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Abstract 
Drug-spaces of nine crystallographic protein / ligand models have been comparatively explored  by including Toxicity Risk assessment during 
computational co-evolution. Tens of thousands children were randomly generated from parent ligands and iteratively selected for higher 
affinities, increased specificities and low Toxicity Risk using DataWarrior / Build Evolutionary Library  algorithms, mimicking natural evolution. 
Only a few hours of co-evolution increased ~ 2-fold the numbers of non-toxic children. Top-leads predicted drug-like properties,  nanoMolar 
affinities (confirmed by AutoDockVina), higher specificities, absence of known toxicities, and similar docking to their initial binding cavities. 
Tables were provided with multi-threshold-adjustable filters for alternative  in silico explorations of this new "co-evolutionary docking" tool.    
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Introduction 
 DataWarrior (DW) Build Evolutionary Library (BEL) co-evolution 

algorithms including for the first time Toxicity Risk assessment are described here 
targeting nine protein / ligand crystallographic pairs.  

As recently reported 
1-4

, these DW tools mimicked natural evolution, 
by generating  thousands of children molecules fitting their crystallographic 
binding-cavities. However, ~ 50 % of the generated children predicted DW / 
Toxicity

1-4
. More in detail, these co-evolutionary fast algorithms randomly 

generated tens of thousands of small molecular raw children from parent ligand 
molecules, rather than screening for a few hundreds in large chemical banks. 
Using DW-BEL, the abundant raw children were then rapidly ranked by best fitting 
both to their binding cavity and to other co-evolving criteria such as molecular 
weight and hydrophobicity 

1-4 
. Best fitted thousands of evolved children could be 

generated in few hours for each protein / ligand pair. In collaboration with DW 
researchers, we explored here the inclusion of Toxicity Risk during DW-BEL co-
evolution to evaluate any possible improvements on the resulting children using 
nine protein / ligand crystallographic pairs as selected examples. To further fine-
tune their accuracies, the DW-BEL top-lead docking-affinities were confirmed by 
the widely known AutoDockVina (ADV) algorithms. 

Only the high speed of Java's DW-BEL favored the short time co-
evolution of several criteria by one-by-one molecular checking tens of thousands of 
raw children. Only those children predicting maximal fittings were selected for the 
next iteration cycle. To avoid structure repetitions among the selected children, 10-
50 Gb of RAM memory were required to keep track of all the numerous children 
generated, depending on the particular target / parent, number of runs, cycles, 
generations, etc. Iterations were automatically repeated from each parent during a 
number of cycles until their fitness to the user-defined criteria reached a plateau. 
Because of their stochastic nature, independent runs should be consecutively 
repeated from the same parent to increase prediction accuracies.  
 Because any computational docking screening method based solely in 
maximizing affinities, generates highly unspecific molecules by progressively 
increasing their molecular weights and hydrophobicities

5, 6 
, ligand efficiency 

parameters have been included for filtering traditional screening results. For 
instance, Ligand Efficiency (LE), Ligand Efficiency Lipophilic Prize (LELP) and 
many others have been previously proposed 

7-10 
. Our previous work

1-4 
 already 

introduced alternative co-evolution with low molecular weight / hydrophobicity 
criteria during DW-BEL to reduce such trends

1-4
. Therefore, such criteria have 

been also employed in the present work for similar purposes. 
 Because the accuracy of any individual docking programs to predict 

real affinities and conformations still remains challenging, consensus docking using 
a minimum of two different algorithms has been recommended by several 
authors

11-17
. Therefore, the widely employed AutoDockVina (ADV), which relies on 

a completely different docking algorithm than DW, was chosen before to be 
included in our previous work

1-4
.
 
 Additionally, ADV provided ~ nM Kd to quantify 

affinity estimations. Such estimation of affinities with consensus purposes have 
been also included here. 

The addition of Toxicity Risk during the DW-BEL co-evolution was 
suggested by detection of ~ 50 % toxicities on the predicted children, during our 
previous work targeting Vkorc1, FtsZ, LolCE and omicron S 

1-4 
. Since the 

inclusion of Toxicity Risk could theoretically increase the percentage of non-toxic 
children and/or improve the penetration into unexplored chemical spaces, it was 
suggested to the DW researcher forum. A previously developed DW toxicity 
assessment code was then kindly included by Dr.T. Sander as a new DW-BEL 
Toxicity Risk criteria with its values and weights. To comparatively explore co-
evolution with DW-BEL ± Toxicity Risk, nine protein / ligand crystallographic pairs 
were selected here because of their practical importance.  

 Many of the selected pairs (Table 1) required either higher specificities 
to reduce their physiological or ecological off-targets or improved miliMolar to 
nanoMolar affinities for other physiological / delivery reasons.  In any of the 
selected pairs, a large number of  candidates for alternative ligands need to be 
generated to select the most appropriated. Because it was not practical to 
experimentally or computationally screen for such large numbers of candidates

11, 

12
, the above commented DW-BEL tools may supplied significant alternatives. 

Combining the recent availability of newly crystallized protein / ligand models, the 
improvements in 3D protein modeling by alphafold algorithms

13 
, and the above 

mentioned DW-BEL + Toxicity Risk novel co-evolution, large numbers of parent-
derived children candidates were generated for the following protein targets: 

Vkorc1. The Vitamin K epOxide Reductase Complex 1 
14  

binds/oxidizes reduced Vitamin K to recycle animal coagulation. Vkorc1 has been 
targeted for coagulation control in humans and for anticoagulant rodenticides in 
rats

15, 16 ,17 ,18 ,19 
. However, rodent  genetic resistances and off-target unspecific 

ecological effects, remain as main concerns.  Maximal specificity for on-target 
rodent lethality and minimal off-target for ecological impacts

12 
are desirable for new 

rodenticides. Children predicting nanoMolar affinities for wild type and resistant rat 
Vkorc1 and lowest affinities for human Vkorc1, could be generated from the 
brodifacoum parent by DW-BEL in our previous work

3
. However, Toxicity Risk was 

not yet available. 
 FtsZ. The Filament Temperature Sensitive Z-ring proteins of bacterial 
cell division (i.e., Staphylococcus aureus) are important targets to develop novel 
antibiotics against increasing resistances

20,21,22-25 . The reference anti-
staphylococcal PC190723 inhibitor binds FtsZ but at low µM ranges 

26, 27,28-30 , 
often causing pharmacological problems and bacterial gene resistances

24, 31 
. TX-

derived32  drugs/prodrugs (Taxis pharmaceuticals, Monmouth Junction, NJ, 
USA)

33-38 
 are being developed to overcome such issues, but no affinity 

improvements have been yet reported
21

. Previous attempts to find new FtsZ 
docking candidates by large computational screening, identified ~ 100 new 
inhibitors of bacterial cell division but only at µM affinities

39-41 .  PC190723-derived 
DW-BEL children at nanoMolar affinities were described in our previous work 2 , 
including some validations by bacterial eNTRY globularity rules for drug bacterial 
cell wall penetration

36-38
. Toxicity Risk was not available. 

Sglt. The Sodium–Glucose co-Transporters 1 and 2 are sodium-
coupled transport proteins that facilitate glucose food absorption (Sglt1) and 
glucose blood reabsorption (Sglt2)

42-44 .Inhibition of Sglt1 (reference ligand 
LX2761) 

43  blocks intestinal glucose absorption influencing cardiovascular and 
other diseases. Inhibition of Sglt2  (reference ligand Empaglifozin) prevents kidney 
reabsorption eliminating excess of blood glucose through the urine, facilitating 
diabetes control

44 
. Sglt are similar proteins displaying 14 transmembrane helices, 

each having particular molecular properties and physiological targets. The 
reference ligands are potent binders targeting Sglt 1 and/or 2  with nM affinities. 
Computational targeting has been recently reported

43-47 
. Exploration for 

alternative ligands may contribute physiological fine-tuning and/or reduction of off-
target effects. No Sglt have been targeted by DW-BEL.  

Vegfr2. The Vascular Endothelial Growth Factor 2  is a receptor of 
tyrosine kinases that have been implicated in tumor angiogenesis, a key feature of 
many cancers

48 
.  However, the number of drugs for cancer treatments targeting 

Vegfr2 are limited
49 

. Sorafenib is the main reference ligand as an oral multi-target 
kinase inhibitor of tumor genesis and angiogenesis. In particular cases, Sorafenib 
binds Vegfr2 and prolonged survival times of chemotherapy-resistant patients. 
Although some docking explorations have been published

50-53 
, no Vegfr2 was yet 

targeted by DW-BEL.  
Nkcc1. The Na+K+Cl- Cotransporter 1 is a Sodium, Potassium, Chloro 

co-transporter implicated in salt-hypertension, kidney reabsorption and neuronal 
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excitability

54-57 
. Bumetanide has been used as a reference inhibitor but only at µM 

affinities. No Nkcc1 have been targeted by DW-BEL.  
Hsp47. The Heat Shock Protein 47  targets collagen folding and 

function. Hsp47 excess caused tissue fibrosis and/or cancer. The Hsp47 main 
binding site include some molecular species of collagen

58-61 
. Although some 

Hsp47 inhibitors (i.e., Hs55) supressed excesive collagen synthesis in in vitro 
models

61 
they were only active at µM affinities. No Hsp47 have been targeted by 

DW-BEL.  
P2x3r. The P2x3 Receptor is an ATP-gated cation channel that has 

been implicated in pulmonary fibrosis, rheumatoid arthritis, pain perception, and 
synaptic transmissions, among many other diseases

62, 63 
. The limited success in 

drug development targeting these type of receptors may be due to the difficulties to 
compete with their ATP binding-sites 

64, 65 
. Additional allosteric sites may be 

possible alternative therapeutic targets (reference ligand AF-219). No P2x3r have 
been targeted by DW-BEL.  

LolEC. The Lipoprotein Outer membrane Localization EC protein 
complexes control traffic of bacterial lipoproteins. Deep-learning screening based 
on experimental inhibitory training-model developed from data on the Drug 
Repurposing Hub library

66 
, recently discovered Abaucin

67 
. Abaucin, targeted 

LolEC, showed anti-A.baumannii  activities at low µM ranges 
68-74 and suppressed 

mice  infection. A. baumannii is a Gram-negative multi-drug resistant bacteria 
causing health care-associated infections world-wide

75-77  with high mortality 
rates

78 ,69 
 A. baumannii needs new drug discoveries

79-82 possibly targeting the E 
protein as in E.coli

83 
. Higher affinities may help further improved Abaucin-

derivatives to reduce off-target physiological problems. Alphafold E.coli modeling 
of A. baumannii LolCE was employed to generate DW-BEL Abaucin-children in our 
previous work1 but Toxicity Risk was not available.  

 

Computational Methods 
 

Protein / ligand  pair models 
 Whenever possible the protein/ligand pdb files were downloaded from 
crystallographic 3D models from the RCSB-PDB bank (Research Collaboratory for 
Structural Bioinformatics-Protein Data Bank) corresponding solved structures in 
complex with their reference ligand (Table 1). The complex pdb corresponding to 
rat Vkorc1

3 
 and  A.baumannii LolEC

1 
 were alphafold modeled from their human 

and E.coli targets, respectively. Alphafold modeling were performed by Sokrypton 
Colab Alphafold ipynb (https://colab.research.google.com/github/sokrypton/ 
ColabFold/blob/main/AlphaFold2.ipynb)

13 
.  
 

Table 1 
Target / parent pairs selected for performance tests of DW-BEL ± Toxicity Risk   

 

  
Protein 

Original 
specie 

RCSB,  
pdb 

 
Ref.  

Alphafold  
modelled  

 
Ligand 

Affinity,  
~ nM 

 
Ref* 

Vkorc1 human 6WVH 
14 

 Rat  Brodifacoum 100 
3 

 
FtsZ S.aureus 4DXD 

84, 85 
  PC190723 10000 

2 
 

Sglt1 human 7WMV 
43 

  LX1761 2  
Vegfr human 2OH4 

53, 86 
  Sorafenib 2400  

Nkcc1 human 7S1X 
57 

  Bumetanide 500  
Hsp47 human 3ZHA 

59 
  HS55 55000  

Sglt2 human 7VSI 
44 

  Empaglifozin 2  
P2x3r human 5YVE 

64, 65 
  AF-219 330  

LolEC E.coli 7ARH 
67 

 A.baumannii  Abaucin 50000 
1 

 

 
Vkorc1, Vitamin K epoxide Reductase Complex 1; targeting anticoagulant rodenticides 
FtsZ, Filament Temperature Sensitive Z-ring; targeting cell division filaments of resistant S. aureus. 
Sglt1, Sodium-GLucose Transporter 1; targeting reabsorption of intestinal sodium and glucose to control diabetes 
Vegfr, Vascular Endothelial Growth Factor Receptor; targeting tyrosine kinases to inhibit tumour angiogenesis 
Nkcc1, Na+K+Cl- Cotransporter 1; targeting salt-related hypertension and neuronal excitability 
Hsp47, Heat Shock Protein 47; targeting collagen folding and function implicated in tissue fibrosis and cancer  
Sglt2, Sodium-GLucose Transporter 2; targeting reabsorption of kidney sodium and glucose to control diabetes  
P2x3r, P2X3 Receptor ; targeting ATP-gated cation channels implicated in rheumatoid arthritis and pain 
LolEC, Lipoprotein Outer membrane Localization EC; targeting lipoprotein trafficking in A. baumannii 
Ref., original references describing the *.pdb files coding for the selected crystallographic models. 
Ref*, our previous references using DW-BEL without Toxicity Risk. 

 
Generation of co-evolutionary children libraries 

 The last updated DataWarrior  (DW) versions were downloaded 
(https://openmolecules.org/datawarrior/download.html) for the generation of user-
defined libraries. The updates included the dw550win.zip (windows) and/or 
dw550x.zip (Linus/MaxOS) which were substituted at the DW local directory. DW 
was launched from the DataWarrior.exe. Alternatively, DW was launched from a 
startJarWin.bat file kindly provided by Dr.T.Sander to best set ~ 60 Gb RAM 
memory requirements (-Xmx60g). 

The DW docking (DW/Chemistry/Dock Structures Into Protein Cavity) 
uses the improved mmff94s+ force-field

87 
 for energy minimization to best preserve 

children molecular geometries (most of them Nitrogen rings and double bonds)  
(https://cheminfo.github.io/openchemlib-s/classes/ForceFieldMMFF94.html and 
https://github.com/cheminfo/ openchemlib-js/lob/e88e8a0/types.d.ts#L3334).  
 DW-BEL algorithms generated large numbers of random raw children 
and selected those fitting the protein-ligand-cavity of the corresponding 
target/parent pairs by co-evolution with additional user-defined preferences. For 

that, each individual 2D parent structure was opened from  an  *.sdf file with 
DW/File/Open, selected and copied to DW/Chemistry/BEL/Root generation 
compounds/from the clipboard. In these studies, each parent molecule was 
employed without any selection of substructures to protect them from being 
changed (lazo tool). Then, each of the target / parent complexes coded into *.pdb 
files without CONECT lines, was opened into the DW/BEL/Add Criterion/ Docking 
score/Load Protein Cavity From  PDB-File, to select for the target docking cavity. 
Other user-selected Add Criterion -> were included.     
 Taken into account the random nature of the generation of thousands 
of children, 3 consecutive runs for each pair were chosen. Since each consecutive 
run initiated a fresh new parent co-evolution, to avoid duplicates previous children 
were kept in RAM memory by the algorithms. Most of the runs required 10-50 Gb  
RAM memory, variations depending on each pair. Monitoring heap memory by 
Java Jconsole garbage collector (https://download.oracle.com/java/19/latest/jdk-
19_windows-x64_bin.msi), were used to control for possible memory excess 
causing program crashes

2, 4 
 The number of raw children increased proportionally 

from 1 to 3  runs.  The number of automatically stopped runs was limited to reduce 
demands for excessive memory resources.  
 DW randomly added small molecular modifications to the parent 
molecule, generating 128 children molecules per generation (Compounds per 
cycle). Children molecules were generated by randomly adding small molecular 
modifications to their parent. Java's Mutator applied random changes choosing  
from a list applying single atom replacements, atom insertions, single/double bond 
changes, atom migrations, ring aromatization/reduction, etc 
(https://github.com/Actelion/openchemlib/blob/master/src/main/java/com/actelion 
/research/chem/Mutator.java). The modifications were applied to the parent 
molecule, the resulting children ranked by user-selected fitting criteria and the best 
fitting children molecules listed for further modifications in the next generation. 
After each generation, a calculated weighted sum of all the user-selected fitting 
criteria, ranks each children by their fitness. In this study,  16 best children fitting 
user-set criteria were selected for  each new generation (Compounds survive a 
cycle). Parent-children generations proceeded automatically until a fitness plateau 
after few hours. The DW docking-scores were expressed in unit-less relative 
values expanding from -20 to -140 ranks. The more negative, the higher affinity. 
The  children were compared with and without Toxicity Risk. 
 The fitness criteria values and their weights applied in this study were: 
minimal Docking Score (weight = 4), Molecular weight <=400 g/mol  (2), cLogP 
<=3 (1) and ± Toxicity Risks <= 1 (4).  
 

DW Toxicity Risk assessment and Nasty functions 
Toxicity risk assessments were developed by DW years ago to locate 

substructures within chemical structures divided in four classes (Mutagenesis, 
Tumorigenicity, Reproductive Interference, Irritant). These risks are alerts, not  
reliable toxicity predictions, nor 100 % free of any toxic effects. To assess toxicity 
prediction's reliability, DW ran a set of known toxic compounds and compare them 
to known non-toxic compounds to evaluate whether they have high, medium or low 
risk of being toxic. Structural fragment analysis generated toxicity alerts based on 
the Registry of Toxic Effects of Chemical Substances (RTECS data base) 
(https://www.cdc.gov/niosh/docs/97-119/default.html) and on > 3000 traded drugs  
non-toxic compounds (https://github.com/thsa/datawarrior/blob/master/src/ 
html/properties/properties.html).  

Previously defined DW Nasty functions are a list of small fragments 
having known physiological interference problems (https://openmolecules.org/ 
forum/index.php?t=msg&th=662&start=0&). The corresponding *.dwar file contains 
the latest DW Nasty functions kindly supplied by Dr.T.Sander (Supplementary 
Material: Nasty_functions.dwar) 
 

Saving DW-BEL children libraries 
A user-designed DW Macro called NTN (Supplementary Material:  

NoToxiNasty.dwam) was developed to filter the generated raw children files by 
any remaining DW toxicity risk (Mutagenesis, Tumorigenicity, Reproductive 
interference, and Irritant), including the Nasty functions. The files were saved as 
*.dwar files for storage of the complete evolutionary data and their slider filters

2, 4 
.  

The children coded into the *.dwar filtered by NTN macro were named as NTN 
children.The NTN children were also saved as special *.sdf (vs3) files, maintaining 
evolutionary information using File/Save Special/SD-File, selecting Docked 
Protonation: Structure column, Docking pose: Atom coordinates and including 
Cavity and Natural Ligand. After filtering for their toxicities added by the NTN 
macro,  NTN children *.sdf files allowed their opening in PyMol, the use of its split-
states command and visualization of the complexes (more details at the DW forum 
beginning on February 3th, 2023) (https://openmolecules.org/forum 
/index.php?t=msg&th=632&start=0&).  

 
Consensus with AutoDockVina docking  

 AutoDockVina (ADV) dockings were performed by user-modified 
PyRx1.0 package (https://pyrx.sourceforge.io/)

88 
, as described before1. To prepare 

for ADV, both crystallographic *.pdb protein targets without any ligand and their 
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 3 
corresponding NTN children *.sdf files were force-field minimized and charge-
converted to *.pdbqt files. PyRx1.0 OpenBabel were selected choosing the 
mmff94s (Merck) force-field for energy minimization. The conservation of children 
molecular geometries were checked by comparing their DW InChiKeys before and 
after minimization. For ADV docking 45x45x45 Å grids automatically centred into 
the target proteins was chosen to explore any ADV docking-cavity alternatives. 
ADV generates rotatable conformers from input ligands and selects those with the 
lower docking-scores during iterations 

89 
. The conformer predicting the lowest 

binding-score is selected for approximated outputs expressed in  Kcal/mol. 
Experimental accuracies of ± 2.8 Kcal/mol are predicted for ADV 

88 
, while 

repetition of ADV docking to the same protein target were < 10 % of docking-
scores (n=3-10)

90 
 

Computational programs   
 The Build Evolutionary Library (BEL) algorithm using Dock Structures 
into Docking Cavity of DataWarrior (DW)

 46
 written in Java were used. DW  

dw550win.zip for Windows and dw550x.zip for Linus, were downloaded from the 
10 August 2023 updates (https://openmolecules.org/datawarrior/download.html), 
following DW guides and our previous work

2, 4 
. The Python 3.8 written 

AutoDockVina (ADV) included in a user-modified PyRx1.0  package 
(https://pyrx.sourceforge.io/) was run for docking-score consensus with DW. ADV 
docking-score outputs in  Kcal/mol were converted to nM Ki  by the formula 109 

*(exp(Kcal/mol/0.592)).  MolSoft (ICM Molbrowser vs3.9Win64bit, 
https://www.molsoft.com/ download.html) was used for manipulating the *.sdf files

2 

and drawing 2D ligand structures.  Origin (OriginPro 2022, 64 bit, Northampton, MA, 
USA) (https://www.originlab.com/) was used for calculations and drawings. The 
predicted structures were visualized in PyRx098/PyRx1.0 (Mayavi), Discover 
Studio Visualizer v21.1.0.20298 (Dassault Systemes Biovia Corp, 2020, 
https://discover.3ds.com/discovery-studio-visualizer-download) and PyMOL2.5.3 
(https://www.pymol.org/). A multithreading multi-core i9 (47 CPU) AMD Ryzen 
Threadripper 3960X (PCSpecialist) computer, provided with 64 to 128 Gb of RAM 
(Corsair Vengeance DDR4, 4 x 16 or 4 x 32 GB)  (https://www.pcspecialist.es/) 
was used to run the programs. 
 

Results 
 

Optimization of Toxicity Risk values/weights during DW-BEL   
  For optimization of the Toxicity Risk, the Vkorc1-brodifacoum protein / 
ligand (target / parent) complex was selected because of their high affinity and 
recently published crystallographic human/rat models

21,3 
. 

 To generate their co-evolutionary children, the  DW-BEL Docking-
Score criteria was selected with its highest weight (weight = 4). To increase 
specificity, Molecular weight <=400 g/mol (4), hydrophobicity clogP <=3 (1) and 
several Toxicity Risk values (4), were also selected. Other variables were Create 
compounds like: Approved drugs, and Total round count = 1. The preliminary 
conclusions of the prediction results with several Toxicity Risk values, were the 
following (Figure S1): 
  i)  Number of raw children. There were 13033-15827 raw children 
randomly generated for Toxicity Risk values between 0 to  2. Lower 5695 raw 
children were predicted with 4 as Toxicity Risk value.  
 ii) Number of fitted children. There were 1393-2691 children (~ 10 % 
of the raw children) that fitted the user-selected criteria with values >0.89 (1.0 
being the maximum). In contrast, only 977 children were predicted with 4 as 
Toxicity Risk value.    
 iii) Number of NTN children. There were 1251-2330 NoToxiNasty  
(NTN) children for Toxicity Risk values between  0.01 to  2, displaying maximal DW 
affinities (minimal docking-scores) to its docking cavity between -116 to -127. In 
contrast, there were none NTN children predicted with 4 as Toxicity Risk value. 
 iv) Percentages of NTN children. The percentages of NTN children 
with Toxicity Risk values between  0.01 to 1, were between 82.6 to 98.8 % (100 % 
could only be  expected if the criteria were set as thresholds rather than 
preferences).  
  The results commented above should be taken as preliminary 
because only one target / parent pair, one run for estimating stochastic variations 
and preference criteria. Within those limits, the Toxicity Risk value of 1 was chosen 
for the rest of the work with other target /parent pairs, since it generated ~ 2.6 fold 
higher number of NTN children than without Toxicity Risk (Figure S1, red). For the 
following DW-BEL work, variables predicting a high number of children were 
preferred.  
 

DW-BEL of target / parent pair models 
 Docking Score (weight of 4), Molecular weight <=400 g/mol (2),  clogP 
<= 3 (1) ± Toxicity Risk <= 1 (4) were chosen for DW-BEL co-evolution of 9 target / 
parent pairs, selected by their practical importance (Table 1). In particular, one 
*.pdb file per each complex pair coding their crystallographic 3D binding cavities 
(protein and ligand), and one 2D *.sdf file coding for the ligand were uploaded to 
DW-BEL. Three consecutive runs of automatically decided number of cycles were 
performed for each target / parent pair ± Toxicity Risk, to best deal with the 

stochastic generation of raw children. According to what was briefly mentioned 
above, in this study the number of Compounds surviving a cycle were chosen as 
16, higher than the 8 default number, to generate maximal numbers of children. 
Before applying the final NTN macro filtering, one Vkorc1 representative target / 
raw children sample analysis showed that all children containing Toxic groups and 
Nastic functions were reduced with Toxicity Risk (Table S1). Therefore the 
remaining Toxic groups and/or Nasty function children for all 9 target / parent pairs 
were totally eliminated by NTN filtering.  Results predicted by DW-BEL ± Toxicity 
Risk could be summarized as follows (Table 2 and Figure 1): 
 i) Number of raw children. There were  23183-51950 (mean 35582 ± 
7643) raw children generated after 3 consecutive runs. As expected, there were no 
significative differences between with Toxicity Risk (36075 ± 8534) or without 
(35088 ± 7125). The consecutive runs took ~ 200-400 cycles during 6 to 24 h to 
automatically finish, depending on each target/parent pair. The number of raw 
children generated per cycle remained nearly constant at ~ 100 raw children per 
cycle (except for Vegfr). 
 ii) Number of fitted children. There were 3606-8238 (mean 
5702±1211) children fitting the user-selected criteria, which corresponded to ~ 16 
% of the raw children. There were no significative differences with (5687 ± 1338) 
or without (5718 ± 1151) Toxicity Risk.  
 iii) Number of common NTN children ± Toxicity Risk. The number 
of common NTN children ± Toxicity Risk were < 5.2 % (< 221 NTN children). 
These low numbers suggest that Toxicity Risk during DW-BEL alters children co-
evolution pathways predicting children from alternative chemical spaces. 
 iv) Percentage of NTN children. There were significative ~ 2-fold 
differences between the percentage of NTN children with (85.2 ± 19.1 %) 
compared to without (46.5 ± 20.3 %) Toxicity Risk. These results suggest that 
Toxicity Risk reduced the number of children with remaining Toxic and/or Nasty 
Functions and therefore increased the numbers of NTN children.  
   
 

Table 2 
Comparison of the DW-BEL co-evolutions  of the protein target / parent pairs of Table 1.  

 

 
Protein 
Target 

Number 
Of Raw 
Children 

 
Number 
/ cycle 

Number 
Of Fitted 
Children 

 
NTN, 
Number  

NTN  
children, 
%  

 
NTN,  
Common 

Vkorc1 + 40476 101.2 6425 5307 82.6 101 
 - 42322 100.5 6963 2911 41.8  

FtsZ + 35440 99.0 5737 5307 92.5 203 
 - 39389 98.2 6568 4328 65.9  

Sglt1 + 28341 101.2 4484 4157 92.7 91 
 - 30043 104.7 4598 1554 33.8  

Vegfr + 51950 265.0 8238 2916 35.4 152 
 - 39830 100.5 6340 241 3.8  

Nkcc1 + 38668 101.4 6185 5641 91.2 130 
 - 27533 106.3 5089 3125 61.4  

Hsp47 +42697 107.8 6377 5937 93.1 119 
 - 40188 101.4 6344 2481 39.1  

Sglt2 + 23183 106.3 3606 3390 94.0 170 
 - 25445 101.4 4018 2696 67.1  

P2x3r + 31442 101.0 4987 4468 89.6 106 
 - 42972 99.0 6998 3149 45.0  

LolEC + 32483 102.1 5147 4967 96.5 221 
 - 28078 99.6 4548 2792 61.4  

 
DW-BEL co-evolution with (+) or without (-) Toxicity Risk <=1 (weight = 4), Docking Score (4), Molecular 
weight <=400 g/mol (2), and clogP <=3 (1). The fitted children were filtered by the NTN macro.   
Number Of Raw Children, randomly generated children from parent by Java's Mutator. 
Number / cycle, calculated by the formula, number of raw children / number of cycles  
Number Of Fitted Children, number of children fitting the user-set criteria   
NTN number, number of children ± Toxicity  Risk filtered by the NTN macro 
NTN children %,  calculated by the formula, 100 x NTN Number / Number Of Fitted children.  
Black bold and green backgrounds,  NTN Number and % with  Toxicity Risk (+)    
NTN Common,  Number of NTN children structures in common ± Toxicity Risk as calculated  by 
DW/Chemistry/Find Similar Compounds/Other File/ Structure[Exact] 

 
  v) Study of 100 NTN children top-leads. Most of the 100 NTN 
children top-leads docking-scores were of similar mean values as shown by their 
low standard deviations (Figure 1). All NTN children top-leads ± Toxicity Risk 
predicted mean DW affinities higher (lower docking-scores) than those of their 
parents (Figure 1, yellow hatched bars and white hatched bars compared to 
open bars, respectively). There were top-lead NTN children that predicted higher 
mean DW affinities with than without Toxicity Risk, such as Vkorc1, Sglt1, Vegfr, 
Nkcc1 and LolEC. In contrast, there were also top-lead NTN children that predicted 
higher mean DW affinities only without Toxicity Risk such as FtsZ, Hsp47, Sglt2, 
and P2x3r (Figure 1, yellow hatched bars compared to white hatched bars). 
These results show that affinity improvements are not necessarily associated with 
Toxicity Risk but it depends on the target / parent pair under these criteria.  

To improve prediction accuracies, the 100 top-leads were re-docked 
by AutoDockVina (ADV). The accuracy of ADV docking increased after the 
application of DW mmff94s+ force-field to children during DW-BEL (by correcting 
torsion angles) 

87 
reducing the aberrant geometries generated by alternative force-

fields (not shown).  
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 4 
The comparison of DW and ADV docking scores of the 100 top-leads 

could be summarized as follows: 
i) Despite their different DW / ADV algorithms,  correlation trends were 

observed when  comparing  their corresponding top-lead docking-score means 
(Figure S2). 

ii) DW affinities of each of the pairs grouped around similar values (~ 
±10 unitless). In contrast, the corresponding ADV docking-scores estimations 
spreaded throughout values from 10 to 103 nM (Figure 2).   

iii) The highest DW and ADV consensed affinities were predicted for 
FtsZ and Sglt2 (corresponding to lowest <10 nM ADV docking-scores). Sglt1 and 
Vegfr have only a few children predicting  high affinities (< 10 nM ADV docking-
scores). In comparison, the top-leads corresponding to Nkcc1, Hsp47 and P2x3r,  
predicted lower ADV affinities (corresponding to high ~102-104 nM docking-scores).  

 
 

 
Figure 1 

Comparison of  NTN children binding-scores of  100 top-leads ± Toxicity Risk 
 

Docking-score means ± standard deviations calculated for 100 top-leads from each pair.  
NTN children were obtained after fitted children were filtered by the NTN macro. 
Open bars, DW of parent molecules (their standard deviations were too low to be drawn) 
White hatched bars, DW-BEL NTN children without Toxicity Risk.  
Yellow intense-hatched bars, DW-BEL NTN children with Toxicity Risk.  

 
PyMol drawings were generated for each of the target / parents 

(Figure S2, gray cartoons and red sticks, respectively) and compared to their 
ADV 10 top-lead children (Figure S2, green sticks). Comparisons of 2D 
structures between parents and their best top-lead children molecules were also 
compared in MolSoft (Figure 3).  

Top-lead NTN children were selected by plotting DW versus ADV 
docking-scores (not shown) and by PyMol selecting those predicting docking to 
their binding cavities from their 10 ADV top-leads (included into the 
Supplementary Material *.pse files). Nevertheless, most  of the 10 top-leads 
mapped to their crystallographic binding cavities (Figure S2, green) similarly to 
their parents (Figure S2, red). These high level of preservations were possible due 
to the DW particular mmff94s+ force-field. Thus, mmff94s+ minimization preserved 
most of the children molecular geometries. In contrast, other force-field methods 
like gaff, mmff94, uff, and/or ghemical, only preserved ~ 50 % of the initial children 
molecular geometries, as evidenced by InChiKeys comparisons (not shown).    
 Although most NTN children increased the previously qualified as  
"high" ~ µM affinities of their parents (Figure 1), alternative co-evolution criteria 
may still be explored for further improvements in selected target  / parent pairs. For 
instance, the Nkcc1, Hsp47 and P2x3r, may be some examples requiring 
improvements. In particular, the lower affinities of Hsp47 and  P2x3r may be 
explained by their incomplete binding cavity. It is possible that targeting their 
protein surfaces rather than internal cavities, resulted in too weak interactions for 
co-evolution (Figure S2). In this regard, collagen-Hsp47 interactions73-76, may be 
required to define a complete binding cavity, rather than only a Hsp47 surface. 
Additional work may help to clarify these possibilities.  

Comparison of the 2D structures from NTN top-leads with those from 
their parents showed different chemical scaffolds (Figure 3). Molecular weight and 
clogP were either maintained or lowered in the NTN top-leads compared to those 
of their parents (included into the Supplementary Material at their *.dwar files).   

 

 
Figure 2 

Comparison of DW and ADV docking-scores predicted from 100 NTN children top-leads 
 

The 100 NTN children top-leads generated by DW-BEL ± Toxicity Risk (Table 2), were re-docked by ADV and their 
corresponding docking-scores  represented in nM. Only the top-leads between -140 to -85 DW-BEL and 10-1 to 104 

ADV predicting the lowest DW-BEL docking-scores  ± Toxicity Risk were represented 
Solid symbols, with Toxicity Risk. Open symbols, without Toxicity Risk.   
Orange background, TNT children predicting < 10 nM ADV docking-scores 
Green circles, rat Vkorc1 
Red-open circles, A.baumannii FtsZ 
Purple diamonds, Sglt1 

Green triangles, Vegfr 
Brown hexagons, Nkcc1 
Green-Brown stars, Hsp47 

Orange-open diamonds, Sglt2 
Green-open stars, P2xr3 
Blue triangles, S.aureus LolEC 

 

 
Figure 3 

2D scheme of parents and each of their derived best top-lead NTN children   
 

The best top-lead NTN children were drawn in MolSoft and identified at the legend bottom by their DW-BEL target 
name (black), parent (red) +  generation number (green) and ADV docking-scores (~ nM). More detail of the 
complexes can be visualized amplifying the Figure view and/or opening their corresponding *.dwar files at the 
Supplementary Material. Yellow circles and sticks, Carbons. Red circles, Oxygens. Blue circles, Nitrogens 
and/or Sulphurs. Green circles, Halogens. Blue Arrows, go from the parent to the best top-lead child. 
Vkorc1,  Brodifacoum  + 29611 (16.7 nM) 
FtsZ, PC190723  + 12135 ( 1.1 nM) 
Sglt1, LX1761  + 25743 ( 1.9 nM) 
Vegfr, Sorafenib  + 33763 ( 1.9 nM) 
Nkcc1, Bumetanide  + 23967 ( 688.2 nM) 

Hsp47, Hs55  + 14736 (127.1 nM) 
Sglt2, Empaglifozin  + 23912 ( 0.1 nM) 
P2xr3, Gefapixan  + 30828 ( 1352.6 nM) 
LolEC,  Abaucin  + 14761 (11.9 nM) 
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Discussion 

This work explored the Toxicity Risk effects on DW-BEL co-evolutions 
to generate optimal children affinities (DW Docking Score) and specificities (DW-
BEL / Molecular weight  / cLogP) for nine protein/ligand (target / parent) pairs.  

As may be expected, the inclusion of optimized Toxicity Risk  
increased ~ 2-fold the numbers of DW-BEL NTN children. Furthermore, under the 
same conditions, most of their corresponding top-lead DW Docking Scores were 
higher that those of their parents.  

However, there were also some unexpected results. First, the 
numbers of fitted children were unaffected with Toxicity Risk, suggesting one 
possible internal control by the DW-BEL algorithms. Second, there were few 
common children between the chemical structures of NTN children predicted ± 
Toxicity Risk,  suggesting the induction of independent co-evolution pathways 
extending differently throughout the chemical space. Third, although there were 
children predicting highest affinities with Toxicity Risk (Vkorc1, Sglt1, Vegfr, Nkcc1, 
LolEC), there were also other children in which the highest affinities were predicted 
without Toxicity Risk (FtsZ, Hsp47, Sglt2, P2x3r). The stochastic nature of raw 
children generations, the differently limited protein cavity shapes / volumes, the 
hydrophobicity variations among children and/or other unknown target steric 
limitations, could explain those differences. Overall, these results highlight the 
existence of a vast chemical space to be further explored 

21, 22
.  

Most docking-cavities predicted by DW-BEL ± Toxicity Risk were 
similar to the crystallographic binding-cavities, suggesting a probable conservation 
of their ligand biological activities. However, confirmation of these hypothesis will 
require chemical synthesis and subsequent experimental tests.  

The proposed no-toxic co-evolution has enriched the number of 
candidates predicting higher affinities and specificities in only a few hours of 
computation (mostly due to the fast Java's code). All these would had been 
impossible for any other more "traditional" computational screening (i.e., 
AutoDockVina, Yasara, seeSAR, etc) of largest chemical libraries (i.e., Mcule, 
ChemSpace, Zinc, PubChem, Chembl, etc) which would have required much more 
computational time. On the other hand, most actual machine-learning  approaches 
to docking

91, 92
;
 
 including those employing the new transformer methods

78, 91,93-95 

, are actually limited in their accuracies because of the reduced numbers of 
examples of small-drugs protein interactions required for model training

96 
. Some 

hands-on experience of the state-of-the-art of machine-learning trained models, 
was acquired by employing Hots proposed methods

91
 Hots predicted both 

docking-cavities and ligand docking-scores solely from  protein amino acid 
sequences

91
. Despite Hots successful identification of the Vkorc1 binding cavity, 

Hots predicted only one possible ligand candidate. When forced to predict 150 
ligand docking-scores

3 
, several days were required to computational complete the 

docking. Furthermore, the generated docking-scores correlated poorly when 
compared to DW or ADV docking programs (results not shown). It may be 
concluded that programs by machine learning as docking alternatives are still on 
development. In contrast, the alternative  random generation / selection algorithms 
proposed here, could generate higher numbers of  candidates much faster and 
including Toxicity Risk (and/or other criteria) during their co-evolution (libraries-on-
demand or generative biology by "co-evolutionary docking"). The question may 
remain as to whether or not, any evolutionary approach similar to the one 
described here, could be hybridized with any machine-learning for further 
improvements. Similar "hybrid" methods may be most important to predict  protein-
protein predictions

96, 97
. 

 To allow to any potential readers for additional exploration of  "non-
toxic co-evolutionary docking", thousands of NTN children molecules derived from 
nine target / parent pairs were downsized to their 100 top-leads and their data 
included into DW / *.dwar files. These *.dwar files also included AutoDockVina  
docking-score data with their corresponding nanoMolar affinity predictions.  
 Larger DW-BEL libraries could be generated by additional runs and/or 
adding alternative co-evolutionary fitting criteria, and/or to adapt to other possible 
parent interactions maintaining any of their substructures (lazo variability). Some of 
the DW algorithms ready to use in DW-BEL, presently include not only Docking 
score, Molecular weight, Hydrophobicity, and Toxicity Risk but also Basic nitrogen 
counts, Acidic oxygen counts, Ring count, Structural (dis)similarity, Conformers 
similarity, Molecular flexibility, Molecular complexity, Molecular shape,  and other. 
Inclusion of any new DW criteria may be requested into the DW forum 
(https://openmolecules.org/ datawarrior/download.html). 
 The described DW-BEL "non-toxic co-evolutionary docking" results 
predicted high numbers of TNT children with nanoMolar affinities, new 
chemotypes, high specificity and conservation of previously defined binding 
cavities. Because exploration of the vast chemical/chemotype space appear 
almost endless, further DW-BEL "co-evolutionary docking" criteria may possibly 
identify more candidates. For instance, it should be also possible to further explore 
novel artificially-build docking cavities (i.e., preliminary results with poly-benzene 
de novo ligands), co-evolving with alternative chemical synthesis pathway-
preferences, and/or discarding off-target affinities during co-evolution. 

Supporting information 
 

 
Figure S1 

NTN children predicted using different Toxicity Risk values  
 

The rat Vkorc1-brodifacoum complex was selected as target. The parent was brodifacoum. The co-evolution 
criteria included: Cycle: automatic, Total run count = 1,  Compounds per cycle = 128, Compounds survive a cycle 
= 16 , Create compounds like = Approved drugs. The Add Criterion included: Docking Score = rat Vkorc1-
brodifacoum,  Docking Score of weight = 4 (4),  Molecular weight <= 400g/mol (2), clogP<=3 (1), and ± Toxicity 
Risk <= Variable (4). The % NTN children were calculated by the formula, 100 * NTN children / Fitted children.  
Left gray background, NTN children without adding any Toxicity Risk.  
Red circles and line, NTN children with Toxicity Risk, %. 
Blue circles and line, NTN children with Toxicity Risk, number. 

 
 

Table S1 

Example of distribution of Toxicities and Nasty functions of raw children ± Toxicity Risk 
 

Vkorc1 
Raw children 

numbers 

 
 

Mutagenic 

 
 

Tumorigenic 

 
Reproductive 

Effective 

 
 

Irritant 

 
Nasty  

Functions 

+ 6425 110 14 112 228 696 

-  6963 1859 1954 1571 613 1994 

 

The numbers of 4 Toxicity groups and Nastic functions present in raw children after being DW-BEL generated 

± Toxicity Risk co-evolution were compared by individually manual filtering by DW/Chemistry/From Chemical  

Structure/Calculate Properties/Tox. 
Some of the raw children were classified in several of the groups (not shown).  

 
 

 
Figure S2 

Predicted linear correlation between DW and ADV means of NTN children top-leads (n=100). 
 

The DW-BEL criteria ± Toxicity Risk  were applied during co-evolution as described in Figure 2. The Fitted 
children generated were finally filtered by the NTN macro. Means ± standard deviations (n=100) were 
calculated from data (Figure 2) and other data not shown. Red circles, DW-BEL means with Toxicity Risk. 
Open circles, DW-BEL means without Toxicity Risk.  
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Figure S3 

Representative children docking- (green sticks) and crystallographic ligand binding- (red sticks) cavities 
 

The complexes were drawn in PyMol vs2.5.3. The best top-lead NTN children were identified at this legend bottom by their 
DW-BEL target name (black), parent (red) +  generation number (green).  More detail of the complexes can be visualized 
amplifying the Figure view and/or visualizing 10 complexes within PyMol vs2.5.3. opening their corresponding *.pse files 
(Supplementary Material). Gray cartoons, 3D protein targets. Red sticks, DW-BEL parents. Green sticks, best of top-
lead children selected among 100 top-leads.  
Vkorc1,  Brodifacoum + 29611 
FtsZ, PC190723 + 12135 
Sglt1, LX1761 + 25743 

Vegfr, Sorafenib + 33763 
Nkcc1, Bumetanide + 23967 
Hsp47, Hs55 + 14736 

Sglt2, Empaglifozin + 23912 
P2xr3, Gefapixan + 30828 
LolEC,  Abaucin + 14761 
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Supplementary Material 
 

- NoToxiNasty.dwam.  A DW macro *.dwam file developed to save, 
label and eliminate any children molecules co-evolutionary generated by the DW-
BEL containing Toxicity (Mutagenesis, Tumorigenicity, Reproductive Interference, 
Irritant) and/or Nasty Functions (see Nasty_functions.dwar). This macro labels 
and retains the children having no detectable risks. The macro uses *.sdf or *.dwar 
files as inputs, user-renamed the input *.dwar file and renamed and saved the 
corresponding NTN *.dwar and toxic-labelled *.sdf files (they require filtering 
outside DW). More than ~ 3000 traded drugs were employed as low toxicity 
example data (https://github.com/thsa/datawarrior/blob/master/src/html/ 
properties/properties.html. Additional information on DW Toxicity can be found at 
the Registry of Toxic Effects of Chemical Substances (RTECS data base) 
(https://www.cdc.gov/niosh/docs/97-119/default.html). 

 
- Nasty_functions.dwar. List of previously defined DW Nasty 

functions of small chemical fragments having known physiological interference 
problems, kindly supplied by Dr.T.Sander of DW (https://openmolecules.org/forum/ 
index.php?t=msg&th=662&start=0&).  
 
 - Vkorc1.dwar, FtsZ.dwar, Sglt1.dwar, Vegfr.dwar, Nkcc1.dwar, 
Hsp47.dwar, Sglt2.dwar, P2x3r.dwar, LolEC.dwar.  These *.dwar DW tables 
contain 100 DW  top-leads selected as NTN children corresponding to nine target / 
parent pairs. They are provided with threshold  slider-filters to their DW and ADV 
docking-scores, Molecular weights and clogP properties. By moving the slider-
filters located at the right of the DW Table, the best fitt ing children to 
particular threshold combinations could be selected and further 
studied. Each *.dwar file can be opened by downloading DW free 
access at https://openmolecules.org/datawarrior/download.htm. The 
*.dwar files can be also saved as special *.sdf (vs3) files, maintaining their 3D 
protein cavity docked to children conformers so that they can be opened in PyMol 
using its split-states command (more details at the DW forum from February 3th, 
2023, https://openmolecules.org/forum/index.php?t=msg&th=632&start=0&). 
 
 - Vkorc1.pse, FtsZ.pse, Sglt1.pse, Vegfr.pse, Nkcc1.pse, 
Hsp47.pse, Sglt2.pse, P2x3r.pse, LolEC.pse.  The DW-BEL best and 9 
additional top-lead children complexes with their corresponding protein targets can 
be visualized in PyMol vs2.5.3. by opening their corresponding *.pse files (best 
top-lead children compared to initial ligands represented in their target proteins in 
Figure S3).   
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