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ABSTRACT 

For an effective drug, strong binding to the 
target protein is a prerequisite but it is not 
enough. To produce a particular functional 
response, drugs need to either block the 
proteins’ functions or modulate their 
activities by changing the conformational 
equilibrium. The binding free energy of a 
compound to its target is routinely 
calculated but the time scales for the protein conformational changes are prohibitively long to be 
efficiently modeled via physics-based simulations. Thermodynamic principles suggest that 
binding free energies of the ligands with different receptor conformations may infer their efficacy. 
However, this hypothesis has not been thoroughly validated. We present an actionable protocol 
and a comprehensive study to show that binding thermodynamics provides a strong predictor for 
the efficacy of a ligand. We apply the absolute-binding free energy perturbation (ABFEP) method 
to ligands bound to active and inactive states of eight G protein–coupled receptors and a nuclear 
receptor, then compare the resulting binding free energies. We find that carefully designed 
restraints are often necessary to efficiently model the corresponding conformational ensembles for 
each state. Our method achieves unprecedented performance in classifying ligands as agonists or 
antagonists across the various investigated receptors, all of which are important drug targets. 
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INTRODUCTION 

Small molecule drugs achieve their therapeutic effects by binding to specific sites on larger 
biomolecules such as enzymes or receptors and triggering functional responses in their targets. 
The simplest functional response is steric inhibition where binding affinity is often sufficient to 
describe the effect. More complex effects require the ligand to alter the conformational ensemble 
of the target. These effects include triggering receptor activation, i. e., switching the receptor from 
an inactive to an active state,1–5 and altering activation in a specific way such as allosteric 
modulation6,7 or biased signaling.8 The selective activation of certain targets within a protein 
subfamily can be attributed to either differences in binding affinity or differences in the resulting 
effects.9 Consequently, while knowing the binding affinity of a ligand is crucial, it is often not 
sufficient to understand its full effect. Assessing a ligand's efficacy, its influence on the 
thermodynamic equilibrium between conformational states of the target, is equally important. 

In drug discovery, the routine process of calculating binding free energy (affinity) contrasts with 
the more challenging task of examining ligand efficacy. Both ligand binding and transitions 
between multiple conformational states occur on timescales that typically surpass the capabilities 
of classical molecular dynamics (MD) simulations. While efficient end-point methods including 
free energy perturbation (FEP)10–12 have been developed for accurate binding free energy 
calculations, the complex reorganization mechanisms for receptor activation make the 
corresponding pathways extremely difficult to model even with sophisticated enhanced-sampling 
methods.13–15 

Fortunately, the multiple conformations of the receptor relevant to its activation may be linked 
with ligand binding via a thermodynamic model (Fig. 1). The thermodynamic cycle for a ligand 
binding to a two-state receptor responsible for its activation (Fig. 1B) implies that the difference 
in binding free energy of the ligand between the two receptor states might serve as a substitute for 
the receptor reorganization free energy. The effect of a ligand on the receptor can be described by 
how the free energy difference between the active and inactive state changes upon ligand binding 
from ΔGapo to ΔGholo. According to the thermodynamic model, this change ΔΔG = Gholo – ΔGapo is 
equivalent to the difference between the binding free energies of the ligand to each state: ΔΔG = 
ΔGA – ΔGI. Note that the absolute values of ΔGapo and ΔGholo are not necessary to characterize the 
ligand’s effect on the target, only the relative difference in the presence of the ligand as compared 
to in its absence. Thus, assuming that the distribution among the receptor conformations 
responsible for its activation is determined by thermodynamics, the functional efficacy of the 
ligand may be accurately modeled by the binding free energy calculations. For example, favorable 
binding to the active state over the inactive state (ΔGA < ΔGI) implies that a ligand is an agonist. 
This relation can be generalized to receptors with an ensemble of active or inactive conformations 
given knowledge of a receptor's underlying conformational space. The few studies that have 
applied this principle in the past to explain the functional responses of ligands provide 
encouraging, albeit anecdotal, evidence for its applicability. Saleh et al. compared the ligand 
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binding free energy calculated via metadynamics on different states of the receptor to explain 
biased signaling of the β2-adrenoceptor.16 An analogous version of this thermodynamic model for 
relative binding free energies has recently been used to design partial agonists for the same target17 
and for the adenosine receptor A2A.18 Similarly, the docking scores of ligands in distinct 
conformational states were used as a proxy for the binding free energy to predict the functional 
responses of various ligands.19–21  The ATOM3D benchmark study proposed the use of structure-
based machine-learning (ML) models for ligand efficacy prediction (LEP) following the same 
hypothesis.22 

Despite these interesting attempts, this paradigm has not been adopted in practical drug 
discovery. Its general viability is still questionable due to a lack of systematic validation across 
targets and discouraging results from some of the related methods. For example, neither docking 
scores nor the best structure-based ML methods in the ATOM3D LEP benchmark reached 
acceptable general accuracy.22 It has yet been unclear whether these methods fail due to the static 
nature of their model or due to faults in the thermodynamic rationale. In particular, the kinetics of 
ligand binding and of protein conformational changes, which depends on the free energy barriers 
along the respective pathways, can complicate efficacy prediction.23–28 The lack of relevant 
structures for the active and inactive receptor conformations also made it difficult to validate the 
above paradigm, as typical drug-discovery workflows still focus on binding affinities to a single 
structure, and having experimental structures of a target in multiple conformational states available 
was a rare luxury until quite recently.  

We demonstrate that the shift in free energy differences between receptor conformational states 
is the dominant factor that determines ligand efficacy and present an actionable strategy to predict 
it. We develop and validate a workflow for calculating this shift between the active and inactive 
states of G protein-coupled receptors (GPCRs) and nuclear receptors (NRs), two important classes 
of drug targets.29,30 Our findings show that the free energy shift accurately predicts whether a ligand 
is an agonist or antagonist. Additionally, we discuss the prerequisites, strengths, and limitations of 
the proposed protocol to facilitate its use in drug discovery. 

RESULTS 

General Performance  

We calculated the difference of binding free energies to the inactive state and the active state 
using absolute binding FEP (ABFEP),12 which enables us to separate agonists from antagonists 
with high accuracy (Figure 2). Out of 180 target-ligand pairs, 168 were predicted correctly from 
the binding free energy difference (ΔΔG) using a classification threshold of zero, resulting in an 
overall accuracy of 93%. The accuracy can be further improved to 98% when the threshold for 
classification is tuned for each receptor, with only three misclassified compounds. Small 
deviations of the optimal value of the threshold for classification from the theoretical zero reflect 
that ligands with negligible but favorable interactions with the active conformations of the 
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receptors can still be seen as (neutral) antagonists. Larger deviations for some systems suggest a 
possible systematic shift in the absolute binding free energy calculations for one of the receptor 
states. This will not affect the prospective predictions in practical applications if the optimal 
threshold value is calibrated accordingly. We also attempted to separate agonists from antagonists 
based on the ligand binding free energies with one of the receptor states (ΔGA, or ΔGI). None of 
them was able to consistently obtain a classification accuracy comparable to what is obtained via 
ΔΔG (Supporting Information Table S1), indicating that the functional response of the receptor is 
determined by the balance between the receptor conformational states, not by the free energy of a 
single state. 

β-Adrenoceptors 

We used the well-studied adrenoceptors β1 and β2 to develop our protocol, particularly focusing 
on finding suitable restraints that effectively separate active and inactive states while preserving 
conformational flexibility within each state (Figure 3A and 3B). To prevent ligands from inducing 
changes in the binding pocket towards their own preferred state, as opposed to the state being 
probed (Figure 3A), we applied flat-bottom harmonic restraints on the Cα atoms of the protein 
during the ABFEP simulations (Figure 3B, for details see the methods section). A comparison 
between simulations with and without these restraints (Figure 3C) revealed a significant accuracy 
gain when using the restraints, confirming the validity of our underlying reasoning. Notably, the 
restraints ensured that the separation between agonists and antagonists was close to ΔΔG = 0, an 
outcome that had not been achieved by similar approaches in previous studies with tight restraints 
outside the binding pocket.17,18 Overall, our protocol has proven effective in accurately separating 
agonists and antagonists. 

Adenosine Receptors 

The results on adenosine receptors corroborate the findings from our protocol's development. 
We observed good performance on both A1 and A2A receptors, with only one outlier in A2A. A 
particularly encouraging example is the correct prediction of the efficacy of the hybrid ligand LJ-
4517 (Figure 4B) which features one functional group typical for agonists and another one typical 
for antagonists — an intuitively difficult to predict combination. Analysis of the only misclassified 
ligand LUF8852 on the A2A receptor (Figure 4D) revealed a limitation of the current model: if 
the ligand induces a receptor conformation that is very different from the template used in the 
simulations and that cannot be sampled in the relatively short ABFEP simulations, the current 
method may not accurately model that ligand. In this case, LUF8852’s native experimental 
structure differs substantially from both template structures, and these structural changes were not 
sampled in the simulations, leading to the misclassification.      

It should be noted that accurate ligand poses are critically important to classification. For the A1 
receptor from the LEP dataset included in the ATOM3D machine-learning benchmark, our ABFEP 
workflow applied to the naively docked poses provided with the benchmark achieved an AUC-
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ROC of 0.84 and an accuracy of 80%, a significant improvement over the state-of-the-art method 
for this target (AUC-ROC: 0.56, accuracy: 53%). However, we obtained even higher performance 
by running ABFEP on improved ligand poses — from docking guided by alignment to the 
maximum common substructure (MCS) of a known ligand pose — which yielded an AUC-ROC 
of 0.96 and an accuracy of 87% (see Supplementary Information Figure S2). 

Opioid Receptors 

We successfully achieved accurate predictions for a congeneric series of morphine-like opioids, 
despite the inherent challenges associated with this class of compounds. Chemically similar 
opioids can exhibit different functional responses, so-called activity cliffs (Figure 4A and 
Supplementary Information Figure S3), making efficacy prediction particularly difficult. 
Nevertheless, our approach yielded perfect prediction results for the δ-opioid receptor (δ-OR) and 
only one incorrect prediction for the μ-opioid receptor. When ABFEP calculations on the δ-OR 
were performed with restraints corresponding to its experimental structures instead of those 
derived from MD simulations, we observed a decrease in accuracy from 100% to 79% (Figure 
3D). We attribute this decline to artifacts stemming from crystal packing, which are resolved in 
the template MD simulations (see Supporting Information Figure S4). 

Serotonin Receptors 

We extended our validation study to serotonin receptors, examining ligands with multiple 
scaffolds (see Figure 4C for examples). In this case, two ligands for receptor 1B and three for 
receptor 2A would be misclassified with the theoretical ΔΔG threshold of 0 for the binding free 
energy difference. Most of the misclassifications will be remediated by adjusting the threshold, 
leaving only one outlier. The relatively large threshold shift observed in receptor 2A is likely due 
to unmodeled missing loops in these simulations. 

Retinoic Acid Receptor α 

To investigate the validity of our approach beyond GPCRs, we classified a set of ligands for the 
retinoic acid receptor α (RAR-α), a nuclear receptor and — in contrast to the membrane-bound 
GPCRs — a soluble protein. Even without using restraints, ABFEP perfectly separated agonists 
and antagonists, with only one antagonist’s predicted ΔΔG slightly below the theoretical threshold 
of 0 (Figure 2I). This result suggests that the thermodynamic principles we assume are applicable 
across multiple classes of drug targets. 

DISCUSSION 

Our results provide strong evidence for the thermodynamic theory that underpins our approach: 
the primary determinant of ligand efficacy is the thermodynamics of its binding. The difference in 
free energies is mostly adequate for estimating a ligand's overall efficacy. Simulating the entire 
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reorganization of a protein for each ligand is not necessary. Neglecting binding and unbinding 
kinetics does not preclude predicting a ligand’s agonism, implying that kinetics is a secondary 
factor that may affect efficacy in a quantitative rather than qualitative way. It is important to note, 
however, that ligand efficacy is distinct from drug efficacy, which also depends on the cellular 
context. 

We demonstrate the technical feasibility of accurately predicting ligand efficacy using ABFEP 
on various states of the target. Our method can be applied to sufficiently resolved targets with 
currently available software and force field parameters. Additionally, we demonstrate that ABFEP 
by far outperformed the comparison of docking scores, which in turn outperformed all current 
structure-based ML models.22 This success highlights the advantages of physical modeling in 
small-data regimes as we can attribute it both to the ability to refine the experimental structures 
and to the explicit modeling of entropic contributions and the dynamic character of molecular 
systems. In particular, our method performs well for activity cliffs between similar ligands and can 
extrapolate into unknown chemical space. This extrapolation to new scaffolds is made possible by 
the use of ABFEP which, in contrast to relative-binding FEP (RBFEP), does not require knowing 
the binding affinity of a congeneric ligand. It enables efficacy prediction during the hit discovery 
stage of drug development where diverse scaffolds need to be evaluated.31,32 The efficiency of the 
calculations can be improved in large-scale screenings via the combination of using ABFEP for a 
few representative ligands and RBFEP for compounds that are congeneric to those, followed by 
ML models trained on ligands scored by free energy calculations. In this context, we expect 
efficacy prediction via FEP to play an important role in many drug discovery campaigns. 

The main requirements for practical applications of the method are good sampling of template 
ensembles and accurate ligand poses. While it is preferable to have at least one experimental 
template structure for each state, the various conformational states can in principle be obtained by 
enhanced-sampling simulations,15,33 homology modeling,34 or AlphaFold235–39 in combination with 
appropriate refinement.40 Determining the dynamics within each state via MD simulations is 
usually straightforward. In cases where multiple conformations exist for the same activation state 
of the receptor (LUF5833 example in Figure 4D), sampling could be improved by using multiple 
active structures or multiple inactive structures, respectively, for the same target if available. As 
we gain more understanding of how receptors’ conformational ensembles influence the details of 
ligand efficacy,41,42 we anticipate that our method can be applied to resolve distinct sub-states of 
the active macrostate and thus to classify the different activation pathways in a similar fashion as 
we have shown for the distinction between agonism and antagonism. 

We translate the knowledge about the structure-function relationship to our FEP calculations via 
restraints that ensure a clear distinction between the relevant states (here: active vs inactive) 
whenever the conformational ensembles otherwise tend to be similar or even overlap. We found 
that restraining the backbone Cα-atoms using a flat-bottom harmonic potential allows for enough 
flexibility to accurately represent entropic contributions to the free energy. The subtler the 
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differences in the receptor ensemble between various functional responses are, the more careful 
these restraints must be set up. 

A good ligand pose is crucial as a general prerequisite for FEP calculations. This is not an issue 
in most lead optimization projects as the crystal structure of the lead compound is usually available 
at this stage. For uncertain poses that arise in more explorative projects, ABFEP can be combined 
with a pose-prediction algorithm such as induced fit docking molecular dynamics (IFD-MD).43,44 
In this case, FEP can also be used to refine the ranking of various candidate poses. These 
requirements are met in many projects where the use of binding free energy methods can be 
beneficial to estimate ligand efficacy. 

In conclusion, we demonstrate that the thermodynamics of ligand binding is the primary 
determinant of ligand efficacy, and that the difference in the binding free energies between the 
ligand with the various activation states of the receptor is sufficient for estimating a ligand's overall 
efficacy. The approach we present can be applied to many targets with state-of-the-art simulation 
methods and its excellent accuracy by far outperforms docking scores and ML models. Through 
in-depth discussions of template structures, restraints, and poses, we highlight the key factors and 
limitations for practical application. Our findings have significant implications for the drug 
discovery process as they allow detailed predictions of a ligand’s effects on its target. 

METHODS 

Data Curation. 

We predicted ligand efficacy for 180 target-ligand pairs using ABFEP with restraints to template 
ensembles derived from MD simulations. We chose mostly GPCRs as our validation systems 
because they are the most important class of drug targets, with numerous structures available for 
study.29,30 Additionally, we investigated a nuclear receptor, representing another important target 
class. Ligands were chosen from compounds with available functional data, mostly from the 
IUPhar/BPS Guide to Pharmacology Database,45 such that they include congeneric series 
(morphinan opioids) but also a variety of scaffolds for the same targets (serotonin receptor 
ligands). For lists of all compounds with corresponding results, see the Supporting Information. 

Molecular Dynamics Simulations. 

For each target, we obtained template conformational ensembles from unbiased MD simulations, 
initiated from at least one active experimental structure with the receptor bound to an agonist and 
one inactive experimental structure with the receptor bound to an antagonist. We used the 
trajectories from these MD simulations to derive starting structure and, where necessary, restraints 
for the subsequent FEP calculations, following a systematic approach to quantify different 
structural ensembles46 (Supporting Information Text and Figure S5). We computed distances 
between the Cα atoms of residues in the binding pocket and conducted k-means clustering in their 
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joint principal-component space. We calculated average positions within each cluster for all the 
receptor’s Cα atoms to use them as restraint centers, and the RMSF for each cluster to use it as the 
width of the restraints. Where necessary, we rescaled this width to prevent overlap between active 
and inactive states. For simulation parameters and details on setup and analysis, see the Supporting 
Information. 

Absolute Binding Free Energy Perturbation. 

For each target-ligand pair, we performed ABFEP using FEP+.10–12,47 This implementation uses 
replica exchange with solute scaling (REST2)48 to improve sampling of the solute and Grand 
Canonical Monte Carlo (GCMC)49 to enhance sampling of water molecules. To avoid artifacts in 
long-range electrostatic interactions for charged ligands,50 it employs the alchemical water 
approach.12,51 As the starting structure, we chose a frame from the template simulation in which 
the target had sufficiently relaxed. Ligands with available PDB structures were placed by aligning 
the structures at the receptor, congeneric ligands by aligning the ligands themselves, and poses for 
the additional benchmark study were generated using maximum common substructure (MCS) 
docking in Glide.52,53 Restraints were applied using a flat-bottom harmonic potential on the 
receptor’s Cα-atoms (Figure 3B) with their centers and widths determined from the template 
simulations as described above. We analyzed the results using custom Python scripts. Plots were 
generated using Matplotlib,54 protein visualizations using PyMOL,55 and chemical structures using 
Maestro’s 2D Sketcher.56 

Data and Software Availability. 

The FEP+ program with OPLS4 force field in Schrödinger’s 2023-1 release used to generate the 
data reported in the manuscript is available via standard commercial or evaluation licenses. Our 
workflow to analyze template MD simulations and set up restrained ABFEP calculations is 
available on GitHub at https://github.com/schrodinger/fep-restraints. FEP starting structures, 
results, and code for functional response predictions from free energies are available on GitHub at 
https://github.com/schrodinger/functional-response. 
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Figure 1. The effect of a ligand on the structural equilibrium of a receptor can be predicted by 
comparing its binding affinity to the receptor in each relevant state.  

(A) Thermodynamic equilibrium between the active state and the inactive state in a two-state receptor. The 
behavior of four types of ligands is shown: a full agonist, a partial agonist, a neutral antagonist, and an inverse 
agonist. In our analysis, the former two are categorized simply as agonists and the latter two as antagonists. The 
curves illustrate the typical downstream signal behavior over the ligand concentration for each type of ligand. 
The schematics represent the populations of active and inactive states in the apo and holo ensembles of the 
receptor in complex with the various ligand types, respectively. The difference in free energy between active 
and inactive states is called ΔGapo in the apo ensemble and ΔGholo in the holo ensemble. (B) The thermodynamic 
cycle of a two-state receptor, suggesting that the shift ΔΔG in the active-vs.-inactive equilibrium caused by a 
ligand can alternatively be calculated as the difference of the binding free energies ΔGA and ΔGI. Usually, 
obtaining ΔGapo and ΔGholo from conformational transitions of the receptor is prohibitively expensive (crossed 
arrows) but the binding free energies ΔGA and ΔGI are routinely calculated via established FEP methods (arrow 
with smiley face). While efficacy and affinity are orthogonal quantities, they are linked via thermodynamics. 
This relationship provides a useful “shortcut” for drug discovery and receptor biology and can be generalized to 
multi-state systems. 
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Figure 2. The difference of binding free energies calculated with FEP+ predicts the experimentally 
determined ligand efficacy with high accuracy across a large set of important receptors.  

Each panel (A-H) shows the predicted shift ΔΔG from the inactive to the active state caused by each ligand for 
one of the target receptors in our study. The height of the bars indicates the predicted efficacy, with values 
expected to be lower for agonists (orange bars) and higher for antagonists (blue bars). Ligands are enumerated 
along the x-axis. A list of all ligand names and more detailed results can be found in the Supporting Information. 
Our findings demonstrate the utility of binding free energy calculations in predicting ligand efficacy. 
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Figure 3. The predictive power of binding free energy calculations is strongly influenced by the 
separation between active and inactive conformational ensembles in FEP simulations.  

(A) Ligands may prefer binding to a receptor in a conformational state other than the active or inactive state, as 
shown in the schematic representation of ligands (antagonist: brown rectangle, agonist: dark green trapezoid) 
and receptor conformations (first column). Without restraints, ligands can adapt the receptor to their preferred 
state (third column) via initial binding pocket accommodation (second column). (B) To improve predictive 
accuracy, flat-bottom harmonic restraints were applied to maintain the receptor in either the inactive or active 
state (left and right, respectively). The restraint centers and widths were determined from template MD 
simulations as described in the methods section. (C) A comparison of efficacy predictions from ABFEP with 
and without restraints is shown in scatter plots of binding free energies to the inactive and active states. 
Antagonists (blue circles) are expected to be at the top left and agonists (orange circles) at the bottom right. The 
improvement in predictive performance demonstrates the improvement from the use of restraints. (D) The 
comparison of efficacy predictions using restraints derived from MD simulations and those using restraints 
derived from the unrelaxed PDB structure (with slight distortions from crystal contacts) show that the best 
restraint center is not necessarily the experimental structure. While restraints from MD simulations lead to 
accurate predictions, strong-binding ligands (lower left) are consistently shifted upwards in the scatter plot 
obtained using the PDB structure-based restraints, indicating imperfect binding to the active structure. We 
explain this effect by slight distortions of the active experimental structure (PDB: 6PT2) from crystal contacts 
that are remedied during the template simulations (Supporting Information Figure S4). 
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Figure 4. Our workflow can accurately predict functional responses of ligands across chemical 
space — including activity cliffs, scaffold interpolation and extrapolation — within the range of 
receptor conformations sampled by the template MD simulations.  

(A) Three morphine-like opioids with subtle chemical differences and distinct functional responses at the δ- and μ-
opioid receptors. Our workflow correctly predicts these differences, despite the “activity cliff” and the contrasting 
trends between the two receptors. Each ligand is labeled with its name and, for each of the two investigated opioid 
receptors, its experimentally determined efficacy (I: antagonist, A: agonist), and the value of the free energy shift 
ΔΔG in kcal/mol as predicted from ABFEP. (B) The “hybrid” ligand LJ-4517 contains functional groups associated 
with both adenosine receptor agonists (orange circle) and antagonists (blue circle), making its functional response 
difficult to predict from its structure alone. Our workflow correctly predicts it as an adenosine receptor antagonist. For 
comparison, we show the native agonist adenosine and the prototypical antagonist ZM-241385. (C) The ligands used 
in the template MD simulations for the serotonin receptor 2A (5HT2A), along with examples of probed ligands whose 
functional responses (I: antagonist, A: agonist) were correctly predicted. Note the diversity of scaffolds among these 
examples and compared to the template ligands. (D) LUF5833 was predicted as an A2A antagonist, contrary to its 
actual behavior as a partial agonist. This discrepancy can be attributed to the conformational changes in the receptor 
binding pocket, as observed in its experimental structure (PDB: 7ARO, gray) which was not used in our simulations. 
The binding pocket conformation differs significantly from both the active (5G53, orange) and inactive (6GT3, blue) 
template structures, with the salt bridge between His264 and Glu169 broken (both residues’ side chains shown as 
sticks), ECL3 tilted outward, and Glu169 directly interacting with the ligand (also shown as sticks). These 
conformational changes are far from what is sampled in either template simulation, indicating that the binding pocket 
conformation preferred by LUF5833 cannot be adopted in the subsequent FEP+ simulations. 

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 
ASSOCIATED CONTENT 

Supporting Information.  

Additional details on simulation setup and data analysis, including tables of results from all free 
energy calculations (PDF).  

AUTHOR INFORMATION 

Corresponding Author 
*E-mail: lingle.wang@schrodinger.com; Phone: (212) 548-2381  

Author Contributions 
M.V. designed and performed research, analyzed data, and wrote the manuscript. B.W.Z. designed 
and performed research and edited the manuscript. J.K. designed research and edited the 
manuscript. L.W. designed research and edited the manuscript. All authors have given approval to 
the final version of the manuscript.  

ACKNOWLEDGMENT 

We thank Mikolai Fajer, Wei Chen, Di Wu, João Rodrigues, Nour Saleh, Robert Abel, and Richard 
Friesner for helpful discussions as well as Dilek Coskun, Anthony Clark and Edward Miller for 
feedback on our workflow. 

ABBREVIATIONS 

MD, molecular dynamics; FEP, free energy perturbation; ABFEP, absolute binding FEP; RBFEP, 
relative binding FEP, ML, machine learning; LEP, ligand efficacy prediction; GPCR, G protein–
coupled receptor; NR, nuclear receptor; OR, opioid receptor; RXR, retinoic acid receptor; IFD-
MD, induced fit docking molecular dynamics; MCS, maximum common substructure; 5HT2A, 
serotonin receptor 2A, REST2, replica exchange with solute scaling; GCMC, Grand Canonical 
Monte Carlo. 

  

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

REFERENCES 
 
 (1) Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. C.; Xu, H.; Borhani, D. W.; Shaw, D. 
E. Activation Mechanism of the Β2-Adrenergic Receptor. Proc. Natl. Acad. Sci. 2011, 108 (46), 18684–18689. 

(2) Kofuku, Y.; Ueda, T.; Okude, J.; Shiraishi, Y.; Kondo, K.; Maeda, M.; Tsujishita, H.; Shimada, I. 
Efficacy of the Β2-Adrenergic Receptor Is Determined by Conformational Equilibrium in the Transmembrane 
Region. Nat. Commun. 2012, 3 (1), 1045. 

(3) Miao, Y.; McCammon, J. A. Graded Activation and Free Energy Landscapes of a Muscarinic G-
Protein–Coupled Receptor. Proc. Natl. Acad. Sci. 2016, 113 (43), 12162–12167. 

(4) Fleetwood, O.; Matricon, P.; Carlsson, J.; Delemotte, L. Energy Landscapes Reveal Agonist Control of 
G Protein-Coupled Receptor Activation via Microswitches. Biochemistry 2020, 59 (7), 880–891. 

(5) Fleetwood, O.; Carlsson, J.; Delemotte, L. Identification of Ligand-Specific G Protein-Coupled 
Receptor States and Prediction of Downstream Efficacy via Data-Driven Modeling. eLife 2021, 10, e60715. 

(6) Dror, R. O.; Green, H. F.; Valant, C.; Borhani, D. W.; Valcourt, J. R.; Pan, A. C.; Arlow, D. H.; Canals, 
M.; Lane, J. R.; Rahmani, R.; Baell, J. B.; Sexton, P. M.; Christopoulos, A.; Shaw, D. E. Structural Basis for 
Modulation of a G-Protein-Coupled Receptor by Allosteric Drugs. Nature 2013, 503 (7475), 295–299. 

(7) Kruse, A. C.; Ring, A. M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; 
Sexton, P. M.; Christopoulos, A.; Felder, C. C.; Gmeiner, P.; Steyaert, J.; Weis, W. I.; Garcia, K. C.; Wess, J.; 
Kobilka, B. K. Activation and Allosteric Modulation of a Muscarinic Acetylcholine Receptor. Nature 2013, 504 
(7478), 101–106. 

(8) Wingler, L. M.; Skiba, M. A.; McMahon, C.; Staus, D. P.; Kleinhenz, A. L. W.; Suomivuori, C.-M.; 
Latorraca, N. R.; Dror, R. O.; Lefkowitz, R. J.; Kruse, A. C. Angiotensin and Biased Analogs Induce Structurally 
Distinct Active Conformations within a GPCR. Science 2020, 367 (6480), 888–892. 

(9) Powers, A. S.; Pham, V.; Burger, W. A. C.; Thompson, G.; Laloudakis, Y.; Barnes, N. W.; Sexton, P. 
M.; Paul, S. M.; Christopoulos, A.; Thal, D. M.; Felder, C. C.; Valant, C.; Dror, R. O. Structural Basis of 
Efficacy-Driven Ligand Selectivity at GPCRs. Nat. Chem. Biol. 2023. 

(10) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M. 
K.; Greenwood, J.; Romero, D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm, W.; Harder, 
E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.; Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, 
W. L.; Berne, B. J.; Friesner, R. A.; Abel, R. Accurate and Reliable Prediction of Relative Ligand Binding 
Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. 
J. Am. Chem. Soc. 2015, 137 (7), 2695–2703. 

(11) Wang, L.; Chambers, J.; Abel, R. Protein–Ligand Binding Free Energy Calculations with FEP+. In 
Biomolecular Simulations; Bonomi, M., Camilloni, C., Eds.; Methods in Molecular Biology; Springer New 
York: New York, NY, 2019; Vol. 2022, pp 201–232. 

(12) Chen, W.; Cui, D.; Jerome, S. V.; Michino, M.; Lenselink, E. B.; Huggins, D. J.; Beautrait, A.; 
Vendome, J.; Abel, R.; Friesner, R. A.; Wang, L. Enhancing Hit Discovery in Virtual Screening through 
Absolute Protein-Ligand Binding Free-Energy Calculations. J. Chem. Inf. Model. 2023, 63 (10), 3171–3185. 

(13) Bhattacharya, S.; Vaidehi, N. Computational Mapping of the Conformational Transitions in Agonist 
Selective Pathways of a G-Protein Coupled Receptor. J. Am. Chem. Soc. 2010, 132 (14), 5205–5214. 

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

(14) Kohlhoff, K. J.; Shukla, D.; Lawrenz, M.; Bowman, G. R.; Konerding, D. E.; Belov, D.; Altman, R. B.; 
Pande, V. S. Cloud-Based Simulations on Google Exacycle Reveal Ligand Modulation of GPCR Activation 
Pathways. Nat. Chem. 2014, 6 (1), 15–21. 

(15) Harpole, T. J.; Delemotte, L. Conformational Landscapes of Membrane Proteins Delineated by 
Enhanced Sampling Molecular Dynamics Simulations. Biochim. Biophys. Acta BBA - Biomembr. 2018, 1860 
(4), 909–926. 

(16) Saleh, N.; Saladino, G.; Gervasio, F. L.; Clark, T. Investigating Allosteric Effects on the Functional 
Dynamics of Β2-Adrenergic Ternary Complexes with Enhanced-Sampling Simulations. Chem. Sci. 2017, 8 (5), 
4019–4026. 

(17) Panel, N.; Vo, D. D.; Kahlous, N. A.; Hübner, H.; Tiedt, S.; Matricon, P.; Pacalon, J.; Fleetwood, O.; 
Kampen, S.; Luttens, A.; Delemotte, L.; Kihlberg, J.; Gmeiner, P.; Carlsson, J. Design of Drug Efficacy Guided 
by Free Energy Simulations of the Β2-Adrenoceptor. Angew. Chem. Int. Ed. 2022, 62 (22), e202218959. 

(18) Jespers, W.; Heitman, L. H.; IJzerman, A. P.; Sotelo, E.; Westen, G. J. P. van; Åqvist, J.; Gutiérrez-de-
Terán, H. Deciphering Conformational Selectivity in the A2A Adenosine G Protein-Coupled Receptor by Free 
Energy Simulations. PLOS Comput. Biol. 2021, 17 (11), e1009152. 

(19) Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J. L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-
Contreras, K.; Agrafiotis, D. K. Recognizing Pitfalls in Virtual Screening: A Critical Review. J. Chem. Inf. 
Model. 2012, 52 (4), 867–881. 

(20) Hart, K. M.; Ho, C. M. W.; Dutta, S.; Gross, M. L.; Bowman, G. R. Modelling Proteins’ Hidden 
Conformations to Predict Antibiotic Resistance. Nat. Commun. 2016, 7 (1), 12965. 

(21) Staus, D. P.; Strachan, R. T.; Manglik, A.; Pani, B.; Kahsai, A. W.; Kim, T. H.; Wingler, L. M.; Ahn, 
S.; Chatterjee, A.; Masoudi, A.; Kruse, A. C.; Pardon, E.; Steyaert, J.; Weis, W. I.; Prosser, R. S.; Kobilka, B. 
K.; Costa, T.; Lefkowitz, R. J. Allosteric Nanobodies Reveal the Dynamic Range and Diverse Mechanisms of 
G-Protein-Coupled Receptor Activation. Nature 2016, 535 (7612), 448–452. 

(22) Townshend, R.; Vögele, M.; Suriana, P.; Derry, A.; Powers, A.; Laloudakis, Y.; Balachandar, S.; Jing, 
B.; Anderson, B.; Eismann, S.; Kondor, R.; Altman, R.; Dror, R. ATOM3D: Tasks on Molecules in Three 
Dimensions. Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks 2021, 1. 

(23) Wang, T.; Duan, Y. Ligand Entry and Exit Pathways in the Β2-Adrenergic Receptor. J. Mol. Biol. 2009, 
392 (4), 1102–1115. 

(24) Hurst, D. P.; Grossfield, A.; Lynch, D. L.; Feller, S.; Romo, T. D.; Gawrisch, K.; Pitman, M. C.; Reggio, 
P. H. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-Coupled Receptor. J. Biol. 
Chem. 2010, 285 (23), 17954–17964. 

(25) Dror, R. O.; Pan, A. C.; Arlow, D. H.; Borhani, D. W.; Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D. E. 
Pathway and Mechanism of Drug Binding to G-Protein-Coupled Receptors. Proc. Natl. Acad. Sci. 2011, 108 
(32), 13118–13123. 

(26) Kruse, A. C.; Hu, J.; Pan, A. C.; Arlow, D. H.; Rosenbaum, D. M.; Rosemond, E.; Green, H. F.; Liu, 
T.; Chae, P. S.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Wess, J.; Kobilka, B. K. Structure and Dynamics of the 
M3 Muscarinic Acetylcholine Receptor. Nature 2012, 482 (7386), 552–556. 

(27) Copeland, R. A. The Drug–Target Residence Time Model: A 10-Year Retrospective. Nat. Rev. Drug 
Discov. 2016, 15 (2), 87–95. 

(28) Tonge, P. J. Drug–Target Kinetics in Drug Discovery. ACS Chem. Neurosci. 2018, 9 (1), 29–39. 

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

(29) Santos, R.; Ursu, O.; Gaulton, A.; Bento, A. P.; Donadi, R. S.; Bologa, C. G.; Karlsson, A.; Al-Lazikani, 
B.; Hersey, A.; Oprea, T. I.; Overington, J. P. A Comprehensive Map of Molecular Drug Targets. Nat. Rev. 
Drug Discov. 2017, 16 (1), 19–34. 

(30) Congreve, M.; Graaf, C. de; Swain, N. A.; Tate, C. G. Impact of GPCR Structures on Drug Discovery. 
Cell 2020, 181 (1), 81–91. 

(31) Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60 (4), 
1238–1246. 

(32) Wang, L.; Deng, Y.; Wu, Y.; Kim, B.; LeBard, D. N.; Wandschneider, D.; Beachy, M.; Friesner, R. A.; 
Abel, R. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery. J. Chem. Theory Comput. 
2017, 13 (1), 42–54. 

(33) Calderón, J. C.; Ibrahim, P.; Gobbo, D.; Gervasio, F. L.; Clark, T. General Metadynamics Protocol To 
Simulate Activation/Deactivation of Class A GPCRs: Proof of Principle for the Serotonin Receptor. J. Chem. 
Inf. Model. 2023, 63 (10), 3105–3117. 

(34) Sala, D.; del Alamo, D.; Mchaourab, H. S.; Meiler, J. Modeling of Protein Conformational Changes 
with Rosetta Guided by Limited Experimental Data. Structure 2022, 30 (8), 1157-1168.e3. 

(35) del Alamo, D.; Sala, D.; Mchaourab, H. S.; Meiler, J. Sampling Alternative Conformational States of 
Transporters and Receptors with AlphaFold2. eLife 2022, 11, e75751. 

(36) Wayment-Steele, H. K.; Ovchinnikov, S.; Colwell, L.; Kern, D. Prediction of Multiple Conformational 
States by Combining Sequence Clustering with AlphaFold2. bioRxiv October 17, 2022, p 2022.10.17.512570. 
https://www.biorxiv.org/content/10.1101/2022.10.17.512570v1 (accessed 2023-04-24). 

(37) Stein, R. A.; Mchaourab, H. S. SPEACH_AF: Sampling Protein Ensembles and Conformational 
Heterogeneity with Alphafold2. PLOS Comput. Biol. 2022, 18 (8), e1010483. 

(38) Heo, L.; Feig, M. Multi-State Modeling of G-Protein Coupled Receptors at Experimental Accuracy. 
Proteins Struct. Funct. Bioinforma. 2022, 90 (11), 1873–1885. 

(39) Sala, D.; Hildebrand, P. W.; Meiler, J. Biasing AlphaFold2 to Predict GPCRs and Kinases with User-
Defined Functional or Structural Properties. Front. Mol. Biosci. 2023, 10, 1121962. 

(40) Zhang, Y.; Vass, M.; Shi, D.; Abualrous, E.; Chambers, J. M.; Chopra, N.; Higgs, C.; Kasavajhala, K.; 
Li, H.; Nandekar, P.; Sato, H.; Miller, E. B.; Repasky, M. P.; Jerome, S. V. Benchmarking Refined and Unrefined 
AlphaFold2 Structures for Hit Discovery. J. Chem. Inf. Model. 2023, 63 (6), 1656–1667. 

(41) Zhao, J.; Elgeti, M.; O’Brien, E.; Sar, C.; Daibani, A. E.; Heng, J.; Sun, X.; Che, T.; Hubbell, W. L.; 
Kobilka, B.; Chen, C. Conformational Dynamics of the μ-Opioid Receptor Determine Ligand Intrinsic Efficacy. 
bioRxiv April 29, 2023, p 2023.04.28.538657. https://www.biorxiv.org/content/10.1101/2023.04.28.538657v1 
(accessed 2023-04-30). 

(42) Dutta, S.; Shukla, D. Distinct Activation Mechanisms Regulate Subtype Selectivity of Cannabinoid 
Receptors. Commun. Biol. 2023, 6 (1), 1–16. 

(43) Miller, E. B.; Murphy, R. B.; Sindhikara, D.; Borrelli, K. W.; Grisewood, M. J.; Ranalli, F.; Dixon, S. 
L.; Jerome, S.; Boyles, N. A.; Day, T.; Ghanakota, P.; Mondal, S.; Rafi, S. B.; Troast, D. M.; Abel, R.; Friesner, 
R. A. Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein–Ligand Binding. J. Chem. 
Theory Comput. 2021, 17 (4), 2630–2639. 

(44) Xu, T.; Zhu, K.; Beautrait, A.; Vendome, J.; Borrelli, K.; Abel, R.; Friesner, R.; Miller, E. Induced-Fit 
Docking Enables Accurate Free Energy Perturbation Calculations in Homology Models. ChemRxiv April 15, 

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

2022. https://chemrxiv.org/engage/chemrxiv/article-details/6257731fbdc9c24981d3df0b (accessed 2023-04-
30). 

(45) Harding, S. D.; Armstrong, J. F.; Faccenda, E.; Southan, C.; Alexander, S. P. H.; Davenport, A. P.; 
Pawson, A. J.; Spedding, M.; Davies, J. A.; NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 
2022: Curating Pharmacology for COVID-19, Malaria and Antibacterials. Nucleic Acids Res. 2022, 50 (D1), 
D1282–D1294. 

(46) Vögele, M.; Thomson, N. J.; Truong, S. T.; McAvity, J.; Zachariae, U.; Dror, R. O. Systematic Analysis 
of Biomolecular Conformational Ensembles with PENSA. arXiv December 5, 2022. 
https://arxiv.org/abs/2212.02714v1 (accessed 2023-04-25). 

(47) Schrödinger Release 2023-1: FEP+, Schrödinger Inc., New York, 2023. 

(48) Wang, L.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute Scaling: A More Efficient Version 
of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115 (30), 9431–9438. 

(49) Ross, G. A.; Russell, E.; Deng, Y.; Lu, C.; Harder, E. D.; Abel, R.; Wang, L. Enhancing Water Sampling 
in Free Energy Calculations with Grand Canonical Monte Carlo. J. Chem. Theory Comput. 2020, 16 (10), 6061–
6076. 

(50) Rocklin, G. J.; Mobley, D. L.; Dill, K. A.; Hünenberger, P. H. Calculating the Binding Free Energies of 
Charged Species Based on Explicit-Solvent Simulations Employing Lattice-Sum Methods: An Accurate 
Correction Scheme for Electrostatic Finite-Size Effects. J. Chem. Phys. 2013, 139 (18), 184103. 

(51) Chen, W.; Deng, Y.; Russell, E.; Wu, Y.; Abel, R.; Wang, L. Accurate Calculation of Relative Binding 
Free Energies between Ligands with Different Net Charges. J. Chem. Theory Comput. 2018, 14 (12), 6346–
6358. 

(52) Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; 
Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide:  Docking and Scoring Incorporating a Model of 
Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49 (21), 6177–6196. 

(53) Schrödinger Release 2023-1: Glide, Schrödinger Inc., New York, 2023. 

(54) Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9 (3), 90–95. 

(55) The PyMOL Molecular Graphics System, Version 2.5.2, Schrödinger Inc., New York, 2022. 

(56) Schrödinger Release 2023-1: Maestro, Schrödinger Inc., New York, 2023. 

 

https://doi.org/10.26434/chemrxiv-2023-p1507-v2 ORCID: https://orcid.org/0000-0002-1712-358X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-p1507-v2
https://orcid.org/0000-0002-1712-358X
https://creativecommons.org/licenses/by-nc-nd/4.0/

