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Innovating ways to explore the materials phase space accelerates functional materials discovery. For
breakthrough materials, faster exploration of larger phase spaces is a key goal. High-throughput
computational screening (HTCS) is widely used to rapidly search for materials with the desired func-
tional property. This article redefines the HTCS methods to combine multiple deep learning models
and physics-based simulation to explore much larger chemical spaces than possible by pure physics-
driven HTCS. Deep generative models are used to autonomously create materials libraries with a
high likelihood of desired properties, inverting the standard design paradigm. Additionally, machine-
learned surrogates enable the next layer of screening to prune the set further so that high-quality
quantum-mechanical simulations can be performed. With organic photovoltaic (OPV) molecules as
a test bench, the power of this redesigned HTCS approach is shown in the inverse design of OPV
molecules with very limited computational expense using only ∼1% of the original physics-based
screening dataset.

1 Introduction
Accelerating the search for energy materials with properties,
stability, and reliability beyond the state of the art is a complex
but important step to overcome technical obstacles in the green
energy revolution, as material properties often limit what can be
achieved at the system level. Since its inception, two decades
ago1, high throughput computational screening (HTCS) has been
the key to groundbreaking discoveries in energy materials such
as batteries2–5, thermoelectrics6,7, photo/electrocatalysts8–12

solar cell materials13–15 etc.

The discovery of functional energy materials has been limited
by our capacity to computationally and experimentally explore
newer and larger phase spaces. Thus HTCS methods need to be
rethought to search for novel materials with desired properties
in exponentially larger phase spaces. We introduce a novel
HTCS paradigm that integrates data-driven methods with tradi-
tional physics-based models, illustrating effective strategies for
exploring new energy materials and molecules throughout the
chemical universe. This approach allows us to explore practically
infinite phase space; therefore, it can establish a new era in
computational materials design by letting us search through
material spaces that were inaccessible before.

aTechnical University of Denmark, DTU Energy, Anker Engelunds Vej, Building 301
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The challenge of inverse design is to find the structure mani-
fold16, the collection of materials that satisfy multiple desired
properties out of the incredibly large space of possible materials.
Inverse design is a one-to-many problem since there can be
multiple materials, with different structures, satisfying a set of
properties.

In this article, we propose a novel HTCS accelerated inverse
design in a very large materials space combining the benefits of
generative modeling, computationally efficient machine learning
surrogate and high-quality physics-based simulation.

Our unique combination of generative and regressive machine
learning can be roughly divided into two steps: (a) creating
meaningful candidate libraries and (b) filtering based on the
target properties. To search in a larger chemical space, these
two steps need to be redefined and accelerated. The selection of
better candidates from the chemical universe reduces the number
of materials that need to be tested, searching smarter. Reducing
the prediction time allows testing more candidates per unit of
time, searching faster.

The traditional approach, which is optimizing the pre-selection
step, relies on expert, pre-existing knowledge, for example,
knowledge of common substructures often found in materials
with similar properties. Using correlations of commonly found
substructures, topological fingerprints, or other human-extracted
correlation patterns can be a restrictive assumption, since the
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correlations may lie in a complex non-linear space that cannot
be easily captured. However, data-driven approaches like
deep-generative models can be used to learn complex non-linear
correlations, without domain expertise17–22.

The pruning step, which predicts the properties of candidate
materials, often relies on computationally expensive and time-
consuming calculations such as density functional theory (DFT)
simulations23. To increase the speed of property prediction,
meta-models, or surrogate models, can be used as a prefilter to
expensive computations24,25, reducing the computational cost by
exchanging some accuracy for faster predictions. Deep learning
(DL)-based surrogate models are a popular choice for this task,
because they achieve a great computation speedup with minimal
loss of accuracy26.

In summary, our novel HTCS 2.0 funnel increases the vast-
ness of the chemical space that is accessible by employing a
Conditional Deep Generative Model to pre-select meaningful
candidates, a Deep Learning surrogate property predictor model
to filter the pre-selected candidates, and finally DFT calculations
as the last screening step. Fig. 1 displays the structure of our tool.

Conditional Deep
Generative Model

Deep Learning
Surrogate Model

Density Functional
Theory (DFT)

Search space
(Structure Manifold)

Fig. 1 Funneling samples from the large search space into final materials
with the sought-after property. Our hybrid data and physics model-based
funnel maintain high accuracy while enabling search in a much wider
space.

2 Methods
The proposed approach is tested on an extended version of
Harvard Clean Energy Project (CEP) dataset27. The dataset was
produced from a DFT based large-scale screening of organic pho-
tovoltaic (OPV) candidates and contains the lowest unoccupied
molecular orbital (LUMO) and highest occupied molecular orbital
(HOMO) energies. The key molecular property for harvesting
solar energy is the HOMO-LUMO gap, the energy difference
between the LUMO and HOMO.

In Fig. 2, a sample molecule from the dataset is shown. The
distribution of the HOMO-LUMO gap in the dataset is Gaussian-

like with a mean of 2.8 eV and values ranging from 1.6 to 4.1 eV.
To demonstrate the data efficiency of our approach, we used only
40k molecules to train the data-driven models used in the HTCS.

Fig. 2 Left: Distribution of the HOMO-LUMO energy gap (eV). Right:
Sample molecule from the dataset rendered with RDKIT28.

2.1 Generative model: conditional hierarchical variational
autoencoder

Generative models such as the Variational Auto Encoder (VAE)
learn a compact representation of the dataset by forcing a
bottleneck of information between a pair of Encoder-Decoder
networks29. The space where the learned representations lie is
referred to as the latent space, and a sample from this space is
referred to as latent vector. The latent vector is a representation
of a molecule, and a molecular graph can be constructed from the
latent vector using the decoder network. By randomly sampling
a latent vector from the latent space and using the decoder
network to construct a molecule, one can generate structures
unseen in the training set, but that resemble it.

We employ a recently proposed VAE architecture30 for
molecules based on the hierarchical nature31 of molecular
graphs. The VAE works on different levels of resolution of the
molecular structure, from fragments to individual atoms and
atomic bonds. Working at different levels of structure resolution
of the molecules helps the model scale better to larger structures.
Another feature of the proposed model is the autoregressive
decoder, which, starting from an initial fragment, builds the
whole molecule by sequentially attaching fragments to a growing
molecular structure instead of generating the molecule in a single
step.

However, if we sample randomly from the latent space, we
cannot control the properties of the resulting molecules. As
discussed in the introduction, we need to pre-select candidate
materials likely to have the desired properties. This requires
having control over the generation process.

An autoencoder approximates the probability distribution
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p(x) over the sample space x ∈ X as a latent variable model
p(x|z)p(z)dz with z ∈ Z the latent representation defined over the
latent space. With a conditional autoencoder, we directly learn
the conditional distribution p(x|c) of the sample x with condition
c, where c is a property of x.

During training, we include the desired property to control
generation by concatenating it in the decoder input. The encoder
network maps the molecular graph (G) into the d-dimensional
latent vector (z), f enc

θ
(G) → z ∈ Rd , and the decoder maps

the concatenated latent vector (z) with condition (c) into the
molecular graph f dec

φ
([z;c]) → G where [z;c] ∈ Rd+1. First, we

sample a latent vector from the latent space z ∼ N (d)(µ,σ).
Then we concatenate it with some desired value of condition [z;c]
and create the conditional input for the decoder. The decoding
process is illustrated schematically in Fig. 3.

2.2 Surrogate molecular property predictor
To filter the pre-selected candidates, we employ a DL-based
surrogate property predictor. The choice of model is motivated
by recent work that investigated the equivalence of molecular
graph convolutions and molecular wave functions with poor
basis sets32 and the proposed data-driven molecular property
prediction method Quantum Deep Field (QDF)33.

The model uses DL to learn implicit nonlinear complex
functions in predicting the HOMO-LUMO energy gap. It is
physics-inspired instead of relying solely on end-to-end learned
mapping from the molecular graph. This hybrid approach
achieves better generalization and competitive accuracy while
using fewer parameters. Due to its characteristics, it was chosen
as the surrogate model in the filtering step to enhance robustness
and generalization in the search for novel structures.

2.3 Density Functional Theory calculations (DFT)
The last stage of the proposed funnel approach is based on
computationally expensive but accurate DFT calculations23 per-
formed with the ORCA quantum chemistry program package34,
version 5.0.1. The DFT-predicted HOMO-LUMO energy gap de-
pends on the selected level of theory, which depends on the cho-
sen functional and basis set. For the predicted HOMO-LUMO gap
values computed using DFT to be consistent with those of the gen-
erator and surrogate filtering steps, trained on the dataset27, the
same choice of functional and basis sets is made as in the original
CEP dataset. That is, the B3LYP hybrid functional35,36 with the
Ahlrichs def2 valence triple-zeta polarization basis set (def2-TZVP
keyword in ORCA)37. We used Orca 5.0.1 default values for the
SCF convergence.

2.4 Funnel pipeline
The three building blocks are combined to form the HTCS
workflow funnel. Starting from a molecular library (from the
generative model) candidate molecules are pruned into a final

curated set. Fig. 4 illustrates the computation steps and data
type transformations.

First, the generative model creates an initial collection of
molecules, based on connectivity maps and without information
on the 3D structure. This collection is designed based on a
specific HOMO-LUMO energy gap value. Given some target
HOMO-LUMO gap value, it outputs a collection of molecules
represented by the Simplified Molecular Input Line Entry System
format (SMILES)38.

The surrogate model predicts the HOMO-LUMO gap of the
initial collection of molecules, for which it requires the molecular
3D structure. This 3D structure is computed using OpenBabel39

fragment-based coordinate generation40; OpenBabel transforms
the SMILES strings into XYZ format. Next, the geometry of the
generated structures is relaxed using the Universal Force Field
(UFF)41.

We predict the surrogate QDF model to estimate the HOMO-
LUMO gap for all molecules in the initial collection using their
3D molecular structure. Molecules whose absolute predicted
HOMO-LUMO gap exceeds a predefined threshold are filtered
out. The remaining selected molecules are then further curated
by DFT simulations.

In summary, given some design conditions, the funnel selects
molecules generated by the conditional generator that pass con-
secutively through the surrogate and DFT filters, as shown in Fig.
1.

3 Results & Discussion

3.1 Training the generator

The generator was trained on approximately 40000 samples from
the CEP dataset. To regularize the model and avoid overfitting,
the model was trained with a dropout42 probability on the en-
coder and decoder of p=0.4. The weight of the KL divergence
term43 was set to be constant at β = 1.0 and the latent space di-
mension chosen was dimz = 30, with the rest of the hyperparame-
ters matching those of the original implementation. The total loss
and the KL-divergence term of the loss were monitored for each
epoch of the training set and the validation set and its evolution
through training is shown in Fig. 5. The metrics for the training
set are shown in blue, and for the validation set they are shown
in orange. The values at the last epoch of training are then shown
as a dashed gray line.
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Fig. 3 Schema of the conditional decoder. Given the condition c in the red box, first a latent vector z ∼N (d)(µ,σ) is sampled, then it is concatenated
with the condition zext = [z;c] to form the input for the auto-regressive decoder. In the Generator (Decoder) box, we display the steps taken in growing
the molecular graph into its final form, which is the molecule that is then returned as output. The lower part of the Figure shows how the autoregressive
decoder evolves the graph into different structures that come from a common source tree by using the same latent vector z and altering only the
concatenated condition. For all conditions, we start from the same motif (step 1), because we start from the same latent vector, then as a result of
the different design conditions the molecular graph in the branches grows different motifs.
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Fig. 4 Schema of the funnel process. First, the Generative Model creates an initial collection of molecules that have been generated conditioned
to the target property; the molecules are described as a graph (subsequently converted to SMILES strings). Second, we optimize the structure of
the selected molecules with classical force fields and predict their HOMO-LUMO gap values using the surrogate model. The generated molecules are
further filtered by setting a threshold on the deviation from the target value. Third, since the number of candidates has been narrowed to a smaller
amount, the collection is further curated using single-point DFT into the final candidate structures that more closely satisfy the target condition. The
building blocks are described sequentially.

Fig. 5 Left: Evolution of the total loss of the generator during training
on the training set (blue) and validation set (orange). Right: Evolution
of the KL-divergence term of the loss during training. The metrics on the
training set are shown in blue and for the validation set they are shown
in orange. The gray dashed lines mark the values of the losses/kl-term
in the final epoch.

3.2 Training the surrogate

Basis set 6-31G # Units/layer Functional 500
Radius 0.75 # Layers Functional 6

Grid Interval 0.3 # Units/layer HK 500
# Epochs 150 # Layers HK 6
Batch size 8 Learning rate 1e-4
LR decay 0.5 Operation Mean

Table 1 Parameters used in processing the sample molecules and Hyper-
parameters of the QDF model used in training.

The surrogate model was trained on the same structures as
the generator. The hyperparameters used are shown in table

1. The difference in the choice of hyperparameters from the
original implementation is doubling the number of neurons per
linear layer and doubling the number of linear layers in both
the Functional map and the Hohenberg-Kohn map, the two
nonlinearities approximated using neural networks.

In Fig. 6 the surrogate model is evaluated on the validation
partition of the dataset. For every sample in the validation set,
the predicted HOMO-LUMO gap is computed and plotted against
the true value from the DFT baseline, resulting in the scatter plot
in Fig. 6 (left). The sample points lie along the ideal correlation
line (black) and are distributed tightly and symmetrically along it,
indicating good accuracy and absence of systematic bias in error.
In Fig. 6 (right) the distribution of the prediction error is shown,
the mean absolute error (MAE) calculated for the validation set is
0.070 eV (HOMO), 0.077 eV (LUMO), 0.115 eV (HOMO-LUMO).

3.3 Funnel pipeline validation

To substantiate the efficacy of the screening pipeline, we need
to validate each of the individual blocks: generator, surrogate
model, and DFT calculations. The objective is to study how each
of the blocks behaves when assembled together (and alone) and
to report their limitations in terms of the range of condition
values where the funnel is operational.

For example, the standard procedure to operate the funnel
is first to provide the desired HOMO-LUMO gap, such as 2.8
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Fig. 6 Left: Scatter plot of sample molecules from the validation set,
predicted vs. correct HOMO-LUMO gap (eV). Right: Distribution of the
HOMO-LUMO gap error. The Mean Absolute Error (MAE) computed is
0.101 eV.

eV; using this condition, the generator creates an initial set of
molecules (e.g., 100 structures). Then, using the HOMO-LUMO
predictions from the surrogate model, this set is reduced, e.g.,
to 20 molecules. As the final filtering step, the funnel calculates
the HOMO-LUMO gap directly with DFT for these 20 molecules.
Based on the predictions, the funnel further narrows down the
number of candidates from 20 structures to, for example, 6
structures. These 6 structures are then the output of the funnel.

It is worth noting that some molecules returned by the funnel
can be present in the CEP dataset, but not in the subset used in
training. It can be said that these molecules are novel because the
models did not see them during training. However, to highlight
the potential of our approach in generating novel molecules
outside of databases, we consider a molecule novel if it is not
present in the CEP dataset, which is ∼100 times bigger than the
training dataset.

To determine the range of values for which the funnel is
operational, we repeat the process for different HOMO-LUMO
gap values. This example pertains to a specific condition value of
2.8 eV. The distribution of the HOMO-LUMO gap of the dataset
used can be seen in Fig. 2. The range of values span approxi-
mately from 1.6 to 4.1 eV with a mean at 2.8 eV while 5 and 95
percentiles annotated at 2.1 and 3.5 eV respectively. To assess the
capacity of the funnel to conditionally generate samples for given
HOMO-LUMO gap values, we query it for different HOMO-LUMO
gap values spanning from 1.0 eV to 5.5 eV. This range of values
allows exploring the behavior of the funnel for HOMO-LUMO
gap values in-distribution and out-of-distribution since the range
(1.0-5.5eV) exceeds the range of values in the dataset (∼ 1.6-4.1
eV).

The funnel is queried for HOMO-LUMO gap values ranging
from 1.0-5.5 eV in steps of 0.1 eV. For each of these values, the

generator creates 100 initial structures and then prunes them
into curated lists. A total of 4600 structures were generated to
cover 46 different HOMO-LUMO gap conditions. Some of these
4600 structures are not novel, i.e. they are present in the CEP
dataset, and we consider their tabulated HOMO-LUMO gap value
in the dataset as the reference value for validation metrics.

3.3.1 Validating the generator

As stated, some of the 4600 structures initially generated are
not novel and we can use their HOMO-LUMO gap value as it
appears in the dataset as the ground truth for validation metrics.
Novel molecules cannot be validated by this approach, as they do
not appear in the dataset, and they will be thoroughly tested by
different means. To validate the performance of the generator,
we compare the HOMO-LUMO gap given as input and the
HOMO-LUMO gap value from the dataset, that is, we compare
the prompted condition with a DFT calculation.

There is no filtering at this point, so these structures are the
ones purely created by the conditional generator. Ideally, the
prompted condition would match exactly the DFT-calculated
HOMO-LUMO gap; in practice, we can expect some spread
around the target condition. We are interested in evaluating this
spread and its dependence on the prompted condition.

In Fig. 7 the prompted condition is shown versus the DFT cal-
culation for the generated structures, together with a histogram
of the absolute errors defined as abs(prompted − predicted). On
the scatter plot, the ideal correlation line is superposed as the
black diagonal line. To aid in visualization, the mean of the
DFT calculated values for every prompted condition is shown as
the blue line. Finally, the vertical black dashed lines represent
the percentile 5 and 95 of the HOMO-LUMO gap values in the
dataset, as referenced in Fig. 2.

The blue line, representing the mean of the DFT calculated
values, and the black diagonal line, representing the ideal
correlation, overlap in the range (2.0-3.9 eV), coinciding approx-
imately with the percentile 5 to percentile 95 range of values
in the dataset. This shows that the generator can consistently
generate structures with certain HOMO-LUMO gap values in-
distribution. The overlap of the blue and black line is present also
beyond percentiles 5 and 95, so the generator model is capable
of consistent and conditional generation even in the boundary of
in-distribution values, see the extremes of the HOMO-LUMO gap
distribution shown in Fig. 2.

When prompted for HOMO-LUMO gap conditions beyond
those observed in the training dataset, the generator model
becomes inconsistent. It generates structures with DFT pre-
dicted gaps that are centered on the same value regardless
of the prompted condition. This effect starts to occur near
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Fig. 7 Validation of the generator model for in- and out-of-distribution
prompted HOMO-LUMO conditions. Left:Prompted condition is shown
versus the DFT calculated value. The black diagonal line represents
the ideal correlation. The mean of the DFT calculated values for ev-
ery distinct prompted condition is shonw in blue. The vertical lines
represent the percentiles 5, 95 of the values in the CEP, in connec-
tion with Fig. 2. Right: Histogram of the absolute errors, defined as
abs(condition.prompted −DFT.Predicted).

the distribution edges. The generator model can still produce
candidates with the desired condition slightly beyond the
distribution boundary. But such generation is inefficient as the
mean of the predictions departs from the ideal correlation and
only the tails of the distribution will obey the prompted condition.

3.3.2 Validating the surrogate

Using the 4600 structures generated, the surrogate HOMO-LUMO
gap predictor can be validated by comparing its predictions for
the HOMO-LUMO versus the DFT calculated values from the
dataset.

This validation is different from the one performed when
training the surrogate model. We are evaluating the performance
of the surrogate model on sample structures created by the
generator, so the distribution of samples is different. Notably,
it has more relative representation of structures in the tails of
the HOMO-LUMO gap distribution of the dataset, for which the
surrogate model is more likely to have worse accuracy.

In Fig. 8 the surrogate model predictions of the
HOMO-LUMO gap are shown versus the DFT calculated
values. A histogram of the absolute errors defined as
abs(Surrogate.Predicted − DFT.Predicted) are also presented.
On the scatter plot, the ideal correlation line is superposed as the
black diagonal line.

The scatter of the surrogate predictions appears to be symmet-

Fig. 8 Left: Surrogate vs DFT HOMO-LUMO energy gap (eV) for the
generated molecules. The black diagonal line represents the ideal correla-
tion. Right: Distribution of the absolute errors abs(Surogate.Predicted −
DFT.Predicted). The Mean Absolute Error (MAE) value is 0.149 eV.

ric and clustered alongside the ideal correlation line, indicating
good calibration of the surrogate model. We note, however, that
there is a slight tendency for the surrogate model to underes-
timate the HOMO-LUMO for molecules on the higher-end gap
values. This effect is more apparent in this validation than in the
one performed during training (s. Fig. 6), due to the higher rela-
tive representation of structures in the tails of the HOMO-LUMO
gap distribution. This effect also explains the increase in the MAE
reported for validation, which during training was 0.101 eV and
in this validation it is reported as 0.149 eV. In turn, the newly
reported MAE provides a more reliable accuracy metric for the
surrogate model in the context of the funnel pipeline. It serves
as the accuracy threshold for the filtering task performed by the
surrogate: Samples whose surrogate-predicted HOMO-LUMO
gap is further than 0.149 eV from the target value are filtered out
in the funnel.

3.3.3 Validating DFT calculations from UFF minimized struc-
tures

The final step in the funnel performs DFT single-point cal-
culations from the UFF minimized structures to obtain the
HOMO-LUMO gap value. These calculations would only be
performed on the samples that have been prefiltered by the
surrogate model, so they would not need to be performed on all
the 4600 structures generated.

However, there is a need to assess whether the DFT calcula-
tions from UFF minimized structures return HOMO-LUMO gap
values consistent with those in the dataset. To perform this
check, we performed single-point DFT calculations from the UFF
minimized structures of all the 4600 generated structures.

For samples generated that are not novel, we can use their
DFT-computed HOMO-LUMO gap value in the dataset as
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reference values. Then we plot the single-point DFT HOMO-
LUMO as a function of the Dataset DFT HOMO-LUMO. In
Fig.9 the single-point DFT HOMO-LUMO values are shown
versus the Dataset DFT HOMO-LUMO reference values, to-
gether with a histogram of the absolute errors defined as
abs(Single.Point.DFT.Predicted −DFT.Predicted). On the scatter
plot, the ideal correlation line is superposed as the black diagonal
line.
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Fig. 9 Left: Single-Point DFT (based on UFF optimized structure) com-
puted HOMO-LUMO gaps vs. reference values in the CEP dataset. The
distribution of errors is tightly clustered alongside the ideal correlation
line and is symmetric alongside it. The MAE computed is 0.141 eV.
This value of the MAE is then used as a threshold on the DFT filter:
Molecules whose DFT-calculated HOMO-LUMO gap is within 0.141 eV
of the target value will pass the filter. Right: Histogram of the distribu-
tion of the absolute errors on the predictions.

The scatter of the single-point versus the DFT HOMO-LUMO
gap (from the dataset) appears to be symmetric and clustered
alongside the ideal correlation line. This indicates that we can
trust the single-point DFT calculations from UFF minimized struc-
tures when we perform them on novel molecules, and it provides
an accuracy metric for these calculations with respect to the val-
ues in the dataset, the mean absolute error of 0.141 eV, which is
then used as the threshold for the DFT predictions filter.

Using the MAE value of 0.141 eV as the threshold for the DFT
calculation-based filter, during normal operation of the funnel
any molecule whose (single-point) DFT-predicted property is
further than 0.141 eV from the prompted condition is filtered out.

3.4 Discovery of novel molecules with desired HOMO-LUMO
gap values

The funnel approach filters structures in sequential steps into a
final curated list of candidates. See the detailed procedure below:

1. Given some prompted condition value of the HOMO-LUMO
gap, the generator creates M molecules (for example, M =
100).

2. The surrogate model predicts the HOMO-LUMO gap of the
M molecules, then filters out the molecules whose predicted
HOMO-LUMO gap value is more than 0.149 eV away from
the prompted condition value. Narrowing down the set of
candidates from M to N (e.g., from M=100 to N=20)

3. Single-point DFT calculations are then performed on the N
molecules to obtain the DFT-calculated HOMO-LUMO gap
values. Then any molecule whose DFT-predicted HOMO-
LUMO gap value is greater than 0.141 eV away from the
prompted condition value is filtered out. Narrowing down
the set of candidates from N to Nout (for example, from N =
20 to Nout = 6). The final Nout candidates are the output of
the funnel.

By applying the described procedure for all the 4600 struc-
tures generated in the aforementioned validation study, we
can demonstrate the power of our data driven HTCS funnel
in discovering novel structures with desired properties, i.e. a
desired HOMO-LUMO gap. Here, we demonstrate the discovery
of novel structures with desired HOMO-LUMO gap for a range of
46 distinct HOMO-LUMO gaps (1.0-5.5 eV range in steps of 0.1
eV).

The initial set of 4600 structures is first narrowed down to
1056 using the HOMO-LUMO predicted by the surrogate model;
then these 1056 structures are narrowed down to 497 based on
the HOMO-LUMO gap from DFT calculations. Of the final 496
structures produced by the funnel, 83 were novel (16.73%). We
note that the novelty discovery ratio depends heavily on the num-
ber of initial molecules created for each of the prompted condition
and the prompted condition itself. As discussed in Validating the
generator (see Fig. 7) the generator struggles to conditionally
generate structures for out-of-distribution HOMO-LUMO gap
values, so naturally the funnel will not be able to discover many
novel molecules for those values.

To visualize the HOMO-LUMO gap values of the novel struc-
tures generated by the funnel, in Fig. 10 the DFT calculated value
of the HOMO-LUMO gap is shown versus the prompted condition
for all novel molecules returned by the funnel as a scatter
plot. The diagonal black line represents the ideal correlation,
where the prompted condition (the desired HOMO-LUMO gap) is
equal to the DFT-computed HOMO-LUMO gap of the generated
structure. On the top Fig., a bar plot is shown with the number of
novel molecules returned by the funnel for the different prompted
conditions. Vertical dashed black lines represent the percentiles 5,
95 of the distribution of HOMO-LUMO gap values in the dataset,
with reference to Figs. 2, 7.

Fig. 10 demonstrates that the proposed funnel approach is
capable of discovering novel molecules for desired values of the
HOMO-LUMO gap for the range of HOMO-LUMO gap values
in-distribution. In other words, given any target HOMO-LUMO
gap within the range of values in the CEP dataset27, the funnel
is capable of returning novel molecules with the desired HOMO-
LUMO value.
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Fig. 10 Novel molecules. DFT calculated value of the HOMO-LUMO
gap versus the prompted condition for all novel molecules returned by
the Funnel. The diagonal black line represents the ideal correlation,
where the prompted condition (the desired HOMO-LUMO gap) is equal
to the DFT-computed HOMO-LUMO gap of the generated structure. On
the top figure, a bar plot is shown with the number of novel molecules
returned by the funnel for the different prompted conditions. The vertical
dashed black lines represent the percentiles 5, 95 of the HOMO-LUMO
gap values distribution in the dataset, in reference to figures 2, 7

3.4.1 Analysis of the novel molecules

In this work, we present and describe a novel approach to
material discovery. To demonstrate its potential to discover novel
molecules with desired properties, the funnel was used for 46
different values of the HOMO-LUMO gap spanning the range of
values 1.0-5.5 eV in steps of 0.1 eV, finding a total of 83 novel
structures. The objective of this section is to validate these novel
structures in terms of stability and synthetic accessibility.

To assess the stability of novel structures, geometry opti-
mization is performed using DFT for the spin multiplicity of
singlet, triplet, and quintet. We exclude duplets and quartets
because of the number of electrons in the molecules. For the
83 molecules, the ground state configuration found was with
singlet spin-multiplicity. The predictions of the HOMO-LUMO
gap by UFF relaxed B3LYP single point calculations (output of the
funnel) and B3LYP relaxed values are compared to the prompted
condition (input of the funnel) in Fig. 11.

Furthermore, in Fig. 11, HOMO-LUMO gap calculated for the
B3LYP relaxed (green circle) and UFF relaxed (gray triangle)
geometries are shown as a function of the prompted condition
as a scatter plot. Ideal correlation is represented by the black
dash-dotted diagonal line. A linear fit is made to the data from
the B3LYP relaxed calculations and is shown as the solid black
line. The coefficient of determination of the fit is R2 =0.943, the
slope coefficient is 1.018 and the intercept is 0.175 eV.

In Fig. 11 the linear fit indicate a small and systematic
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Fig. 11 Comparison of HOMO-LUMO gap for UFF relaxed and B3LYP
relaxed structures for the 83 novel molecules discovered, as a function of
the prompted condition. The green dots represent the values calculated
using B3LYP relaxed geometries, the gray dots represent the results from
the UFF relaxed geometries. A linear fit is applied to the results from
the B3LYP relaxed geometries, resulting in the linear fit shown in the
black continuous line with a determination coefficient of 0.943, slope
coefficient of 1.018, and intercept of 0.175 eV.

error between the values of the HOMO-LUMO gap from the
B3LYP relaxed geometry and the prompted condition. It can be
quantified by the value of the intercept of the linear fit at 0.175
eV. This means that our funnel results (UFF relaxed) are a good
approximation to the B3LYP relaxed ones.

In order to assess the synthetizability of the novel molecules
we use the Synthetic Accessibility Score (SAscore)44. SAscore is
a method for estimating the ease of synthesis of molecules based
on a combination of fragment contributions and a complexity
penalty. The contributions of the fragments are calculated
from an analysis of one million representative molecules from
PubChem, capturing historical synthesis knowledge. The SAscore
ranges from 1 (easy synthesis) to 10 (hard synthesis).

The objective of the analysis of the ease of synthesis for the
novel molecules is twofold: (a) assess whether there is any
pattern to the ease of synthesis metric of the structures found;
(b) compare the SAscore of the novel structures with the SAscore
distribution of the CEP dataset, to determine if there is any
particular bias in the ease of synthesis for the novel molecules
with respect to the dataset.

The SAscore is calculated for all samples in the CEP dataset
and the novel molecules with the distributions shown in the
histograms in Fig. 12. The green histogram corresponds to the
SAscores distribution for novel molecules, the gray histogram
corresponds to the SAscores distribution for molecules in the CEP
dataset. For easier visualization, the histograms are normalized
dividing the raw counts from each bin by the total number of
counts and the bin width, so the area under the histograms is
equal to one.
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Fig. 12 Comparison of the synthetic accessibility score (SAscore)44 for
molecules in the CEP dataset27 and novel molecules discovered by the
proposed Funnel. The histogram bins for both the dataset and novel
molecules are normalized by dividing the raw count of each bin by the
total number of counts and the bin width.

The range of SAscore values for the set of novel molecules
ranges from 2-5.5 corresponding to relatively easy to synthesize
molecules (1 is easy to synthesize, 10 is hard). Within this range,
the distribution is not symmetric, with a bias towards lower
SAscore values, i.e., easier to synthesize. This is apparent when
the two distributions are compared to each other. The range of
values for the two distributions are approximately equal, but the
set of novel molecules discovered with our workflow are slightly
easier to synthesize than those from the CEP dataset.

4 Conclusions
We demonstrate that the proposed HTCS 2.0 approach that com-
bines generative and supervised ML with physics-based computa-
tions can be used to efficiently discover novel solar materials with
desired functionality and good synthesizability. The proposed hy-
brid workflow greatly expands the chemical space that can be
searched compared to the traditional screening approach. Two
key aspects of our proposed approach enable this:

1. It pre-selects candidates likely to produce good results using
a conditional generative model (searching smartly)

2. It filters the initial set of candidates into a curated set man-
ageable for expensive simulations like DFT by employing a
Deep-learning-based surrogate molecular property predictor
(searching faster).

The combination of searching smarter by pre-selecting mean-
ingful candidates with generative models and searching faster
by employing machine learning surrogates to narrow down
preselected candidates opens the possibility to explore larger
chemical spaces.

This approach is broadly applicable in the search for novel en-
ergy materials and molecules beyond solar OPVs, e.g. catalysts
and batteries. The general concept of using data-driven models
hierarchically within a HTCS is applicable to all other functional
materials and properties. Other types of conditional generative
models, or machine learning property predictors, can be used.
Functional energy materials like OPVs are typically represented
as large molecules or crystal structures. For that reason, learn-
ing viable structure space of a large number of atoms is difficult
in conjunction with the precise condition of quantum mechanical
properties. We overcome this limitation with a generative model
that uses the motif-based organization of organic molecules. Cas-
cading the generative model with a regressive model trained with
the same data helps with a tight property selection in novel dis-
covered materials. Similar approaches can also be taken for solid-
state materials. Graph-based generative and regressive machine
learning models similar to the ones utilized in this work can be
universally used for all classes of materials.

Code and data availability
The HTCS 2.0 source code will be publicly available upon accep-
tance. Additionally, a web application was built as a Graphic User
Interface to facilitate the use of HCTS 2.0, where the users can
interact with the GUI to design OPV molecules subject to some
HOMO-LUMO gap condition and visualize them in the browser.
The source code for the web application will also be released for
public access upon acceptance.
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1 Supplementary section

Influence of stochasticity in the generation of 3d coordinates
on the predictions of the surrogate model.
To transform SMILES1 to XYZ coordinates, we first create an
initial 3D geometry with OpenBabel2 3 followed by optimization
of the structure using UFF forcefield. During initial structure
guessing, random numbers are used * resulting in slightly dif-
ferent final 3D coordinates each time we do the transformation.
Given the stochastic nature of obtaining the 3D structure from the
SMILES strings, it is worth studying its effect on the predictions
made by the surrogate model.

The surrogate model was trained on a dataset which lacked
stochasticity in structures. This is because re-running the
structure optimization for every molecule for every epoch would
be too time-consuming. To assess the effect of the random
initialization of the XYZ coordinates on the surrogate predictions,
32 SMILES are selected from the 4600 generated molecules
during the Funnel Pipeline validation, covering the range 1.6-4.6
eV of the HOMO-LUMO gap in steps of approximately 0.1 eV. For
each of the 32 selected SMILES, OpenBabel is used to generate
100 UFF-optimized 3D structures per molecule with different
random initializations, resulting in 3200 samples. For each of
the 3200 samples, the surrogate model was used to predict the
HOMO-LUMO gap.

The surrogate predictions are then aggregated grouping
the predicted HOMO-LUMO gap values by molecule, and the
mean, maximum, and minimum of the predictions for each
of the 32 molecules are calculated. These aggregated results

aTechnical University of Denmark, DTU Energy, Anker Engelunds Vej, Building 301
2800 Kgs. Lyngby, Denmark, E-mail: arbh@dtu.dk.

* See discussion in OpenBabel https://github.com/openbabel/openbabel/
issues/1934

are then shown in the form of violin plots, where the y axis
corresponds to the surrogate HOMO-LUMO predictions, and the
x axis corresponds to the DFT-computed HOMO-LUMO values
from the dataset. The mean, maximum, and minimum of the
surrogate predictions are then shown in the molecule’s violin plot.

Fig. S1 Surrogate predictions of the HOMO-LUMO gap versus DFT-
predicted values for 32 selected molecules from the CEP dataset4 on
100 different random initialization of the initial 3D structure. The sur-
rogate predictions are grouped by molecule and the mean, maximum,
and minimum of the predictions are calculated. The violin plots allow
for visualization of the distribution of the prediction for each molecule
beyond the aggregated metrics of mean, maximum, and minimum. The
black diagonal line represents the ideal correlation of the predictions.

From Fig. S1, the influence of random initialization of the 3D
structure results in surrogate predictions that differ at most 0.2

Journal Name, [year], [vol.],1–6 | 1

https://doi.org/10.26434/chemrxiv-2023-s8t6s-v2 ORCID: https://orcid.org/0000-0003-3198-5116 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://github.com/openbabel/openbabel/issues/1934
https://github.com/openbabel/openbabel/issues/1934
https://doi.org/10.26434/chemrxiv-2023-s8t6s-v2
https://orcid.org/0000-0003-3198-5116
https://creativecommons.org/licenses/by-nc-nd/4.0/


eV (min-max range in predictions). This maximum error is of
the order of the mean absolute error (MAE) of the predictions of
the surrogate model. Hence we can conclude that the stochastic
nature of the 3D-coordinate generation affects the predictions,
but it is within the accuracy of the model.

Validation of the surrogate model as a binary classifier

The objective of the surrogate model within the HTCS 2.0 is to
rapidly pre-filter candidate materials into a smaller, curated set
of promising materials that can be then further pruned using
more expensive such as DFT into the final output of the HTCS 2.0.

To that purpose, the surrogate model must be able to compute
property predictions rapidly and accurately. The accuracy of the
surrogate model was thoroughly evaluated in the main work
in terms of the distribution of errors in its predictions with
respect to the higher-fidelity DFT calculations. In this section,
we present an alternative way of quantifying the ability of the
surrogate model to act as the prefilter for the more expensive
DFT calculations.

The role of the surrogate model can be interpreted as a classi-
fication problem with two classes: promising and non-promising
molecules. A promising molecule according to the surrogate is
one whose predicted property is close to the desired property
value, the prompted condition. Given some molecule and some
prompted condition the surrogate model predicts a property of
the molecule. If the prediction is close to the prompted condition
the molecule is classified as promising, otherwise, it is classified
as non-promising. The closeness criteria for the classification is
some predefined threshold.

By interpreting the task of the surrogate model as a classifica-
tion problem, we can analyze the number of molecules that are
classified correctly or wrongly. The true class of some sample is
the class it belongs to in accordance with its DFT value, and the
predicted class of some sample is the class it belongs to by its
surrogate-predicted value.

An example: Given some desired property value c (prompted
condition), some threshold δ , some molecule M whose property
value predicted by the surrogate is ĉsurr and its predicted value
from the DFT calculation in the dataset is ĉd f t , then for the pre-
dictions from the surrogate:

abs(c− ĉsurr)→

{
predicted promising i f ≤ δ

predicted non-promising i f > δ

Similarly, based on the DFT predictions:

abs(c− ĉd f t)→

{
Actual promising i f ≤ δ

Actual non-promising i f > δ

Note that since the predictions from DFT and the Surrogate
model are not the same, there are four possible scenarios for the
given molecule:

• True promising: If predicted promising and actual promising.

• False promising: If predicted promising and actual non-
promising.

• False non-promising: If predicted non-promising and actual
promising.

• True non-promising: If predicted non-promising and actual
non-promising.

We are interested in quantifying how many of the candidates
that the surrogate classifies fall on each of the four cases because
it allows, for example, to obtain a measure of how many good
candidates we erroneously discard in the HTCS 2.0 (False
non-promising). To do so, we can use the data from the Funnel
Pipeline validation. The data consist of 4600 molecules generated
for a range of 46 different conditions spanning the range of
the HOMO-LUMO gap from 1.0-5.5 eV. Of the 4600 molecules
generated, 2221 were present in the CEP dataset (not novel
molecules), so the DFT-calculated value of the HOMO-LUMO gap
is known from the dataset. This is the value that will be taken as
a reference, ĉd f t .

The 2221 molecules are then divided into the four different
cases described. The raw counts and the percentage of the total
number of molecules are shown as a confusion matrix in table
1. The threshold chosen was δ = 0.149, in accordance with the
experiment in Validating the Surrogate.

Predicted/Actual promising non-promising

promising 628 (28.27 %) 128 (5.76 %)
non-promising 270 (12.15 %) 1195 (53.80 %)

Table 1 Confusion matrix on the classification of generated molecules
based on the Surrogate model predictions of the HOMO-LUMO gap.
The Actual/True values are taken from the DFT-predicted values for the
molecules in the dataset.

From the confusion matrix in table 1 82.07% of the molecules
were correctly classified by the Surrogate filter (diagonal in
the confusion matrix) and approximately one-third (34.03% =
28.27%+5.76%) of the total molecules are classified by the fil-
ter as promising. This demonstrates that employing the Surro-
gate model to pre-filter molecules reliably (with a low percentage
of error) reduces the load on heavier computationally expensive
DFT calculations to 1/3 of its original load (without the surrogate
filter).

Un-conditional versus Conditional generators for HTCS 2.0
The proposed approach for HTCS 2.0 includes a conditional
generator to produce an initial set of candidate molecules subject
to some design condition (prompted condition) that are then
narrowed down in the subsequent blocks of the HTCS 2.0 funnel
to form a highly curated set of candidates. One of the key charac-
teristics of the generator used is its capacity to create molecular
structures that are biased to have the target property, so that the
initial set of produced molecules has a higher population of good
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candidate molecules for the design condition than if the initial
set were produced by randomly sampling the entire chemical
space.

The objective of this section is to illustrate the advantage
of employing conditional generators instead of nonconditional
generators. We do it by comparing the probability of both types
of generators to produce candidate molecules that would be
present in the final curated list output of the HTCS 2.0 funnel.

To simplify the problem, we can directly look at the probability
of some molecule generated to be within some neighborhood of
the prompted condition c.

A nonconditional generator learns to approximate the under-
lying dataset distribution p(m) over the sample space m ∈ M

of molecules. Sampling a molecule from the learned distribu-
tion m ∼ qθ (m) we should expect for the property of the sam-
pled molecule ĉ to follow the distribution in the original dataset.
This distribution for the HOMO-LUMO gap resembles a Gaus-
sian distribution N (µdset = 2.79,σdset = 0.44), so we can expect
ĉ ∼ N (µdset ,σdset). The probability of some molecule to have a
property value within the neighborhood δ of the prompted condi-
tion can be written as P(|ĉ− c| ≤ δ ). Since ĉ ∼ N (µdset ,σdset) we
can then write:

Puncond(|ĉ− c| ≤ δ ) =
∫ c+δ

c−δ

1
σdset

√
2π

e
− 1

2

(
x−µdset

σdset

)2

dx (1)

The conditional generator learns to sample molecules from
the learned distribution while being subjected to some condition.
From the analysis in Validating the Generator, we showed that for
a prompted condition c in-distribution the conditional generator
is well calibrated: For a molecule created subject to a prompted
condition c we can expect the property value ĉ to be following a
Gaussian-like distribution centered in c with standard deviation
σgen ≈ 0.13. Then we can write for the conditional generator:

Pcond(|ĉ− c| ≤ δ ) =
∫ c+δ
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Using these two expressions for the probability that a gen-
erated molecule has a property value within (c − δ ,c + δ ), we
can numerically compute probabilities for different conditions
c. In Fig. S2 for a condition c = 2.3 eV, the probability dis-
tribution of the property value for a sample molecule from the
conditional (blue) and unconditional (green) model is shown.
The area under the curves, delimited by the (c − δ ,c + δ ) val-
ues corresponds to the probabilities pcond = Pcond(|ĉ−c| ≤ δ ), and
puncond = Puncond(|ĉ− c| ≤ δ ).

Fig. S2 Probability distribution of the property values for a sample
molecule from the conditional (blue) and unconditional (green) model
for c = 2.3 eV. The area under the curves, delimited by the (c−δ ,c+δ )

values corresponds to the probabilities pcond , and puncond .

Fig. S2 illustrates the advantage of the conditional model
versus the unconditional model. We can then compute the ratio
pcond/puncond for condition values in the range of HOMO-LUMO
values from percentile 5-95 (approximately 2.1-3.5 eV) to
illustrate the advantage of the conditional model as a function of
the condition given. Beyond percentile 5-95, the approximation
ĉ ∼N (c,σgen = 0.13) for the conditional generator does not hold.
As was shown in Validating the Generator, near the boundary of
the 5-95 percentiles, the mean of the prediction values departs
from the ideal correlation (s. Fig. 7 from the main article). For
this reason, we focus the study region in the percentile 5-95
range.

Fig. S3 demonstrates that the probability of success from the
conditional model is always greater than the one from the uncon-
ditional. The range of ratios between probabilities shown range
from the minima at 2.82 to 10, indicating that the conditional
model is at worst 280% more efficient than the unconditional,
and at its best within the percentiles 5-95 range, 1000% more
efficient.
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Fig. S3 Ratio between the probability of the conditional and uncondi-
tional model to produce a sample molecule whose property lies within
(c − δ ,c + δ ). The black curved line corresponds to Pcond(|ĉ − c| ≤
δ ))/Puncond(|ĉ− c| ≤ δ )) as a function of the prompted condition c, the
HOMO-LUMO gap. The ratio is computed only for prompted condition
c values within the percentiles 5-95 of the distribution of values in the
dataset. The two dashed vertical lines indicate the percentiles 5, and
95. The dash-dotted horizontal line indicates the ratio value 1.0, where
the conditional and unconditional generator would have equal probability.
The minimum of the ratio function is ratio=2.82.
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Spin multiplicity analysis of novel molecules.

id SMILES Singlet (Ha) Triplet (Ha) Quintet (Ha)
37c5448086154e6905c24e6b135d9f3eb31a0a04 C1=c2ccc3sc4c5oc(-c6ccco6)cc5c5nsnc5c4c3c2=C[SiH2]1 -2113.61 -2113.574 -2113.497
b1e95c76ea46696db4dc985482ac5d80914b3819 C1=CCC(c2ccc(-c3cnc(-c4scc5nccnc45)s3)c3cocc23)=C1 -1881.638 -1881.597 -1881.533
c5158d9277edf919c9bc15e8f614e1e8ead51287 C1=c2c(c3c([nH]c4cc(-c5cccc6c[nH]cc56)sc43)c3[se]ccc23)=C[SiH2]1 -4045.063 -4045.023 -4044.952
c7d2a3d94a7989ea363ff2bbd5c68e84274faa03 C1=Cc2csc(-c3scc4c3[se]c3c5cc6ccccc6cc5ccc43)c2[SiH2]1 -4409.963 -4409.898 -4409.82
52a61d8bc82a255fb0a4ae1be48c7af375148cde C1=CCC(c2cnc(-c3sc(-c4scc5occc45)c4cc[se]c34)c3nsnc23)=C1 -4680.041 -4680.008 -4679.923
09d6f0c87a53a0f384fa534adee5d31290ff0f05 c1ccc(-c2[se]cc3c2[se]c2ccc4ccc5ccccc5c4c23)nc1 -5741.686 -5741.611 -5741.514
7422901f9feab557f1c44418646a659afe864004 C1=Cc2csc(-c3c4cocc4cc4c3oc3oc5[se]ccc5c34)c2[SiH2]1 -4082.575 -4082.515 -4082.422
a4304a4f034eaf203760d2eb25b558788db7207b C1=Cc2c(csc2-c2sc(-c3sc(-c4nccs4)c4ccsc34)c3nccnc23)C1 -2999.71 -2999.684 -2999.595
1d6a6dadfcb9e1f0a8ffe4800e70abb0afb3dec9 C1=Cc2c(c3ccc4occ(-c5cccc6nsnc56)c4c3c3ccncc23)C(c2nccc3nsnc23)C1 -2352.488 -2352.412 -2352.34
2ca58b75dbabfae2257f3dbd2a4bb16352f39093 c1cc2cc3c(nc2cn1)oc1c3ccc2nccc(-c3cc4ccsc4s3)c21 -1918.615 -1918.535 -1918.438
07031182607a9dab51968858bef30495af60e79b C1=Cc2csc(-c3c4cocc4cc4c3oc3oc5occc5c34)c2[SiH2]1 -1756.328 -1756.27 -1756.177
a1e4873f6840d5969e8913c85bd0f5449dbd2768 C1=c2c(c3c4[se]c(-c5cccc6cocc56)cc4[se]c3c3sccc23)=CC1 -6159.656 -6159.604 -6159.54
6ca23738fb6ffcdfc167c7f2da661b412b009755 C1=Cc2csc(-c3c4c(cc5c6cc[nH]c6c6nsnc6c35)=CCC=4)c2C1 -1806.425 -1806.393 -1806.299
a73c760e82a0fa90b74b7a1505180f0493e7b7d1 C1=Cc2c(csc2C2=Cc3[se]c4c(sc5ccc6c(c54)=C[SiH2]C=6)c3[SiH2]2)C1 -4585.068 -4585.034 -4584.98
96ed5acde42f06cba280569d8b24a550b8fe88c8 C1=Cc2c(-c3cc4ccsc4s3)sc(C3=CC=C4c5c(sc6[se]ccc56)SC4C3)c2[SiH2]1 -5604.37 -5604.324 -5604.242
ab7e6bdde5f39a6a65a8d8deea6a695735d0ca92 c1ccc2c(c1)ccc1scc(-c3cncc4nsnc34)c12 -1613.6 -1613.531 -1613.436
150449e2ca10ed5353e85cefdcf759b11eb33efa C1=Cc2c(c3oc4cc(-c5cccc6c[nH]cc56)[se]c4c3c3nsnc23)C1 -3845.672 -3845.616 -3845.532
3c17bf295b40fa1a51ad7b5480c778f154fa1e8b C1=Cc2csc(-c3c4cscc4cc4c3oc3[se]c5sccc5c34)c2[SiH2]1 -4728.498 -4728.437 -4728.344
d5947f44656c0af53b5e47e52471e76978ea5f8a c1cc2c(cn1)c1c[nH]cc1c1cnc3c(-c4cc5ccsc5s4)c[nH]c3c21 -1860.642 -1860.558 -1860.456

e38b884ca81d9e5ccbfc399b52804510c7760a68 C1=Cc2csc(-c3cc4cc5c(cnc6cccnc65)cc4o3)c2C1 -1390.103 -1390.028 -1389.926

0c310c805c11292df789d828c0f1b465f8927814 c1ccc(-c2cc3ccccc3c3cc4c(cc23)oc2cnccc24)nc1 -1107.468 -1107.381 -1107.271

4d936bdd9c0bf7c8d7934aee1df40edf8a5ee8f8 C1=C(c2scc3[se]ccc23)Cc2c1c1c(c3c4[nH]ccc4c4c[nH]cc4c23)=C[SiH2]C=1 -4160.538 -4160.511 -4160.441

a68707583ff08f441cc46a828977c5bb27fd348c C1=Cc2c(-c3cccs3)sc(-c3c(-c4ccc[se]4)ccc4c[nH]cc34)c2[SiH2]1 -4389.067 -4388.996 -4388.919

f48c5c219dc5ff03d51e9a2c8cd5df3b535d1b02 C1=Cc2c(cnc3c2C=C2C(c4ccco4)=CNC2C3)C1 -878.81 -878.748 -878.638

0608dca27ce23310c8f114191593988e9ba6f787 C1=Cc2c(csc2-c2cnc(-c3sc(-c4ccco4)c4ccoc34)c3nsnc23)C1 -2353.809 -2353.751 -2353.672

d2592089dde92901f48d635d68c14e287717763f c1ccc(-c2cc3ccc4c5cccnc5ccc4c3[nH]2)nc1 -934.018 -933.927 -933.829

1a9cbf38df65acbb706d54a69f6274424cb1ab8d c1cc(-c2c(-c3scnc3-c3cncc4nsnc34)ccc3c[nH]cc23)c[nH]1 -1893.895 -1893.814 -1893.743

6d16614c6a5bc4be540bb184206fc1af5c6a56d0 C1=CC(c2occc2-c2cc3cc[se]c3s2)CC(c2ccc3c(ccc4nccc(-c5cc6nccnc6s5)c43)n2)=C1 -4799.214 -4799.151 -4799.056

a8cf110619a27ef5fd358cd1d0f485d9427eb3e9 C1=Cc2c(csc2-c2sc(-c3cncc4nsnc34)c3ccoc23)C1 -2125.01 -2124.966 -2124.863

49aa069940e471514ae968e21955d1dcd5ee1e0d c1ccc2c(c1)ccc1[nH]cc(-c3cncc4nsnc34)c12 -1270.792 -1270.727 -1270.627

f3f56f9df3b56b56f55564504f65fcbfd39a746c C1=C(c2scc3occc23)Cc2c1c1c(c3c2c2c(c4cc[se]c43)=CCC=2)=C[SiH2]C=1 -4164.309 -4164.289 -4164.212

0a9a29712af0fa1c0074bb2bf5dc02615172e836 C1=Cc2csc(-c3[nH]cc4c3sc3c5cccnc5ccc43)c2C1 -1674.935 -1674.846 -1674.754

5b69debcab20f383091d432db5954f9cacaf0a50 c1cc2c(cn1)c1cscc1c1cnc3[nH]cc(-c4cc5ccsc5s4)c3c21 -2203.447 -2203.36 -2203.263

e517b75a17d330c1d68371dae3d2d178b2c9d515 c1cc2cc(-c3nccc4ccsc34)ccc2cn1 -1123.213 -1123.123 -1123.01

488d1ff72f6be03e1b4700792c3f96465fe48dc3 c1ccc(-c2nccc3c4oc5occc5c4c4cc5sccc5cc4c23)nc1 -1579.595 -1579.507 -1579.424

0bfadbeb4d28675ac1de0ada05c091f8d958d96d C1=Cc2csc(-c3cc4cc5ccc6ncccc6c5cc4o3)c2C1 -1374.056 -1373.98 -1373.88

cb31741b39bd869863e44c127238c18d6aafdd25 C1=Cc2csc(-c3c4cocc4cc4c3[se]c3oc5occc5c34)c2[SiH2]1 -4082.572 -4082.514 -4082.421

9e35cac88c6cfab2a4e65ff9dd5b41075014ed80 C1=Cc2c(-c3sccc3-c3sccc3-c3cc4c(s3)[SiH2]C=C4)sc(C3=CC=C4c5cc[se]c5SC4C3)c2C1 -5874.623 -5874.548 -5874.501

9fd3b1b689f45d2387c593950b7ffd0de72b1ca5 c1cc2c(cn1)cnc1c2ccc2nccc(-c3cc4ccsc4s3)c21 -1767.192 -1767.109 -1767.014

04058245832acce4a0a46f5b080821a541c74a14 C1=Cc2c(cnc3ccc4c(-c5cccc6cscc56)csc4c23)[SiH2]1 -1948.357 -1948.279 -1948.209

f2d39ead8928386ccbba494e245657a390133d0e c1ccc(-c2ccc3cc4c(cc3c2)c2cocc2c2cc[nH]c24)nc1 -1069.358 -1069.279 -1069.188

ac3e3296f59d061b87690a391695d040cf340c92 C1=Cc2csc(-c3c4c[nH]cc4cc4c3[se]c3[se]c5[se]ccc5c34)c2[SiH2]1 -8715.215 -8715.148 -8715.056

3fb0c2dacc4da4d384487ac6c9685b740e3cdeb9 c1ccc(-c2cccc3c2ccc2c4ccccc4oc32)nc1 -937.831 -937.741 -937.621

782179af12ccbece2a906390eb434bb8202ed931 c1cc2c(cn1)cnc1ncc3c4cc(-c5nccs5)cnc4ccc3c12 -1478.541 -1478.455 -1478.359

d65f27823c7ecdea4e402f905c6386c91b972dc0 C1=C(c2ccccc2)[SiH2]c2c1sc1c2cnc2ccc3ccccc3c21 -1627.622 -1627.564 -1627.451

a2634d68d4d69ffdae7ce1ba719a0521bb7a2a3c C1=Cc2csc(-c3c4cocc4cc4c3[nH]c3sc5[nH]ccc5c34)c2[SiH2]1 -2039.571 -2039.519 -2039.427

9102221874344fa8071112d7dc90f98786c65518 C1=Cc2c(oc3[nH]c4c(-c5scc6c5CC=C6)c5nsnc5cc4c23)C1 -1804.229 -1804.171 -1804.072

77a76e46d25ed2836dfc4a1872d0911ab85fe733 C1=Cc2c(-c3ncncn3)sc(-c3c(-c4ccc[nH]4)ccc4ccccc34)c2[SiH2]1 -1792.431 -1792.348 -1792.267

10b2f019d06e3a0b7f1a2506d3154eb03739f7cd c1cc(-c2nccc3nsnc23)c2ccc3c4ccncc4cnc3c2c1 -1478.536 -1478.464 -1478.365

5a5c14ca1023f866d0e2965199e70eeae2d1dcfc C1=c2ccc3cc4[se]c5cc(-c6cccs6)c6ccccc6c5c4cc3c2=CC1 -3837.821 -3837.762 -3837.688

ecc292697a2aa20d75469006034b99e23fe852b1 C1=Cc2csc(-c3[se]ccc3-c3[nH]ccc3-c3cccc4c[nH]cc34)c2[SiH2]1 -4046.257 -4046.179 -4046.103

ef80545efb1d7ceda6fbcad776d98d5f7f06e5b4 c1ccc(-c2nccc3c4[nH]c5[se]ccc5c4c4cc5occc5cc4c23)nc1 -3563.029 -3562.936 -3562.852

2821a62a151d6c28fff11dad4315b4051a8c3c54 C1=Cc2c(-c3cccc4c3=CCC=4)sc(-c3sccc3-c3nccs3)c2[SiH2]1 -2385.749 -2385.709 -2385.634

239975947bc1d49f79401a21a6713b6bf7be6484 C1=Cc2c(cnc3c4c(c5c(c23)C(c2cccs2)=C[SiH2]5)=CCC=4)C1 -1551.33 -1551.287 -1551.193

a8b979111c91e0234527a034d3c51ff23e181035 c1cc2ccc3c(ccc4scc(-c5nccc6nsnc56)c43)c2cn1 -1783.243 -1783.171 -1783.073

2debb65c2b9d955f9191b79da5357199bd23bf99 c1ccc(-c2[nH]cc3ccc4cc5cnccc5cc4c23)nc1 -933.996 -933.917 -933.837

190984cc7ac57bd5c0f5c727a012a90def6fb98d c1ccc(-c2[nH]cc3ccc4c5ccsc5ccc4c23)nc1 -1238.707 -1238.627 -1238.529

e222e28fb5a3ad90964eaa4af90a28d2352a216d C1=c2ccc3cc4oc5cc(-c6ccccc6)sc5c4cc3c2=CC1 -1357.988 -1357.93 -1357.854

b7524000bcdc6f4efdd90a4ea2e17ccb2caad55d C1=CC(c2nccs2)CC(C2=C(c3scc4c3CC=C4)Cc3[se]c4c([nH]c5c6c(ccc54)=C[SiH2]C=6)c32)=C1 -4790.818 -4790.783 -4790.723

604f33c37f6477f9765d89e7498624100b290c4f c1ccc2c(c1)cc(-c1ccc3cnccc3c1)c1cnccc12 -956.053 -955.963 -955.859

ca14174f48a96f8aa47b3e2009fa8c9fb6a990fc c1ccc(-c2cc3c(cnc4c5cccnc5ccc34)[nH]2)nc1 -950.065 -949.974 -949.862

a7d4ac489f9b7f580da9137c976f2e286de4e341 C1=c2ccc3[se]c4c5sc(-c6scc7[nH]ccc67)cc5sc4c3c2=C[SiH2]1 -4708.622 -4708.589 -4708.526

859f5ceb74a46bfed9ddb2d5def9480437d7ff82 c1ccc(-c2cncc3ccc4ccc5occc5c4c23)nc1 -953.848 -953.748 -953.66

bdf318c3c633b5cc835423c89606eb65d8d06cda c1ccc(-c2cc3c(s2)sc2c4cc5ccccc5cc4ccc32)nc1 -1735.124 -1735.057 -1734.971

ae7da14e63e341c6968a4f489029a5e543a6b778 c1cc(-c2coc3cc4cnccc4cc23)c2cocc2c1 -935.605 -935.52 -935.451

edbe27699ed1b2b7a1faf691751af63920a05c1d c1ccc(-c2cc3nsnc3c3cc4c(cc23)oc2ncccc24)nc1 -1460.323 -1460.243 -1460.139

4b263a4ac076ecff73f854b10faf96612722f6bc C1=Cc2c(c3[nH]c4cc(-c5scc6[nH]ccc56)c5c[nH]cc5c4c3c3nsnc23)C1 -1954.062 -1954.006 -1953.918

adf719b366a637a837b44cdf876acd3b2be0599e Cc1cncc(-c2ccc3cscc3c2-c2scc3c2CC=C3)c1 -1660.065 -1659.996 -1659.868

ed8b701ecf44c148c7af507406982e157515ea05 c1ccc(-c2scc3c2[se]c2c4cc5ccccc5cc4ccc32)nc1 -3738.411 -3738.346 -3738.259

ae970a4c591158c97ee34d1a624112db181e5aad c1cc(-c2cncc3cnccc23)c2c(c1)ccc1ccncc12 -972.083 -971.992 -971.893

e68ba914eab011a226973a9ae52fb31a98d8ded2 C1=Cc2csc(-c3cc4cc5ccc6sccc6c5cc4o3)c2C1 -1678.768 -1678.692 -1678.593

bf33ff51904973a2654f8cabd8f51c30e69f7091 c1ccc2c(-c3ccc4ccncc4n3)cncc2c1 -818.496 -818.407 -818.3

3ae9f6262ec9ffd788347072c919b15a87cdce3b C1=Cc2csc(-c3c4nsnc4cc4c3oc3nc5[se]ccc5cc34)c2C1 -4204.541 -4204.481 -4204.374

285208d821ff6672e175eb2f86ad3a7ef02937ae c1ccc(-c2nccc3c2[se]c2cnc4ccsc4c23)nc1 -3616.916 -3616.82 -3616.706

37e50301c602d97862b2922753003be80a477a65 c1ccc(-c2[nH]cc3ccc4c5ccncc5ncc4c23)nc1 -950.042 -949.963 -949.86

ba91a07f038251055b51b896ebb386bb603f09e3 C1=Cc2c(-c3ccc(-c4scc5c4C=C[SiH2]5)cc3)sc(-c3cccnc3)c2C1 -2065.021 -2064.951 -2064.853

73ca42d448f3dff1931da2d2ff7ab074b21d237a c1ccc(-c2cncc3ccc4ccc5[se]ccc5c4c23)nc1 -3280.081 -3279.995 -3279.898

be214f7666b71c8e4ff01ebe6deafec0b99e0410 C1=CC2C=C[Se]C2C(c2ccc3cnccc3c2)=C1 -3111.591 -3111.525 -3111.421

27abef5c4154f60f0c658a413ba008f7053c2abc C1=C(c2nccc3nsnc23)[SiH2]c2c1c1c(c3c2c2c(c4cc[nH]c43)=C[SiH2]C=2)=CCC=1 -2119.924 -2119.9 -2119.839

675f7e4034ed552aed8ea12c32593b17df7f34de C1=Cc2c(-c3ccc(-c4scc5sccc45)s3)sc(-c3cncc4nsnc34)c2C1 -2999.708 -2999.661 -2999.583

6cb2c1d7b7b33ece46c4ed0ebd576593787486d6 c1ccc2c(c1)c1cnccc1c1c3cnccc3ncc21 -894.699 -894.609 -894.494

a8303cb28953a6d4c2d58196b510ad724ef8fff2 Cc1cccc2c1ccc1c2ncc2c3c[nH]cc3c3cnccc3c21 -1049.503 -1049.412 -1049.314
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