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Abstract

In this study, we introduce an innovative method designed to eliminate parallax artefacts

present in X-ray powder diffraction computed tomography data acquired from large samples.

Our approach integrates a unique 3D neural network architecture with a forward projector that

accounts for the experimental geometry. This self-supervised technique for tomographic volume

reconstruction is designed to be chemistry-agnostic, eliminating the need for prior knowledge

of the sample's chemical composition. We showcase the efficacy of this method through its

application on both simulated and experimental X-ray diffraction tomography data, acquired

from a phantom sample and a commercially available and industrially relevant NMC532

cylindrical Lithium-ion battery.

Introduction

Deep learning, an advanced subset of machine learning, has been a game-changer across a

diverse array of fields, including image recognition and text translation 1–6. Unlike traditional

'hand-crafted' algorithms that operate on fixed principles, deep learning harnesses flexible

neural networks that evolve based on exposure to existing examples. This dynamic, data-driven,

learning process allows deep learning models to continually refine their performance, driving

significant advancements in complex tasks where flexibility and adaptability are key.
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One of the key areas that deep learning has made a significant impact is in the field of

tomographic image reconstruction 7–9. Traditionally, tomographic image reconstruction has

relied on either direct methods, like the filtered back projection (FBP) algorithm 10, or iterative

methods that depend on prior knowledge and fine-tuning. However, these methods face their

own limitations, especially when it comes to scalability, handling noise and angular

undersampling data, computational demand, and the necessity for absolute values in certain

applications 11–13. Deep neural networks (DNNs) have emerged as a compelling solution, offering

the potential to surpass the performance of these traditional physics-based approaches 14–16 .

In recent years, there has been a burgeoning interest in the application of DNNs in tomography,

notably in enhancing the quality of real-space reconstructed images generated from sinograms.

Besides, some innovative applications even leverage supervised learning and generative models

to automatically map from sinogram to real space 17–24. Despite certain bottlenecks such as

handling large images and the computational cost of large networks, the promise of deep

learning in this sphere is quite palpable.

The advent of X-ray (powder) diffraction computed tomography (XRD-CT), a specialized form of

tomography, has added a new dimension to the mix. This technique uses a pencil beam

scanning method to yield reconstructed images corresponding to a sample's cross-section 25–27.

What sets XRD-CT apart is its ability to resolve chemical species of similar density, a task that

conventional X-ray CT often struggles with. As such, XRD-CT has found applications in a wide

array of fields ranging from material science to cultural heritage conservation, as well as

biological samples 28,29. More importantly, XRD-CT has become an invaluable tool to investigate,

non-destructively, functional materials and devices, such catalytic reactors 30–36, fuel cells 37,38

and secondary/rechargeable batteries in custom made laboratory cells 38–43 as well as in

commercially available and industrially relevant cylindrical form 44–46, under static or operating

conditions (in situ/ operando studies). These studies have shown that the spatially-resolved

diffraction patterns in the XRD-CT data can yield unique physicochemical information regarding

these complex materials systems and their evolving solid-state chemistry. Recently, the method

has also been demonstrated for five dimensional (5D) experiments, where the dimensions

correspond to three spatial, one chemical (diffraction) and one temporal or imposed operating

condition (e.g. temperature, pressure, potential) 47–49.

Given the prowess of deep learning and the unique capabilities of XRD-CT, the combination of

these two could potentially revolutionize tomographic image reconstruction. Deep learning

methods could not only accelerate the XRD-CT on both data acquisition and analysis but also

enhance it by addressing challenges like image super-resolution using high resolution

region-of-interest CT scans, data denoising, as well as single-crystal diffraction, self-absorption

and parallax artefacts. This combination, if realized, could unlock new possibilities, including
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higher spatial and temporal resolution in chemical imaging and better handling of complex data

sets, paving the way for breakthroughs in various fields.

One major obstacle that prohibits the scale up of the XRD-CT technique and its widespread

adoption to study large samples is the parallax artefact. In wide angle scattering-based CT

experiments, it is generally assumed that the X-rays, whether scattered or diffracted, arrive at

the same detector element when measured at any given scattering angle 2θ across the sample's

thickness, as depicted in Figure 1a. This assumption holds when the sample thickness is

relatively small, typically on the order of a few millimeters. However, for thicker samples, this

assumption becomes invalid. In these cases, diffracted X-rays measured at a specific 2θ angle

are detected by multiple detector elements due to the significantly varying distances between

elements within the sample and the detector. This phenomenon, known as the parallax effect,

exhibits a tan(2θ) dependency 25,27. The parallax effect is further illustrated in Figure 1b. As a

result of this effect, artefacts may manifest as shifts in peak position, peak broadening, or even

peak splitting 50.
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Figure 1. (a) Schematic representation of a 2D XRD pattern collected during the XRD-CT

scanning of a small sample when there is no parallax artefact. (b) 2D XRD pattern collected

during the XRD-CT scanning of a large sample with parallax artefacts present; the X-rays

scattered/diffracted along the sample at certain 2θ angles arrive at different detector elements,

leading to peak broadening and peak splitting.
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In our previous work, we developed a new reconstruction approach, termed “direct

least-squares reconstruction” (DLSR) algorithm, which overcomes the parallax artefact in

XRD-CT data 51. Conventionally, the XRD-CT sinogram data are reconstructed one-by-one,

typically using the filtered back projection algorithm, yielding an XRD-CT reconstructed volume.

The next step involves the analysis of all the local diffraction patterns in this reconstructed

XRD-CT volume which can be single, multi-peak fitting or full profile analysis using methods

such as LeBail or Rietveld. The DLSR was implemented using the TOPAS software 52 version 7

and combines the reconstruction and full profile analysis steps into a single step. To clarify, the

sinogram XRD-CT (projection) data are fitted and the results are real-space maps corresponding

to the various properties of the model that is being refined (e.g. scale factor, lattice parameter

and crystallite size maps for each phase). This approach yields parallax artefact-free images but

has severe limitations:

● It requires a priori knowledge about the chemistry of the sample before reconstruction

● It requires the construction of a robust physical model that models all chemistry

accurately in the sinogram data; minor components being overlooked during the

inspection of diffraction patterns when preparing the physical model will not be part of

the final results

● DLSR in its TOPAS version 7 implementation suffers from scalability; even XRD-CT images

that are nowadays considered standard (e.g. 256 x 256) cannot be handled due to RAM

requirements and the data have to be rebinned losing spatial resolution.

● It typically requires laborious data pre-processing to decrease memory requirements (to

that realistically available) and yield stable reconstructions. For example, one needs to

create a separate binary mask for each crystalline phase present by analysing the FBP

reconstructed XRD-CT volume (which contains parallax artefacts) and/or subtract the

background from the sinogram data (in order to make it linear/ use a simple background

model)

Therefore, our motivation was to develop a new method that overcomes all these limitations of

the DLSR approach and yield parallax artefact-free XRD-CT images.

Self-supervised parallax artefact removal

We developed a self-supervised parallax XRD-CT data reconstruction architecture by integrating

a forward operator that can transfer an XRD-CT volume without parallax artefacts to the

sinograms with parallax artefacts. A schematic representation of the method is shown in Figure

2. We use an artificial neural network which acts as an XRD-CT volume generator i.e. it creates a

stack of real-space XRD-CT images. The input to the generator is a random non-zero constant.

Next, the generated images are converted into sinograms with the addition of parallax artefacts

using a differentiable forward operator. The forward operator contains two parts, the first part
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adds artificial parallax artefacts into the images by taking into account the geometry of the

experimental setup, and the second part is the Radon transformation that can convert the

images to sinograms. This generated XRD-CT sinogram volume is then compared with the

experimental sinogram dataset using a designated loss function. Based on this comparison, the

weights of the generator network are updated accordingly.

Figure 2. The self-supervised ParallaxNet flow chart. The generator network takes a single-digit

number as input and outputs a volume (stack of images), where the third dimension

corresponds to the scattering angles (diffraction dimension). A forward operator is applied to

convert these XRD-CT images into sinograms containing parallax artefacts. A loss function is

then used to compare the differences between the generated sinograms and the experimental

sinograms.

Building on the recently developed SD2I architecture53, which is a lightweight and scalable CNN

architecture that utilizes a single number input for CT image reconstruction and addresses

angular undersampling artefacts, we introduce the Single Digit to Volume (SD2Vol) network
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architecture for enhanced volumetric reconstructions. By transitioning from 2D to 3D

convolutional layers and reducing layer parameters, SD2Vol offers both tailored 3D capability

and greater efficiency, marking a significant step forward in CT image reconstruction. Figure 3

illustrates the design of the SD2Vol network employed for 3D image reconstruction from a

sinogram volume (stack).

The SD2Vol network begins with a single seed input value (specifically, 1 is used in this work),

and is followed by a decoder to reconstruct the image based on the single number. After the

input layer, three fully connected layers with 32 nodes and another fully connected layer where

the number of nodes equal to the total number of voxels in the reconstructed volume are used.

Next, the output of the final fully connected layer is reshaped to a 3D volume followed by four

3D convolutional layers. All activation functions are chosen as ReLU, except for the last layer we

used the linear activation function. This architecture can be scaled up, as it allows to reconstruct

volumes with n x n x m sizes reaching 550 x 550 x 51 or 100 x 100 x 4010 (i.e. projection data

with parallax artefacts). The maximum size of a volume that ParallaxNet can reconstruct with

SD2Vol is presented in Figure S1, and Table S1-S4.

Figure 3. The Single Digit to Volume (SD2Vol) generator architecture with a single constant as

input. CONV represents 3-D convolutional layers, and FC represents fully connected layers. The

filter numbers and layer sizes are shown above each layer. Here n represents the number of

translation steps, and m represents the volume size of the output image. The ReLU function is

used to connect the layers, except the Leaky ReLU function is used on the last fully connected

layer to adapt possible negative values generated.

We use a joint loss function with the mean squared error (MSE) and the structural similarity

index measure (SSIM) in this architecture. The loss function compares the real experimental

sinograms with the generated sinograms and updates the weights in the generator to give a
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generated sinogram volume that resembles better the experimental sinogram volume on the

iteration. Normally, the architecture can yield high quality reconstructions after 1000 iterations.

We tested various loss functions, including MSE, mean absolute error (MAE), SSIM, and a joint

loss function that combines MSE and SSIM. These tests were conducted with ParallaxNet on the

simulated XRD-CT dataset used in this work. The results are presented in Table S5. Based on

these findings, we chose the joint loss function that combines MSE and SSIM as the loss

function to be used for ParallaxNet. The reconstruction process of this self-supervised method

can be expressed as:

Here, G(a) is the generated reconstruction image by sending a random constant ‘a’ into the

generator. The constant doesn’t change while training. The LMSE and LSSIM represent the MSE loss

and SSIM loss respectively, and their sum is adjusted by the fraction λ. According to Table S5, we

used λ = 10-4 for all the reconstructions presented in this work.

The MSE loss is defined as 54:

The ntr, npr and nim represent the number of translation steps, the number of projections, and

the volume size (number of channels), respectively. Then, the SSIM loss can be expressed as 55:

Here,

The μx, μy are the average of all pixels in the input sinograms and the σx, σy represent their

standard deviations. L is the dynamic range of the input images. K1 and K2 are two constants

that are set as 0.01 and 0.03.
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To account for the varying signal strengths across each chemical (diffraction/scattering angle)

channel and facilitate easier training of the generator, all sinogram channels along the 2θ axis

are normalized based on the maximum value of each channel. Additionally, to ensure the

output images from the generator maintain a consistent relative intensity, they are divided by

the same normalization factors used for the sinograms before applying the forward operator.

Then the forward operator processes images at their actual intensity scale, yielding generated

sinograms with accurate intensities. Subsequently, these generated sinograms are multiplied by

the normalization factors and the loss is calculated in comparison to the normalized input

reference sinograms.

A circular mask is applied to the images during training to filter out signals outside the CT

reconstruction area. The 3D grid is calculated considering the experimental setup and

specifically the 2θ diffraction angles (1D vector), the sample-to-detector distance, the

translation step size and the X-ray wavelength. Starting with a tomographic angle of 0 °, the

forward operator accounts for nT voxels across the sample's thickness, and simulates the

parallax effect with an nT 2θ axis vector yielding the 3D grid. The modeling of the 3D grid is

based on a relationship between the new 2θ axis, its offset from the centre of rotation, and the

distance from the sample to the detector, as defined by Scarlett et al. 50 :

The sinogram volume with parallax can be created from parallax-free images by rotating the 3D

grid, interpolating the XRD-CT data over it, and calculating the 3D Radon transform at each CT

angle. The pseudocode for creating the 3D grid based on the experimental setup can be found

in Algorithm 1, while the pseudocode for the forward operator is in Algorithm 2.
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Results & Discussion

Simulated XRD-CT data

To test the performance of ParallaxNet on XRD-CT data with parallax artefacts, we first use a

simulated XRD-CT dataset with noiseless and zero-background XRD patterns of a Ni fcc structure

(ICSD: 64989) 53. When testing the performance of algorithms designed to solve inverse

problems, it's crucial to ensure the forward projector used to generate simulated data is

different from the forward projector the algorithm employs to solve the inverse problem. This

differentiation helps maintain the rigor and validity of the evaluation. Being conscious of this,

we coded different forward models for testing our approach with the simulated XRD-CT data.

Specifically, we used an A matrix (ray tracing) calculated from astra-toolbox 56 as the forward

projector to produce the simulated Ni XRD-CT dataset and a custom Radon using image rotation

with bilinear interpolation for our ParallaxNet algorithm. This approach ensures a more

unbiased assessment of ParallaxNet's capabilities.

We take into account the non-constant sample-to-detector distance for large samples by

creating a 3D grid, where each pixel represents a distinct 2θ axis. The XRD-CT data, both the

simulated and the experimental presented in the following sections, are interpolated using this

3D grid and subsequently their 3D Radon transform is calculated. The simulated data were

created using a sample-to-detector distance of 1000 mm, translation step size of 0.2 mm, and a

100 keV X-ray energy. The simulated XRD-CT data consist of 121 translation steps, 121

projections covering 0-180 ° angular range and 2000 scattering angles, which form a sinogram
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volume with the size 121 x 121 x 2000. ParallaxNet was used to reconstruct the whole dataset in

ca. 7.4 h and 5000 epochs.

Figure 4 shows the results obtained from the sequential Rietveld analysis of both FBP and

ParallaxNet reconstructed volumes using the TOPAS software which is guided by inhouse

developed Python scripts. As presented in Figure 4, compared to the Rietveld analysis results of

the FBP volume, the maps of Ni scale factor, crystallite size, and lattice parameter a from

ParallaxNet are almost identical to the ground truth maps while the FBP significantly diverge;

this is apparent when one observes the lattice parameter and crystallite size maps. This

suggests that the diffraction peak positions and shapes reconstructed by ParallaxNet closely

match the ground truth patterns. The differences between the crystallite size and lattice

parameter maps and their ground truth values are presented in Figure S2. Their accuracy is also

confirmed by the Rwp maps from the Rietveld analysis and the distribution of lattice parameters

for all pixels, as shown in Figure S3. The mean image and diffraction patterns, along with

selected channels of maps, are shown in Figure S4. By visually inspecting the maps

reconstructed by FBP and ParallaxNet, we can conclude that ParallaxNet accurately reconstructs

the signals in the correct positions and addresses the parallax artefacts present in the simulated

data. The distribution of lattice parameters obtained by the three methods are shown in Figure

S5.
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Figure 4. Parallax XRD-CT simulations. This figure shows the results obtained from the

sequential Rietveld analysis of the reconstructed XRD-CT data with FBP and ParallaxNet and

their ground truth value.

In a pixel-wise analysis, we select three regions of interest as depicted in Figure 5. It can be seen

that within each region, the lattice parameter and crystallite size have the same value in the

simulated dataset. As illustrated in Figure 5, the parallax artefact causes the FBP reconstructed

patterns to exhibit significant shifts in peak positions, broadening, and some instances of

splitting when reconstructed using the conventional 0-180 ° CT acquisition. However, the

ParallaxNet can accurately reconstruct the volume without these artefacts and the

reconstructed diffraction peaks are well aligned with the ground truth.
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Figure 5. (a) The mean image of the simulated Ni XRD-CT dataset with three marked regions. (b)

Selected diffraction peaks of the average diffraction pattern in Region A. (c) Selected peaks of

the average diffraction pattern in Region B. (d) Selected peak from average diffraction pattern in

Region C. This figure shows the ParallaxNet correctly solving the diffraction peak splitting and

shifting caused by parallax artefacts and that the diffraction pattern is aligned with the ground

truth one.

Experimental XRD-CT data

Phantom

Next, we evaluate the efficacy of the method using experimental XRD-CT data. The first dataset

is a custom-made phantom consisting of four pipettes filled with different powder samples 51.

The mean image of the phantom XRD-CT sample can be found in Figure 6a, which provides a
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view of the cross-section containing the powder samples within the four glass pipettes. This

dataset contains two crystalline MgO (ICSD 9863; Sasaki et al., 1979), one SiC (ICSD 603798; Li &

Bradt, 1986) and one TiO2 rutile (ICSD 33837; Sugiyama & Take´uchi, 1991) phases respectively.

Figure 6b presents the mean diffraction patterns derived from both FBP and ParallaxNet using

180 ° scans. It can be seen that the diffraction peaks in the FBP pattern are significantly broader

compared to the ParallaxNet. Selected channels from the reconstructed XRD-CT dataset are

depicted in Figure 6c. It can be clearly seen that the new approach reconstructs artefact-free

images while the conventional FBP method displays pronounced parallax artefacts that are

readily observable upon visual inspection.

Unlike the dataset presented in our DLSR work, here we utilise the full size of the image dataset

with ParallaxNet without any image rebinning/resizing. This is because the new ParallaxNet

method boasts better scalability compared to DLSR. The XRD-CT sinogram volume dataset

comprises 269 translation steps, 300 projections, and 670 selected diffraction channels. We split

the dataset into three batches, and each batch contains 250 channels. To mitigate the edge

effect between the batches, we incorporated an overlap of 40 channels for each batch. As a

result, the three batches are defined with channel numbers 0-250, 210-460, and 420-670,

respectively. The three batches are merged afterwards by taking the average of the overlapped

channels.

For each batch, we ran 5,000 epochs, which took ca. 5.28 h excluding the initialization time. To

improve image quality and reduce the number of required epochs, we pre-trained the

generator using FBP images from 180 ° projections. This preliminary step required only 1,000

iterations and was completed in 4 min for each batch. In total, the image reconstruction with

ParallaxNet took ca. 16.43 h. The ParallaxNet training was performed using a workstation

equipped with an NVIDIA Quadro RTX8000 GPU, Intel Xeon W-2155 CPU at 3.30GHz and using

PyTorch version 1.13.1.
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Figure 6. (a) The mean image of the Phantom XRD-CT dataset which contains crystalline TiO2,

MgO, and SiC. (b) The average diffraction patterns of FBP and ParallaxNet were reconstructed by

0-180 ° scans. (c) Selected interesting diffraction channels which are marked in (b).

Selected reflections corresponding to each of the three phases are shown in Figure 7. It can be

clearly observed that the XRD-CT reflections reconstructed by FBP from both 180 and 360 °

scans exhibit significant peak broadening artefacts. Additionally, the diffraction peaks generated

by FBP with 180 ° scan range exhibit peak shifting artefacts. In contrast, the diffraction peaks

generated with 360 ° scan range using FBP are in good alignment with the ones obtained by the

ParallaxNet with 180 ° scan range. This demonstrates that Parallax effectively reduces various

artefacts brought about by parallax and also that it simply requires a 0-180 ° scan range to

reconstruct parallax artefact-free data.
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Figure 7. (a) The mean image of the Phantom XRD-CT dataset with three marked regions. (b) A

selected peak of the average diffraction pattern in Region A. (c) A selected diffraction peak from

the average diffraction pattern in Region B. (d) A selected peak from the average diffraction

pattern in Region C. This figure shows the ParallaxNet can solve the peak broadening artefacts,

and peak positions reconstructed by the ParallaxNet with 0-180 ° scans are aligned with the FBP

reconstructed with 0-360 ° scans. In contrast, the FBP reconstructed diffraction peaks over the

0-180 ° scan range exhibit significant diffraction peak shifting which was caused by the parallax

artefacts.

The Rietveld analysis of the reconstructed volumes further demonstrates the efficacy of our

method. From the lattice parameter maps shown in Figure 8, it can be clearly seen that the

lattice parameter maps from the ParallaxNet with 180 ° scans have almost identical values with

those from the maps of the FBP derived from the 360 ° scan range. FBP images reconstructed
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using 360 ° scan range should not exhibit any peak shifting, even when significant parallax

artefacts are present; to clarify, the centroid position of the peaks will be in the correct position

as if it were a dataset without parallax. As such, the lattice parameter maps of the ParallaxNet

can be considered close to the ground truth. It is also worth mentioning that the ParallaxNet

maps exhibit less noise compared to those from the FBP. The distribution of the lattice

parameters is shown in histograms in Figure S6.

Figure 8. Lattice parameter maps associated with the four components shown in Figure 7 (a).

Figure 9 presents the scale factor and crystallite size maps obtained from the Rietveld analysis.

A key observation is that the parallax artefact significantly affects the crystallite sizes obtained

by conventional approaches. Specifically, on both 180 and 360 ° XRD-CT scans, it leads to

broadened diffraction peaks and reduced crystallite values when using the FBP reconstruction

algorithm. The maps suggest that ParallaxNet has, to a certain extent, solved the peak

broadening artefact instigated by parallax. This correction is particularly pronounced for the two

MgO components, where their crystallite sizes offer mutual validation. Based on these

observations, we can deduce that ParallaxNet can correctly solve the parallax artefact on the

real phantom experimental dataset. The Rwp map, for all Rietveld analyses, can be further

observed in Figure S7.
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Figure 9. Top row: Scale factor maps (normalized) associated with four components. Button row:

Crystallite size maps associated with four components.

NMC532 cylindrical Li ion battery

In addition to the phantom dataset presented in the previous section, the efficacy of the

method was evaluated with a second experimental dataset. Specifically, a dataset acquired from

a commercially available and industrially relevant 10440 NMC532 Li-ion battery was used 44.

This dataset consisted of 521 translation steps, 1000 projections and 1800 channels of

sinograms. To train this big dataset, we divided it into batches of 55 channels, and each batch

took ca. 8 h to process using 5000 epochs. To address this large dataset, we first selected an

XRD diffraction peak from the Cu phase and reconstructed only the images without parallax

corresponding to this peak within the 55-channel range. Then, we performed Rietveld analysis

on this 521 x 521 x 55 XRD-CT dataset to get the chemical information of the Cu phase

presented in this Li-ion battery dataset. The original dataset was performed using a 0-360 ° scan

range, but for testing the ParallaxNet, we only used the part of the data corresponding to the

0-180 ° scan range so for each batch, the size of the reference sinogram was 521 x 500 x 55. For

a comparison, the XRD-CT data were also reconstructed using the FBP algorithm using both the

180 and 360 ° ranges and were analysed using the Rietveld method i.e. on the 55 selected

channels of the Cu XRD peak (hkl reflection (111)). The ParallaxNet also utilized the FBP with

180 o projections to pre-train the generator for faster convergence.
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Figure 10a displays the average image from the selected 55 channels of the Cu XRD (111) peak,

highlighting three regions of interest. Figures 10b-d depict the average XRD peaks from the

marked regions. As illustrated in the figure, ParallaxNet can accurately reconstruct the Cu peak,

producing a significantly sharper peak. The peak positions align with the XRD-CT data

reconstructed by the FBP from the full 360 ° scan. This result shows that the ParallaxNet

correctly removed both the peak shifting and broadening artefacts caused by the Parallax on

this Cu XRD peak. It is important to note here that the centers of the peaks obtained from the

FBP 360 ° scan align with those of the ParallaxNet-reconstructed peaks. However, it becomes

evident that the peak shape cannot be effectively described using a single peak shape model.

This observation is distinctly apparent across all peaks illustrated in Figure 10, with a particularly

noticeable manifestation in the Cu diffraction peak from Region B. This observation bears

significance, as attempting to fit these peaks using a single model, such as Gaussian or

pseudo-Voigt models—commonly employed in XRD data analysis—can potentially yield

inaccurate data interpretations. Such an approach might result in artificial shifts of the peaks,

given that the employed model does not adequately capture the intricacies of the data's true

behavior. This is especially crucial when high precision is required for the calculated lattice

parameter values, e.g. in the order of <10-3Å such as when attempting to capture shifts in the

Cu peak introduced by temperature gradients in these battery systems 57.
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Figure 10. (a) The mean image of the Cu phase of Li-ion battery XRD-CT dataset with three

marked regions. (b) The selected peak of the average diffraction pattern in Region A. (c) The

selected peak of the average diffraction pattern in Region B. (d) The selected peak of the

average diffraction pattern in Region C. This figure shows that ParallaxNet can solve the peak

broadening and peak splitting artefacts.

Figure 11a displays the lattice parameter maps obtained through Rietveld analysis. As seen in

the FBP with the 180 ° scan range lattice parameter map, the parallax artefact results in

unevenly distributed lattice parameter values (as determined by the Rietveld analysis) across

different positions of the same material (Cu phase). However, both the FBP with the 360 ° scan

range and the ParallaxNet results with 180 ° scan range yield lattice parameter maps that are

evenly distributed across all positions. The histogram depicting the distribution of lattice

parameters for the three maps is shown in Figure 11b. The mean values of the lattice
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parameters for the FBP with 360 ° scan range, the FBP with 180 ° scan range, and the

ParallaxNet result are 3.6047 Å, 3.6045 Å, and 3.6048 Å, respectively. The scale factor maps and

the Rwp from the Rietveld analysis maps can be found in Figures S8 and S9.

Figure 11. (a) The lattice parameter a maps obtained by Rietveld method for a Li-ion battery

dataset. (b) the distribution of lattice parameters for the maps shown in (a).
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It was therefore demonstrated that ParallaxNet can accurately reconstruct XRD-CT

images/diffraction patterns of this experimental Li-ion dataset and that it is possible to extract

meaningful chemical information from just a single peak of the XRD pattern. Subsequently, a

broader range of diffraction channels was chosen, encompassing 555 out of the 1800 channels

from the original dataset. These channels span a native 2θ value range from 1.203 to 4.877 °.

We divided these 555 channels into 11 segments, each containing 55 channels, consistent with

the phantom dataset approach. To mitigate edge effects between the reconstructed images of

each batch, we incorporated a 5-pixel overlap on either side of each segment. We then

averaged the overlapping sections to produce the final XRD-CT image volume with dimensions

of 521 x 521 x 555.

To reconstruct this expanded dataset, ParallaxNet required 90 h of training time, which includes

both initialization and pre-training with FBP. Since each batch is independent, we utilized three

NVIDIA Quadro RTX8000 GPUs to process these 11 batches in parallel using PyTorch. In the end,

it took ca. 33 real-world h to complete this dataset. It's worth noting that this represents the

most extreme scenario encountered in real-world experimental datasets, and the DLSR method

cannot handle a dataset of this magnitude.

Figure 12 shows the NMC532 phase of the reconstructed dataset, highlighting three specific

regions of interest. Additionally, this figure displays the selected average XRD peaks

corresponding to the NMC532 phase. Other NMC532 peaks of these three regions are also

shown in Figure S10. These figures confirm that ParallaxNet can accurately reconstruct the

same peak positions as those derived from the FBP reconstructed with the 360 ° scan range.

Furthermore, ParallaxNet effectively addresses the issue of peak broadening artefacts,

producing peaks that are sharper and narrower compared to those in the FBP images.
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Figure 12. (a) The mean image of the NMC532 phase of Li-ion battery XRD-CT dataset with three

marked regions. (b) The selected peak of the average diffraction pattern in Region A. (c) The

selected peak of the average diffraction pattern in Region B. (d) The selected peak of the

average diffraction pattern in Region C. This figure shows that ParallaxNet can solve the peak

broadening artefacts, and reconstruct correct peak positions compared to the FBP with 0-180 °

scan range.

Maps obtained from the Rietveld analysis of the NMC532 phases are shown in Figure 13 and

Figure S11. The crystallite sizes obtained with the three different methods on the top line of

Figure 13 indicate the crystallite sizes calculated from the ParallaxNet reconstructed volume are

larger than both FBP methods with 180 and 360 ° scans respectively. The average crystallite

sizes raised from ca. 91 nm (for FBP with 180 ° scans) and 92 nm (for FBP with 360 ° scans) to

137 nm (for the ParallaxNet), which also supports the conclusion we drew from visual
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inspection: the diffraction peaks are sharper and narrower than those produced by

conventional methods. The Rwp maps of the Rietveld analysis are shown in Figure S12.

The lattice parameter maps of the NMC532 phase also indicate that the ParallaxNet can

correctly reconstruct the evenly distributed lattice parameter maps which aligns with the FBP

with 360 ° scan. The peak shifting artefact in the images reconstructed by the FBP with 180 °

scan range has been effectively eliminated by ParallaxNet. The distribution of the lattice

parameters of the NMC532 is presented in Figure S13.

Figure 13. Top row: crystallite size maps of the NMC532 phase. Mid row: lattice parameter a

maps of the NMC532 phase. Bottom Row: lattice parameter c maps. All maps are obtained by

Rietveld analysis on the Li-ion battery XRD-CT dataset.
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Summary & Conclusions

In this paper, we introduced a novel and robust XRD-CT reconstruction approach, ParallaxNet,

designed to reconstruct images from XRD-CT data containing parallax artefacts. The ParallaxNet

strategy employs a 3D neural network generator framework, SD2Vol, together with a

customized forward projector to produce parallax artefact-free images/diffraction patterns. This

is achieved through an iterative approach by comparing the difference between the generated

sinogram volume and the input reference sinogram volume. We evaluated ParallaxNet's

performance using three datasets: a simulated XRD-CT dataset, an experimental XRD-CT dataset

acquired using a phantom object and an experimental XRD-CT dataset recorded on an NMC532

cylindrical Li-ion battery.

For all three datasets, this new approach accurately reconstructed the peak positions using only

0-180 ° angular range, eliminating the need for a 0-360 ° scan which halves the required

acquisition time (i.e. half the number of projections). Furthermore, the reconstructed peaks

were sharper and narrower than those produced by traditional FBP methods, both with 180 and

360 ° scans. It should also be noted that in this work it was also shown that simply using a 360 °

scan approach as a means to remove parallax artefacts is insufficient and should be avoided as

it leads to peaks with shapes that cannot be modeled with a single profile (e.g. Gaussian peak).

This was clearly demonstrated with the experimental XRD-CT presented in this work, an

example being the Cu component in the cylindrical Li-ion battery. ParallaxNet overcomes the

peak shape problems associated with the 0-360 ° scan approach and also presents distinct

advantages over the previously developed DLSR methodology, which is to the best of our

knowledge the only alternative solution to removing parallax artefacts in XRD-CT data,

addressing several inherent limitations:

● Firstly, ParallaxNet operates without requiring a priori knowledge about the chemical

composition of the sample being measured.

● DLSR also requires the identification of all phases and the construction of a robust

physical model; this can potentially lead to some minor components being overlooked

during the inspection of diffraction patterns in the sinogram data.

● Furthermore, ParallaxNet is more scalable. In this work, we applied the ParallaxNet on

the full size experimental phantom XRD-CT datasets. However, the DLSR can only be

applied on the scaled-down version of the same dataset(s) as shown in the DLSR paper

(e.g. with 121 x 121 image sizes for the Li ion battery). Moreover, ParallaxNet does not

need as much RAM requirements as the DLSR approach, especially when DLSR is used in

conjunction with TOPAS version 7.
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● ParallaxNet does not require any data preprocessing. ParallaxNet can be applied on the

raw sinograms, but DLSR needs the manually created masks for each phase and

background subtraction on the sinograms in order to use a simple background model.

● We have demonstrated that the conventional method of employing a 0-360 ° scan with

FBP to eliminate parallax artefacts and obtain precise lattice parameter values can be

precarious. For instance, the FBP reconstruction of the Cu peaks in the 0-360 ° scan

revealed peaks that cannot be modeled using a single peak shape model (such as

Gaussian or pseudo-Voigt). This could potentially result in wrong lattice parameter

values and misinterpretation of the data, especially if lattice parameter values with high

precision are required to be extracted from the data.

At this stage, while ParallaxNet presents a promising approach to XRD-CT image reconstruction

with parallax artefact, it is not without its limitations. A significant constraint is the extended

computational time required for large datasets. For instance, the Li-ion dataset, with sinogram

dimensions of 521 x 500 x 540, demanded a staggering 90 hours of computational time.

Currently, due to GPU memory constraints, there's a necessity to divide datasets into smaller

batches for processing. Moving forward, there is potential to explore a more streamlined

generator, which could significantly minimize the computational resources needed and address

some of these challenges. Last but not least, it should be noted that the developed method can

be applied to other X-ray scattering-based computed tomography data suffering from parallax

artefacts, such as pair distribution computed tomography.

Methods & Materials

The powder samples measured in this work were SiC (nanopowder, <100 nm particle size,

594911-100G, Sigma-Aldrich), TiO2 Rutile (204757-25G, Sigma-Aldrich) and MgO (307742-500G,

Sigma-Aldrich). The three powder samples were mounted into separate glass pipettes with an

outer diameter of ca. 7.5 mm supported by quartz wool from both ends. Two pipettes were

prepared using the same MgO powder sample. The four glass pipettes containing the powder

samples were mounted onto a 3D printed sample holder designed for the parallax experiment.

Photographs of the experimental setup can be found in our previous work 51.

XRD-CT measurements of the phantom sample were performed at beamline station P07 (EH2)

at PETRA III, DESY, using a 103.5 keV (λ = 0.11979 Å) monochromatic X-ray beam focused to a

spot size of 20 × 3 μm (H × V). 2D powder diffraction patterns were collected using a Pilatus3 X

CdTe 2 M hybrid photon counting area detector. The 3D printed sample holder was mounted

directly on the rotation stage. The rotation stage was mounted perpendicularly to a hexapod;

the hexapod was used to translate the sample across the beam. The XRD-CT scans were
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measured by performing a series of zigzag line scans in the z (vertical) direction using the

hexapod and rotation steps.

Two XRD-CT scans were performed, in both cases the number of translation steps were 300

with a 80 μm step size and a 10 ms exposure time per point. The first XRD-CT scan was

performed over a 0-180 ° range while the second over a 0-360 ° range, both using 300 angular

steps. The second sample was a pristine (as-received) 10440 Li-ion NMC532 Trustfire cylindrical

battery 44 and it was scanned using the same beamline and experimental setup using a

73.89 keV (λ = 0.16779 Å) monochromatic X-ray beam focused to the same spot size of

20 × 3 μm. An XRD-CT dataset was acquired using 521 translation steps with a 20 μm step size

and a 10 ms exposure time per point. The XRD-CT scan was performed over a 0-360 ° range

using 1000 angles in total.

The detector calibration was performed using a CeO2 standard. Every 2D diffraction image was

calibrated and azimuthally integrated to a 1D powder diffraction pattern with a 10 % trimmed

mean filter using the pyFAI software package, nDTomo software and in-house developed scripts
58–60. The integrated diffraction patterns were reshaped into sinograms and centered; the air

scatter signal was subtracted from the data. For the conventional data analysis approach, the

XRD-CT images (i.e. reconstructed data volume) were reconstructed using the FBP algorithm. A

pseudo-voigt peak shape function was used for the refinements after the analysis of the CeO2

pattern. Rietveld analysis was performed on the reconstructed diffraction patterns with the

TOPAS software version 7 52 on a voxel by voxel basis. Rietveld analysis was first performed using

the summed diffraction pattern of each XRD-CT dataset (i.e. to provide a good starting model)

before running the voxel-by-voxel Rietveld analysis to provide the spatially-resolved

physico-chemical information. The parameters refined were the scale factor, lattice parameter

and crystallite size for each phase. A 2nd order Chebyshev polynomial was used to model the

background as it was fairly flat in all reconstructed patterns. A workstation with an Intel Xeon

W-2155 CPU, a NVidia Quadro RTX8000 GPU, and 128 GB of RAM was used to perform the

ParallaxNet and full profile analysis on all datasets presented in the paper.
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