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ABSTRACT: We present a statistical learning model relying on a small dataset to predict the selectivity of a two state 
system toward the same substrate, specifically of redox-switchable metal complexes in the ring opening polymerization 

of -caprolactone or trimethylene carbonate. We mapped the descriptor space of several switchable metal complexes 
and surveyed a set of supervised machine learning algorithms using different train/test validation methods on a limited 
dataset based on experimental studies of ca. 10 metal complexes. Linear discriminant analysis showed an accuracy of 
>80% and a F1 score of 0.86 on a test mixture of experimental and predicted molecules, and successfully predicted the 
reactivity of three new metal complexes. The established method will be used to guide future studies in recommending 
promising new metal complexes for related substrates, reducing the need for blind synthetic trial and error efforts.

Predictive models can determine complex relationships 
between chemical structure and activity, and streamline 
the proposal and synthesis of new compounds with 
optimized properties. Machine learning has become an 
attractive tool in chemistry to make predictions such as 
reactivity,1-6 optimal reaction conditions,7-10 molecular 
properties,11 and mechanistic information.12-13 These 
cases typically require large datasets, generated either 
through systematic high-throughput experiments14-16 or 
large-scale computational studies.17-18 It is, however, less 
feasible for organometallic systems19-24 to generate large 
quantities of data, given the complexity of syntheses that 
may require multiple steps along with catalytic 
mechanisms involving several intermediates and 
transition states. As such, a general method of producing 
a predictive model with a small dataset is desirable.  

Small datasets require a simple model relying on a 
limited set of interpretable descriptors. The importance of 
appropriate descriptors is also key, as models with many 
irrelevant descriptors can struggle to generalize,25 leading 
to poor performance. Additionally, highly complex models 
with a large space of input descriptors tend to be less 
human-interpretable, making them less pragmatic in 
building new theories of physical systems.  

Despite the difficulty in building datasets of 
organometallic complexes, quantitative structure-activity 
relationships (QSARs) have been previously used;26 for 
example, reaction productivity of a data set of 51 
zirconocene catalysts was modeled with 6 descriptors.3 
Another notable study built a regressive model by 
incorporating the rate of 19 zirconocene catalysts using a 
combined set of steric and electronic features.  
Furthermore, QSAR has been used to predict 
computationally determined values such as DFT-derived 
reactivity27 or supporting ligand effects.3 Recently, Tong 
and coworkers reported a Bayesian optimization workflow 
on a subset of literature results for stereoselective lactide 
ring-opening polymerization, and identified multiple new 
aluminum complexes that perform stereoselective 
polymerization.28 

Figure 1. a) General description of previously studied ring 
opening polymerization (ROP) ferrocene catalysts; b) 
ROP of cyclic carbonates (X = O) and lactones (X = CH2). 

 
Over the years, our group has studied several redox 

active ferrocene-supported metal complexes for their 
catalytic activity toward the ring opening polymerization 
(ROP) of monomers such as lactones and cyclic 
carbonates (Figure 1).29-32 Some metal complexes stood 
out for their selective, orthogonal reactivity between 
neutral and oxidized states; we define orthogonal 
reactivity as a minimum 50% monomer conversion 
difference between the two oxidation states. This 
selectivity is important as with a controllable, switchable, 
and selective catalytic system, diverse block copolymers 
can be synthesized.33-38 
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Table 1. Redox switchable metal complexes and their reactivity and selectivity toward the ROP of ε-caprolactone (CL) 
and trimethylene carbonate (TMC) used as training sets.  

 
However, the correlation between a metal complex and 

orthogonal behavior toward a specific monomer was not 
obvious. For example, in the case for ROP of ε-
caprolactone (CL), only 3 out of 10 metal complexes 
displayed an orthogonal activity between their reduced 
and oxidized states (Table 1, entry 1, (salfan-H2)Ti(OiPr)2 
(salfan-H2 = 1,1′-di(2-(aminomethyl)-4,6-di-tert-
butylphenoxy)ferrocene),  entry 3, (salfan)Zr(OtBu)2 
(salfan = 1,1′-di(2-tert-butyl-6-N-
methylmethylenephenoxy)ferrocene),39 and  entry 4, 
(salfen)Ti(OiPr)2 (salfen = 1,1′-di(2,4-bis-tert-butyl-
salicylimino)ferrocene). All other examples34-37, 39-40 
showed non-orthogonal selectivity, where both oxidation 
states of the catalyst showed either high or low monomer 
conversions. Similarly, for trimethylene carbonate (TMC), 
of the 10 metal complexes studied, 5 showed switchable 
behavior (Table 1, entry 1, (salfan-H2)Ti(OiPr)2, entry 2, 
(salfan-H2)Zr(OtBu)2, entry 6, (salfen)Al(OiPr), entry 7, 
(thiolfan*)Ti(OiPr)2 (thiolfan*  =  1,1′-bis(2,4-di-tert-butyl-6-
thiophenoxy)ferrocene), and entry 10, (thiolfan)Zr(OtBu)2 

(thiolfan = 1,1′-bis(2,4-di-tert-butyl-6-
thiomethylenephenoxy)ferrocene)).34-37, 39-40 Herein, we 
aim to demonstrate that a statistical learning approach 

could be leveraged to understand and predict these 
obfuscated trends. 

Improvement on monomer selectivity and activity is a 
target that can be optimized by continuous studies in 
metal and ligand modifications of the precatalysts. Such 
efforts come with a synthetic trial and error process of 
each new variation that are costly in time and resources. 
The outlook for this approach is to iterate between 
experiment and a statistical model to minimize the number 
of trials for experimentalists. 

Our potential chemical space of interest expands to 15 
unique examples, including 5 different ferrocene 
supporting ligands (Figure 2), which are based on N-type 
donors (salfan-H2, salfan, and salfen) and S type donors 
(thiolfan* and thiolfan), and 3 catalytically active metal 
centers (Al, Ti, and Zr). Of the possible combinations, the 
10 metal complexes whose reactivity with CL and TMC 
was previously reported are shown in Table 1 and were 
used as the training set. DFT geometry optimizations 
were performed for all 10 metal complexes in both the 
neutral and oxidized states.  

 
 

Entry 

 
 

Compounds 

CL activity TMC activity 

Reduced Oxidized Reduced Oxidized 

1 (salfan-H2)Ti(OiPr)2 < 1% 30% 95% < 1% 

2 (salfan-H2)Zr(OtBu)2 < 1% < 1% 95% < 1% 

3 (salfan)Zr(OtBu)2
39 5% 98% 67%* 81%** 

4 (salfen)Ti(OiPr)2 90% < 1% 19% 40% 

5 (salfen)Zr(OtBu)2
35, 40 < 1% < 1% 92% 88% 

6 (salfen)Al(OiPr)34 92% 92% 98% < 1% 

7 (thiolfan*)Ti(OiPr)2
36 83% 90% 5% 91% 

8 (thiolfan*)Zr(OtBu)2
36 89% 84% 55% 56% 

9 (thiolfan*)Al(OiPr)37 95% 95% 95% 74% 

10 (thiolfan)Zr(OtBu)2
39 57% 92% 10% 80% 

*Polymerization was performed with a 6 mM solution of catalyst in C6D6 at room temperature with [monomer]:[catalyst] 
= 100:1. Conversion was determined through 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as the internal 
standard. **Catalyst reacted with 1 equivalent of oxidant ([acetylferrocenium][BArF] (ArF = 3,5-
bis(trifluoromethyl)phenyl)borate) for 30 minutes prior to use, otherwise the conditions are identical to the reduced state 
experiments. 
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Figure 2. List of frameworks explored in this work. 

 
Chemical descriptors (atomic number, charge, i.e., 

Gasteiger-Marsili sigma charges in OpenBabel),41 
Pauling electronegativity, coordination number, atomic 
radius, percent buried volume (%Vbur; bond radii and H 
atoms were included),42-43 and natural population analysis 
(NPA) for each metal complex were generated for the 
metal center and up to 3 atoms away from the metal 
center (Figure 3b). Atomic identity, charge, 
electronegativity, coordination number, and atomic radius 
were passed through an autocorrelation function to 
reduce the input space of our models. NPA at the DFT 
level (see SI for details) was also used. This set was the 
initial set of potential descriptors, which was narrowed 
down by removing low variance and highly correlated 
features, and iteratively removing features with train-
testing and assessing where performance in accuracy 
and generalizability decreased. In particular, different 
ways of expressing the %Vbur were highly correlated, as 
well as atomic identity with atom connectivity. Low 
variance features included atom connectivity, identity, and 
electronegativity beyond the immediate coordination 
sphere. Trained regression models can also be used to 
perform feature selection of the input space of variables, 
thereby allowing us to determine which features are 
critical for predictions. We found that descriptors of the 
immediate coordination sphere were highly 
consequential, in line with standard chemical logic. 
Furthermore, the use of %Vbur was also important, in 
agreement with this feature’s relevance to other studied 
organometallic systems.42, 44 The feature importance was 
also used to simplify models to three descriptors 
associated with %Vbur, along with the first-degree 
autocorrelation functions for charge, electronegativity, 
atomic radius, and coordination number prior to using 
principal component analysis (PCA). 

 

 

 
 

Figure 3. General protocol for developing a ML classifier 
starting from a) DFT calculations to generate structures, 
b) descriptor extraction, c) training ML algorithms based 
on a small dataset, and finally d) use of the best model to 
predict selectivity for the remaining metal complexes. 

 
Four statistical learning algorithms (linear discriminant 

analysis, quadratic discriminant analysis, logistic 
regression, and support vector machine)45-46 were trained 
and tested. In the process of model selection, we opted to 
use a leave-one out approach46 to accommodate our 
small dataset. For further testing, we also used a stratified 
testing and training scheme that included a minimum of 
one type of compound in each set, i.e., at least one 
orthogonal and one non-orthogonal metal complex. 
Compounds were partitioned randomly in four different 
trials and average statistics were reported. Metrics for 
accuracy/F1/ROC were then taken as the average of all 
train/testing runs (Figure 3). Our finalized model uses 
quadratic discriminant analysis for prediction, however, 
we tested other top performing classification models and 
found predictions to be consistent with linear discriminant 
analysis with identical features. Due to the large data 
imbalance between orthogonal/non-orthogonal 
examples, we used the synthetic minority oversampling 
technique (SMOTE)47 to increase parity when 
training/testing our model. This algorithm interpolates 
between points in descriptor space to generate points 
from the minority class. 
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Table 2.  List of predicted compounds and their experimentally determined reactivity toward ε-caprolactone (CL) and 
trimethylene carbonate (TMC). 

Entry Catalyst CL activity TMC activity 

Prediction Reduced Oxidized Prediction Reduced Oxidized 

1 (salfan-H2)Al(OiPr) Non 
orthogonal 

95% 90% Non 
orthogonal 

> 99% > 99% 

2 (thiolfan)Al(OBn) Orthogonal > 99% 45% Non 
orthogonal 

> 99% > 99% 

PCA was also used to simplify our descriptor space as 
input to classification models where we used four 
components. Previous work used PCA to decompose the 
descriptors of different compounds to simple, visual plots 
that still encoded the differences between those 
compounds.48 Here we found that the metal identity 
largely determined the mapping of metal complexes in the 
PCA latent spaces (Figure S3-5). It appears that there is 
no clear separation between the orthogonal/non-
orthogonal examples. This is, however, not the case when 
we project to the 3D component space where the dividing 
plane of separation between orthogonal/non-orthogonal 
complexes is clear. 

 

Figure 4.  The performance of the model with both leave-
one-out testing and stratified testing, where it was 
ensured an orthogonal and non-orthogonal example were 
in the testing set. F1 score evenly weights different 
categories to offset the effects of imbalanced datasets. 

 

Furthermore, we used the algorithm to predict the CL 
and TMC reactivity and selectivity of 3 metal complexes: 
(salfan)Ti(OR)2,  (salfan-H2)Al(OR), and (thiolfan)Al(OR);  
R was Me for the computational models and iPr or Bn = 
benzyl for the experimental studies. Our group then 
synthesized and tested the orthogonality of the new 
compounds; while we were conducting our studies, the 

reactivity of (thiolfan)Al(OBn) with CL was reported.49 The 
algorithm predicted that an orthogonal selectivity will be 
observed between the reduced and oxidized states of 
(thiofan)Al(OR) for CL and TMC, which was 
experimentally validated as true. It also predicted non-
orthogonal selectivity for (salfan-H2)Al(OR) and 
(salfan)Ti(OR)2 toward CL and TMC, also confirmed to be 
correct (Table 2).  

In summary, a predictive machine learning model has 
been achieved through a small data set of 10 metal 
complexes. The model was validated through the 
reactivity studies of 3 compounds for CL and TMC. We 
are also currently investigating ML for predicting 
orthogonal selectivity toward other monomers. 
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