) fragments distinguished by considering atoms (A), bonds (B), 

connections (C), hydrogen atoms (HA), chirality (Ch), and/or hydrogen bond 

donor/acceptor (DA); (ii) fragment size (Fsize) and; (iii) hologram length (HL) measured in 

bins. The parameter combination used for each activity was the one deemed best for 

that dataset in its reference article to compare the quality of the models generated 

between the different distributions (Table 2). All HQSAR models were created with the 

maximum number of principal components (PCs) equal to or greater than six, as 

specified in the reference article, and validated using leave-one-out internal cross-

validation (q2
LOO) and other external validation metrics, as described in the Evaluated 

metrics section. 

 

Table 2. HQSAR parameters of each dataset. 

Dataset Fdist Fsize HL PC 

ACE [39] A/B/C/Ch/HA 4 to 7 4999 4 

DHFR [39] A/B/C/Ch/HA 4 to 7 4999 6 

GPB [39] A/B/C 4 to 7 4999 2 

JEKO-1 [40] A/B/Ch/HA 4 to 7 53 6 

THR 

[41] 

TRα A/B/C/DA 5 to 8 401 6 

TRβ A/B/C/DA 5 to 8 353 5 

CB1 [42] A/B/C/D/Ch 4 to 7 71 6 

CMC [43] A/B/C/DA 7 a 10 307 6 

Fdist: fragment distinction, Fsize: fragment size, HL: hologram length, PC: number of principal components. 

 

The training and test distributions for all replicates were highlighted in a similarity 

map analysis based on the coordinates of the HQSAR fragment counts to assess the 

applicability domain of HQSAR. The coordinates of these maps were also used for HCA 

employing the complete linkage method and evaluating the concordance between the 

clusters obtained from the HQSAR fragment counts and those obtained from the various 

distributions in training and test sets. For this, the percentage of discordance was 

calculated as follows: the number of total clusters empty at least once in each set 

(training or test) was divided by the total number of clusters; the result of this division 

was multiplied by 100, and the percentage of discordance was obtained. The percentage 
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of discordance was then subtracted from 100 to calculate the percentage of 

concordance.  

 

Random Forest-based-QSAR (RF-QSAR) models 

The RF-QSAR models were generated by employing a workflow implemented in 

the KNIME platform [50] using Atom Pairs fingerprint, 1024 bits, minimum and maximum 

path lengths equal to 1 and 10, respectively, calculated with RDkit as descriptors for 

random forest models. The RF-parameters as maximum levels number technique 

(MaxLevels) and models’ number (Nmodels) were set as 10 and 10,000, respectively. 

All RF-QSAR models were validated with 10-fold internal cross-validation (q2
10-fold) and 

external validations. The calculated external validations metrics are described in 

Evaluated metrics section. 

The applicability domain was assessed by the bounding box approach employing 

a principal component analysis (PCA) as described in previous work [51] using Scikit-

learn [52] and Scipy [53] libraries Atom Pairs fingerprint. The independent variables from 

the training data were used to build a PCA model and then, applied to transform the test 

data. The transformed data from training and test sets were applied to perform an 

applicability domain based on the distances of each test sample from the training. This 

was done by measuring the Euclidean, Manhattan, Cosine, and Wasserstein (probability 

distribution) distances, with a threshold of 95%. To reach a consensus among all 

distance metrics, a sample was designated as 'outside of applicability domain' if it was 

classified as such by most of the distance metrics (majority of votes). The results were 

presented as the percentage of samples within the applicability domain in the test data. 

This procedure was executed for each training/test splits for all datasets.  

 

Evaluated metrics 

 External validation implies estimating the biological activity of test compounds 

along with the calculation of quality metrics for regression models. So, we computed the 

following metrics: Q2
F1, Q2

F2, and Q2
F3, used to measure the model predictability, and 

root mean square error (RMSE) of the external set, used to measure the model accuracy 

(a comprehensive review and a detailed description of these metrics can be found in 

Refs. [54–57]). We also used the Concordance Correlation Coefficient (CCC) to evaluate 

the relationship between precision (fitting of observed data with fitting line) and accuracy 

(how deviated the regression line is) [54, 58]. These external validation metrics, and the 

internal validation metric (q2
LOO for HQSAR and q2

10-fold for RF-QSAR), were used to build 

violin plots and to analyze the results. 
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RESULTS AND DISCUSSION 

Output examples 

 MASSA generates the following visualizations for each distribution of the dataset: 

three dendrograms related to HCA using biological, structural, and physicochemical 

properties; three graphs taking into account the Euclidean distances between the 

clusters previously obtained; four bar graphs (biological, structural, physicochemical, and 

general spaces) for the percentages of information at each cluster; and a log file with the 

values of the percentages of each cluster in the domains analyzed. The graphs produced 

from MASSA for the data distribution on the CMC set are shown in Figures 2–3. The 

colors used to represent the clusters in the dendrogram were validated by the Microsoft 

Windows color filter to ensure cluster differentiation even for people with different types 

of color blindness (deuteranopia, protanopia, and tritanopia). 
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Figure 2. MASSA clustering plots for the CMC set. From A to C, we represent the 

dendrograms of each domain (biological activity, physicochemical properties, and 

structural - AtomPairs fingerprint - respectively); from D to F, the line graphs with markers 

for the Euclidean distances in each domain are represented. In dendrograms, each color 

represents a different cluster, and arrows on the labels next to the names of the 
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molecules indicate that the molecule belongs to the test set, while those without arrows 

belong to the training set. 

 

 

Figure 3. A MASSA-generated bar plot showing the frequency of molecules in each 

cluster for biological (A), structural (B), physicochemical (C), and general domains (D) of 

the CMC dataset. 

 

 Each image in Figures 2–3 was created individually and saved as an editable 

".svg" vector file. Figure 2 (A-C) dendrograms show that for this dataset, the biological 

domain had 5 clusters defined, the physicochemical domain had 7, and the structural 

domain had 8. Figure 2 (D-F) shows the graphs of the Euclidean distance between 

clusters, proving that the algorithm successfully solves the optimal number of clusters 

using the elbow rule for this dataset. This demonstrates the achievement of the goal to 

identify the minimum number of clusters required for explaining the variation in the data. 

Increasing the number of clusters does not significantly improve the data modeling, 

which highlights the accuracy and automatic determination of the optimal number of 

clusters by the proposed algorithm. Moreover, the algorithm effectively handles the 

distribution in both the training and test sets, maintaining balanced frequencies of 

molecules across all domains in the training, test, and complete sets, as exemplified in 

Figure 3. 
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Regarding the other datasets, the algorithm correctly found the optimal number 

of clusters in all tested cases. Reducing the number of clusters to an acceptable 

minimum capable of explaining the variation is also necessary to avoid single-molecule 

clusters, which would make the distribution in training and test sets impossible without 

loss of representativeness. This is a special problem in datasets with an extremely low 

number of molecules and high chemical and biological diversity. In these cases, the 

stratified distribution process becomes complicated, and maintaining frequency 

correlation between training and test sets becomes extremely difficult. This point is 

illustrated in Figure 4. 

 

 

Figure 4. A MASSA-generated bar plot showing the frequency of molecules in each 

cluster for biological (A), structural (B), physicochemical (C), and general domains (D) of 

the JEKO-1 dataset. 

 

 In this context, the distribution frequencies of the dataset relative to the activity 

against JEKO-1 cells (dataset with 35 molecules) showed that when the number of 

molecules is exceptionally very low, the separation process becomes unfeasible while 

preserving representativeness (see Figure 4). It is important to note, although the 

amount of variation to be explained in PCA can be reduced to obtain a good correlation 

in the distribution frequency, the low number of molecules in this dataset makes it very 
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hard for constructing predictive QSAR models; this will be covered in more details during 

the discussion on validation metrics. 

 Finally, Figure 5 shows that even for datasets with few molecules (68 molecules) 

and two biological activities considered in HCA, such as the dataset for thyroid hormone 

receptors, the frequency of clusters was maintained between the original set and the 

training and test subsets. 

 

Figure 5. A MASSA-generated bar plot showing the frequency of molecules in each 

cluster for biological (A), structural (B), physicochemical (C), and general domains (D) of 

the TR dataset. 

 

Evaluation of applicability domain of QSAR models 

 The first analysis performed for the HQSAR models was the evaluation of the 

distribution of samples in similarity maps calculated with the HQSAR fragment counts 

between training and test sets. The seven datasets and their training-test distributions 

from MASSA, Kennard-Stone, SPXY, Sphere Exclusion, random, and referential (from 

the original study) approaches were represented by 126 similarity maps (available in 

Supplementary Material). These maps demonstrated that sampling using MASSA 

Algorithm, whose structural features are based on the Atom Pairs fingerprint, was 

capable of ensuring the representativeness of HQSAR fragment counts better than 
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random, Kennard-Stone and SPXY sampling, and in some cases, even the 

previous/original work. 

Despite the direct observation of the similarity map and the presence of 

molecules with a proper distribution between map clusters in both sets (training and test), 

a more reliable analysis was required to evaluate the agreement and the population of 

these clusters between the sampled sets. For this, map coordinates were used for HCA 

employing the full linkage method, and the percentages of concordance between 

HQSAR clusters were calculated and plotted on a violin chart for each distribution 

(Figure 6). 

 

 

Figure 6. Distribution of the percentage of concordance for the HQSAR descriptor 

clusters across the training and test sets in different datasets. The text values represent 

the lowest and highest concordance percentages, while the median is represented by a 

line of the respective sampling algorithm color. 

 

 Figure 6 indicates that MASSA Algorithm generated distributions with medians 

higher or equal to random sampling, demonstrating a clear advantage in employing 

MASSA over random sampling. When compared to random sampling, the MASSA 

sample's lowest and maximum values were also always greater or equivalent. The 
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MASSA samplings had less variation than the randomly selected samplings, and the 

MASSA distribution of concordance values was always shifted to higher values than the 

random distribution. Median of concordances was also shown in Table 3 and together 

with Figure 6 reveals that, when compared to other sampling methods, the proposed 

algorithm consistently produced equivalent or higher results in terms of median of 

percentage of concordance for HQSAR descriptors. However, there were two exceptions 

to this pattern: (1) In the DHFR dataset, Sphere Exclusion outperformed the proposed 

algorithm, but MASSA outperformed the original article distribution and was comparable 

to the Kennard-Stone method; (2) In the JEKO-1 dataset, the original distribution 

outperformed the proposed algorithm, followed by SPXY, while MASSA results were 

comparable to other sampling techniques. Taking these findings into account, MASSA 

clearly demonstrated a more balanced overall performance, outperforming the other 

algorithms in most cases. 

 

Table 3. Concordance (C) percentage of HQSAR descriptor clusters in training and test 

sets considering the samples selected from the referenced studies. 

Dataset 

Median 

CMASSA 

(%) 

CKennard-

Stone (%) 
CSPXY (%) 

Median 

CSphere 

Exclusion 

(%) 

Median 

Crandom 

(%) 

Coriginal 

(%) 

ACE 84.62 61.54 61.54 76.92 69.23 84.62 

CB1 55.56 44.44 38.89 44.44 38.89 55.56 

CMC 100.00 100.00 100.00 100.00 100.00 100.00 

DHFR 75.00 75.00 87.50 100.00 87.50 62.50 

GPB 64.29 42.86 50.00 50.00 57.14 64.29 

JEKO-1 28.57 28.57 35.71 28.57 28.57 50.00 

THR 44.44 27.78 33.33 38.89 38.89 44.44 

 

The domain of applicability for RF-QSAR was calculated in a comparable way to 

that used for HQSAR concordance. However, in this case, the same fingerprint was 

employed both as a descriptor for model construction and for the domain of applicability 

assessment. It is worth noting that attaining HQSAR concordance is more challenging 

than achieving RF-QSAR concordance. This is because the descriptors utilized in the 

HQSAR method are not accessible prior to model construction, which makes it more 

challenging to create accurate representations of the chemical space used for model 

training. This characteristic was also observed in Table 4, where the medians of 

concordance for all methods, except for some original distributions, are 100%. Figure 7 
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shows this same pattern; however, we can see the distributions across replicates in 

greater detail. It is noteworthy that the Sphere Exclusion method underperformed 

compared to other methods in certain datasets, despite their equivalent medians. 

Additionally, the observed trend of MASSA performing on par with random in the JEKO-

1 dataset can be attributed to its low molecule count (only 35 molecules in total). This 

makes it challenging to apply rational splitting using the default configuration of MASSA 

and, overall, difficult to construct QSAR models with robust generalization capabilities. 

Other linkage methods and a reduction in the percentage of variability explained by PCA 

can be used to overcome this challenge using MASSA; however, preparing QSAR 

models with a small number of molecules requires algorithms tailored to this task. 

 

Table 4. Concordance (C) percentage of RF-QSAR descriptors in training and test sets 

considering the samples selected from the referenced studies. 

Dataset 

Median 

CMASSA 

(%) 

CKennard-

Stone (%) 
CSPXY (%) 

Median 

CSphere 

Exclusion 

(%) 

Median 

Crandom 

(%) 

Coriginal 

(%) 

ACE 100.00 100.00 100.00 100.00 100.00 97.37 

CB1 100.00 100.00 100.00 100.00 100.00 100.00 

CMC 100.00 100.00 100.00 100.00 100.00 100.00 

DHFR 100.00 100.00 100.00 100.00 100.00 98.39 

GPB 100.00 100.00 100.00 100.00 100.00 100.00 

JEKO-1 100.00 100.00 100.00 100.00 100.00 100.00 

THR 100.00 100.00 100.00 100.00 100.00 100.00 
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Figure 7. Distribution of the percentage of concordance for the RF-QSAR descriptors 

across the training and test sets in different datasets. The text values represent the 

lowest and highest concordance percentages, while the median is represented by a line 

of the respective sampling algorithm color. 

 

Validation of QSAR models 

Moving on to the analysis of validation metrics, Figure 8 and Figure 9 shows the 

variation of the metrics obtained for the replicates of the HQSAR and RF-QSAR models, 

respectively. The results indicate what has already been discovered in the literature: 

randomly sampled datasets can produce models with good predictive ability; however, 

discrepancies in validation metrics were observed, implying that random sampling can 

affect predictive ability, leading to incorrect conclusions, because the values may be too 

optimistic or too pessimistic [3, 6, 10]. This is most noticeable in the JEKO-1 and CMC 

datasets for both QSAR methods and in TRα in RF-QSAR, but in all datasets, the metric 

values had more variations across replicas for models constructed with the randomly 

sampled sets. The less significant difference between maximum and minimum values in 

the validation metrics for the models with the MASSA samples suggests that, when 
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compared to random sampling, the proposed algorithm reduces the risk of building overly 

optimistic or overly pessimistic models. 

 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Validation metrics of HQSAR models for the different datasets and sample 

distributions. 
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Figure 9. Validation metrics of RF-QSAR models for the different datasets and sample 

distributions. 

 

 MASSA algorithm was also more capable of achieving acceptable values of 

validation metrics than other rational sampling algorithms, showing that the algorithm is 

more able to generate predictive QSAR models. This is evident in the violin plots (Figure 

8 and Figure 9), where MASSA frequently yielded higher values for Q2
internal, Q2

F1, Q2
F2, 

Q2
F3, and notably CCC when compared to the other methods. Its distributions more often 

fell within the portion of plots with values surpassing 0.5 across datasets. Additionally, 

MASSA yielded lower RMSE values, further affirming its superior accuracy performance 

compared to other sampling strategies. It is interesting to note that Sphere Exclusion 

performed poorly in the CCC metric for both HQSAR and RF-QSAR, achieving the lowest 

values observed and unsuitable for QSAR modeling. This sampling method also yielded 

low values for other validation metrics in RF-QSAR and was the one that generally 

performed the worst. Furthermore, with an expected reference value being 0.6 or higher 

[54–57], MASSA was the only sampling algorithm capable of producing usable RF-

QSAR models considering CCC metric. These findings suggest that, even when the 

applicability domain and descriptor concordance are comparable between sampling 

methods, MASSA was able to achieve better validation metrics due to its ability to cover 

the chemical space with more information. The extraction of additional information from 

MASSA relies solely on the molecule's structure and biological activities, both of which 

are available in every QSAR study, providing a significant advantage. 

Despite not covering the entire biological and chemical diversity of the JEKO-1 

dataset, the MASSA distribution showed less variation in internal and external validation 

metrics and a higher level of concordance of the HQSAR descriptors when compared to 

the random distribution. In this specific dataset, all rational sampling algorithms struggle 

to find predictive models. MASSA sampling produced predictive HQSAR models, but, 

like all other sampling methods, it was unable to produce acceptable RF-QSAR models 

yielding values that were outside of what was expected for the validation metrics. Small 

molecule datasets often present challenges for QSAR studies. They are frequently 

unsuitable for QSAR model generation and generally have limited generalization ability. 

However, they can be a crucial approach when faced with a scarcity of data to discover 

novel bioactive molecules. In these cases, it is important to approach models derived 

from these datasets with caution in terms of applicability and generalization. 

Nevertheless, there are alternative strategies to effectively address this challenge and 

obtain predictive QSAR models. Examples include "Small Data Set QSAR Modeling," 

which finds predictive models by using exhaustive cross-validation across different 
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sampling replicates, oversampling strategies, and the use of other machine learning 

methods based on transfer and few-shot learning [59–61]. 

 Finally, the disparity in the values of the external validation metrics for the random 

sampled CMC dataset is noteworthy, particularly in HQSAR studies. While all the random 

and MASSA replicates exhibited perfect concordance for HQSAR and RF-QSAR 

descriptors, only MASSA replicates covered the entire range of biological activity. Figure 

10 shows the results of the frequency of molecules in clusters within the biological 

domain for each randomly sampled dataset. The significant drop in the external 

validation metrics was observed in the fourth random sampling replicate (frequency of 

the molecules in this replicate are shown in Figure 10D). Among all the samples, this 

replicate was the only one where a cluster with more than 5% representation in the entire 

dataset was not represented in the test set. This highlights the importance of sampling 

training and test sets in accordance with the distribution of the dependent variable 

(biological activity) and shows the direct impact of absence of representation to the 

external validation. Furthermore, considering that this property range is also 

overestimated in the training set (all samples within this range are only present in the 

training data), this occurrence may be attributed to potential overfitting. This observation 

further justifies the fact that internal validation was not significantly affected, in contrast 

to the notable impact observed in the external validation. Additionally, overfitting can 

significantly compromise the applicability domain for future applications, making models 

developed with this randomly sampled dataset unsuitable for QSAR studies or virtual 

screenings. In conclusion, this example draws attention to the importance of sampling 

training and test sets appropriately and rationally. It also highlights the importance of 

extensively sampling across the physicochemical, structural, and biological spaces to 

ensure the development of models suitable for QSAR studies, with high predictive ability 

and inside of applicability domain for the entire chemical and biological spaces. 

Therefore, it is recommended to employ rational sampling strategies, such as the one 

presented in this algorithm, to prevent occurrences like this last example. 
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Figure 10. A bar plot showing the frequency of molecules (at the CMC dataset) in each 

cluster for the biological domain in the first (A), second (B), third (C), fourth (D), and fifth 

(E) random sampling replicate. 

 

CONCLUSION 

In this paper, we proposed MASSA Algorithm, a new tool for the rational selection 

of training and test data. We based the approach on using the biological activity of 

compounds combined with other attributes such as Atom Pairs fingerprint, and 

physicochemical properties, for use by clustering algorithms and principal component 

analysis during the training and test data split. When compared to random sampling, the 

proposed tool demonstrated models with reduced variability and better values across 

multiple replicates for these validation metrics, which also represents a tendency to avoid 
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pessimistic models with inappropriate values for these metrics. Additionally, MASSA 

frequently yielded higher values for Q2
internal, Q2

F1, Q2
F2, Q2

F3, and notably CCC when 

compared to the other sampling methods, like Kennard-Stone, SPXY and Sphere 

Exclusion. These results were obtained even when the descriptors used in the 

QSAR/QSPR were different from those used in the separation of training and test sets, 

indicating that this tool can be used to build models for more than one QSAR/QSPR 

technique or with inaccessible X-variables. Finally, as demonstrated in the results 

section, our methodology not only achieved great training and test data split results, but 

it also represents an efficient method to sample datasets for generating predictive 

QSAR/QSPR models with useful visual representations of the distribution.   

 

REFERENCES 

1.  Yang X, Wang Y, Byrne R, et al (2019) Concepts of Artificial Intelligence for 

Computer-Assisted Drug Discovery. Chem Rev 119:10520–10594. 

https://doi.org/10.1021/acs.chemrev.8b00728 

2.  Masand VH, Mahajan DT, Nazeruddin GM, et al (2015) Effect of information 

leakage and method of splitting (rational and random) on external predictive ability 

and behavior of different statistical parameters of QSAR model. Med Chem Res 

24:1241–1264. https://doi.org/10.1007/s00044-014-1193-8 

3.  Andrada MF, Vega-Hissi EG, Estrada MR, Garro Martinez JC (2017) Impact 

assessment of the rational selection of training and test sets on the predictive ability 

of QSAR models. SAR and QSAR in Environmental Research 28:1011–1023. 

https://doi.org/10.1080/1062936X.2017.1397056 

4.  Clark DE (2006) What has computer-aided molecular design ever done for drug 

discovery? Expert Opinion on Drug Discovery 1:103–110. 

https://doi.org/10.1517/17460441.1.2.103 

5.  International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use (2017) Assessment and Control of DNA Reactive 

(Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk 

6.  Martin TM, Harten P, Young DM, et al (2012) Does Rational Selection of Training 

and Test Sets Improve the Outcome of QSAR Modeling? J Chem Inf Model 

52:2570–2578. https://doi.org/10.1021/ci300338w 

7.  Cherkasov A, Muratov EN, Fourches D, et al (2014) QSAR Modeling: Where Have 

You Been? Where Are You Going To? J Med Chem 57:4977–5010. 

https://doi.org/10.1021/jm4004285 

8.  Muratov EN, Bajorath J, Sheridan RP, et al (2020) QSAR without borders. Chem 

Soc Rev 49:3525–3564. https://doi.org/10.1039/D0CS00098A 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


9.  Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, et al (2011) Investigating the 

influence of data splitting on the predictive ability of QSAR/QSPR models. Struct 

Chem 22:795–804. https://doi.org/10.1007/s11224-011-9757-4 

10.  Esbensen KH, Geladi P (2010) Principles of Proper Validation: use and abuse of re-

sampling for validation. Journal of Chemometrics 24:168–187. 

https://doi.org/10.1002/cem.1310 

11.  Hawkins DM, Basak SC, Mills D (2003) Assessing Model Fit by Cross-Validation. 

J Chem Inf Comput Sci 43:579–586. https://doi.org/10.1021/ci025626i 

12.  Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity 

sampling of experimental datasets for the training and test set selection. Mol Divers 

5:231–243. https://doi.org/10.1023/A:1021372108686 

13.  Golbraikh A, Shen M, Xiao Z, et al (2003) Rational selection of training and test 

sets for the development of validated QSAR models. J Comput Aided Mol Des 

17:241–253. https://doi.org/10.1023/A:1025386326946 

14.  Wu W, Walczak B, Massart DL, et al (1996) Artificial neural networks in 

classification of NIR spectral data: Design of the training set. Chemometrics and 

Intelligent Laboratory Systems 33:35–46. https://doi.org/10.1016/0169-

7439(95)00077-1 

15.  Kronenberger T, Windshügel B, Wrenger C, et al (2018) On the relationship of 

anthranilic derivatives structure and the FXR (Farnesoid X receptor) agonist 

activity. Journal of Biomolecular Structure and Dynamics 36:4378–4391. 

https://doi.org/10.1080/07391102.2017.1417161 

16.  Veríssimo GC, Menezes Dutra EF, Teotonio Dias AL, et al (2019) HQSAR and 

random forest-based QSAR models for anti-T. vaginalis activities of 

nitroimidazoles derivatives. Journal of Molecular Graphics and Modelling 90:180–

191. https://doi.org/10.1016/j.jmgm.2019.04.007 

17.  Gomes RA, Genesi GL, Maltarollo VG, Trossini GHG (2017) Quantitative 

structure–activity relationships (HQSAR, CoMFA, and CoMSIA) studies for COX-

2 selective inhibitors. Journal of Biomolecular Structure and Dynamics 35:1436–

1445. https://doi.org/10.1080/07391102.2016.1185379 

18.  Fernandes P de O, Martins JPA, Melo EB de, et al (2021) Quantitative structure-

activity relationship and machine learning studies of 2-thiazolylhydrazone 

derivatives with anti-Cryptococcus neoformans activity. Journal of Biomolecular 

Structure and Dynamics 0:1–12. https://doi.org/10.1080/07391102.2021.1935321 

19.  Kronenberger T, Asse LR, Wrenger C, et al (2017) Studies of Staphylococcus 

aureus FabI inhibitors: fragment-based approach based on holographic structure–

activity relationship analyses. Future Medicinal Chemistry 9:135–151. 

https://doi.org/10.4155/fmc-2016-0179 

20.  Ferreira GM, Magalhães JG de, Maltarollo VG, et al (2020) QSAR studies on the 

human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Biomolecular Structure and Dynamics 38:354–363. 

https://doi.org/10.1080/07391102.2019.1574603 

21.  Maltarollo VG (2019) Classification of Staphylococcus Aureus FabI Inhibitors by 

Machine Learning Techniques. IJQSPR 4:1–14. 

https://doi.org/10.4018/IJQSPR.2019100101 

22.  Primi MC, Maltarollo VG, Magalhães JG, et al (2016) Convergent QSAR studies 

on a series of NK3 receptor antagonists for schizophrenia treatment. Journal of 

Enzyme Inhibition and Medicinal Chemistry 31:283–294. 

https://doi.org/10.3109/14756366.2015.1021250 

23.  Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo 

drug design. Science Advances 4:eaap7885. https://doi.org/10.1126/sciadv.aap7885 

24.  Schneider G (2019) Mind and machine in drug design. Nat Mach Intell 1:128–130. 

https://doi.org/10.1038/s42256-019-0030-7 

25.  Dara S, Dhamercherla S, Jadav SS, et al (2022) Machine Learning in Drug 

Discovery: A Review. Artif Intell Rev 55:1947–1999. 

https://doi.org/10.1007/s10462-021-10058-4 

26.  Ambure P, Halder AK, González Díaz H, Cordeiro MNDS (2019) QSAR-Co: An 

Open Source Software for Developing Robust Multitasking or Multitarget 

Classification-Based QSAR Models. J Chem Inf Model 59:2538–2544. 

https://doi.org/10.1021/acs.jcim.9b00295 

27.  Halder AK, Dias Soeiro Cordeiro MN (2021) QSAR-Co-X: an open source toolkit 

for multitarget QSAR modelling. Journal of Cheminformatics 13:29. 

https://doi.org/10.1186/s13321-021-00508-0 

28.  Veríssimo GC (2021) MASSA Algorithm: Molecular data set sampling for training-

test separation 

29.  Landrum G (2021) RDkit: 2021_03_3 (Q1 2021) Release 

30.  Vos NJ de (2015) KModes categorical clustering library 

31.  Python Software Foundation argparse — Parser for command-line options, 

arguments and sub-commands — Python 3.9.7 documentation. 

https://docs.python.org/3/library/argparse.html. Accessed 5 Oct 2021 

32.  scikit-learn: machine learning in Python — scikit-learn 1.0 documentation. 

https://scikit-learn.org/stable/index.html. Accessed 5 Oct 2021 

33.  sklearn.decomposition.PCA. In: scikit-learn. https://scikit-

learn/stable/modules/generated/sklearn.decomposition.PCA.html. Accessed 5 Oct 

2021 

34.  scipy.cluster.hierarchy.linkage — SciPy v1.7.1 Manual. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.

html. Accessed 8 Oct 2021 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


35.  scipy.cluster.hierarchy.maxdists — SciPy v1.8.0 Manual. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.maxdist

s.html. Accessed 22 Mar 2022 

36.  scipy.cluster.hierarchy.fcluster — SciPy v1.7.1 Manual. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.

html. Accessed 8 Oct 2021 

37.  scipy.cluster.hierarchy.dendrogram — SciPy v1.7.1 Manual. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrog

ram.html. Accessed 8 Oct 2021 

38.  sklearn.model_selection.train_test_split. In: scikit-learn. https://scikit-

learn/stable/modules/generated/sklearn.model_selection.train_test_split.html. 

Accessed 9 Oct 2021 

39.  Sutherland JJ, O’Brien LA, Weaver DF (2004) A Comparison of Methods for 

Modeling Quantitative Structure−Activity Relationships. J Med Chem 47:5541–

5554. https://doi.org/10.1021/jm0497141 

40.  Liu C-J, Yu S-L, Liu Y-P, et al (2016) Synthesis, cytotoxic activity evaluation and 

HQSAR study of novel isosteviol derivatives as potential anticancer agents. 

European Journal of Medicinal Chemistry 115:26–40. 

https://doi.org/10.1016/j.ejmech.2016.03.009 

41.  Valadares NF, Castilho MS, Polikarpov I, Garratt RC (2007) 2D QSAR studies on 

thyroid hormone receptor ligands. Bioorganic & Medicinal Chemistry 15:4609–

4617. https://doi.org/10.1016/j.bmc.2007.04.015 

42.  Ye M, Dawson MI (2009) Studies of cannabinoid-1 receptor antagonists for the 

treatment of obesity: Hologram QSAR model for biarylpyrazolyl oxadiazole 

ligands. Bioorganic & Medicinal Chemistry Letters 19:3310–3315. 

https://doi.org/10.1016/j.bmcl.2009.04.072 

43.  Jiao L, Wang Y, Qu L, et al (2020) Hologram QSAR study on the critical micelle 

concentration of Gemini surfactants. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects 586:124226. https://doi.org/10.1016/j.colsurfa.2019.124226 

44.  Dassault Systèmes Biovia Corp (2020) BIOVIA Discovery Studio Visualizer 2021 

45.  Hawkins PCD, Skillman AG, Warren GL, et al (2010) Conformer Generation with 

OMEGA: Algorithm and Validation Using High Quality Structures from the Protein 

Databank and Cambridge Structural Database. Journal of Chemical Information and 

Modeling 50:572–584. https://doi.org/10.1021/ci100031x 

46.  Hawkins, P.C.D. OMEGA. OpenEye Scientific Software, Santa Fe, NM 

47.  QUACPAC. OpenEye Scientific Software, Santa Fe, NM 

48.  Burns J, Spiekermann K, Bhattacharjee H, et al (2023) Machine Learning 

Validation via Rational Dataset Sampling with astartes 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


49.  TRIPOS Associates Inc (2012) Sybyl-X Molecular Modeling Software Packages 

50.  Berthold MR, Cebron N, Dill F, et al (2009) KNIME - the Konstanz information 

miner: version 2.0 and beyond. ACM SIGKDD Explorations Newsletter 11:26. 

https://doi.org/10.1145/1656274.1656280 

51.  Fernandes PO, Martins DM, de Souza Bozzi A, et al (2021) Molecular insights on 

ABL kinase activation using tree-based machine learning models and molecular 

docking. Mol Divers 25:1301–1314. https://doi.org/10.1007/s11030-021-10261-z 

52.  Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine learning 

in Python. The Journal of Machine Learning Research 12:2825–2830 

53.  Virtanen P, Gommers R, Oliphant TE, et al (2020) SciPy 1.0: fundamental 

algorithms for scientific computing in Python. Nat Methods 17:261–272. 

https://doi.org/10.1038/s41592-019-0686-2 

54.  Chirico N, Gramatica P (2011) Real External Predictivity of QSAR Models: How 

To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using 

the Concordance Correlation Coefficient. Journal of Chemical Information and 

Modeling 51:2320–2335. https://doi.org/10.1021/ci200211n 

55.  Golbraikh A, Tropsha A (2002) Beware of q2! Journal of Molecular Graphics and 

Modelling 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1 

56.  Roy K, Kar S, Das RN (2015) A Primer on QSAR/QSPR Modeling. Springer 

International Publishing, Cham 

57.  Shi LM, Fang H, Tong W, et al (2001) QSAR Models Using a Large Diverse Set of 

Estrogens. Journal of Chemical Information and Computer Sciences 41:186–195. 

https://doi.org/10.1021/ci000066d 

58.  Gramatica P, Sangion A (2016) A Historical Excursus on the Statistical Validation 

Parameters for QSAR Models: A Clarification Concerning Metrics and 

Terminology. J Chem Inf Model 56:1127–1131. 

https://doi.org/10.1021/acs.jcim.6b00088 

59.  Bae S-Y, Lee J, Jeong J, et al (2021) Effective data-balancing methods for class-

imbalanced genotoxicity datasets using machine learning algorithms and molecular 

fingerprints. Computational Toxicology 20:100178. 

https://doi.org/10.1016/j.comtox.2021.100178 

60.  Veríssimo GC, Serafim MSM, Kronenberger T, et al (2022) Designing drugs when 

there is low data availability: one-shot learning and other approaches to face the 

issues of a long-term concern. Expert Opinion on Drug Discovery 17:929–947. 

https://doi.org/10.1080/17460441.2022.2114451 

61.  Ambure P, Gajewicz-Skretna A, Cordeiro MNDS, Roy K (2019) New Workflow 

for QSAR Model Development from Small Data Sets: Small Dataset Curator and 

Small Dataset Modeler. Integration of Data Curation, Exhaustive Double Cross-

Validation, and a Set of Optimal Model Selection Techniques. J Chem Inf Model 

59:4070–4076. https://doi.org/10.1021/acs.jcim.9b00476 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3 ORCID: https://orcid.org/0000-0001-9675-5907 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-dct7l-v3
https://orcid.org/0000-0001-9675-5907
https://creativecommons.org/licenses/by-nc-nd/4.0/

