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Abstract

Transferable neural network potentials have shown great promise as an avenue

to increase the accuracy and applicability of existing atomistic force fields for organic

molecules and inorganic materials. Training sets used to develop transferable potentials

are very large, typically millions of examples, and as such, are restricted to relatively

inexpensive levels of ab initio theory, such as density functional theory in a double-

or triple-zeta quality basis set, which are subject to significant errors. It has been

previously demonstrated using transfer learning that a model trained on a large dataset

of such inexpensive calculations can be re-trained to reproduce energies of a higher

level of theory using a much smaller dataset. Here, we show that more generally,

one can use hard parameter sharing to successfully train to multiple levels of theory

simultaneously. We demonstrate that simultaneously training to two levels of theory

is an alternative to freezing layers in a neural network and re-training. Further, we

show that training multiple levels of theory can improve the overall performance of
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all predictions and that one can transfer knowledge about a chemical domain present

in only one of the datasets to all predicted levels of theory. This methodology is one

way in which multiple, incompatible datasets can be combined to train a transferable

model, increasing the accuracy and domain of applicability of machine learning force

fields.

1 Introduction

Machine learning force fields (MLFFs) such as the high dimensional neural network potentials

(HDNNPs)1,2 message passing3,4 and equivariant5–8 neural network potentials are currently

gaining traction as an alternative to traditional atomistic force fields in computational chem-

istry and materials science. Such methods promise to increase the accuracy and domain of

applicability of model potentials used to describe molecules and materials. These methods

use regression techniques, borrowed from the field of machine learning, to train a model

which takes cartesian coordinates (and sometimes net charge9–12) as input and outputs en-

ergies. These energies are trained to reproduce ab initio energies to high precision, typically

inside of chemical accuracy, usually defined to be 1 kcal/mol. Recently, several such MLFF

models have been reported which are meant to be transferable to molecules11–16 or inorganic

materials17–19 for which they have not been explicitly trained. In constructing a foundational

model for organic molecules one trains to a very large dataset of example organic molecules

which is representative of the chemical space one anticipates applying such a model. In a

pioneering work Smith et al 13 trained a model to approximately 18 million conformations

of organic molecules, labeled at the ωB97-X/6-31G(d) level. It would be computationally

intractable to label a dataset of this size with a more expensive ab initio level of theory or

even utilizing an atom centered basis set which is more complete. Recognizing this issue, the

same authors demonstrated that it is possible to “transfer learn” to a much smaller dataset

of higher level labels by freezing several of the layers of the atomic neural networks which

make up the pre-trained HDNNP (in this case ANI-1x).20 This idea of transfer learning from
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a large dataset to a small, more expensive one is a very powerful idea which has gained some

popularity in the field of MLFF.21,22

Multiple large, and mutually incompatible datasets of druglike molecules have already

appeared in the literature. The very popular QM9 dataset consists of various properties of

134,000 organic molecules computed at the B3LYP/6-31G(d, p) level,23 the ANI dataset con-

sists of 20 million examples computed at the ωB97X/6-31G(d) level,13 the ANI-1x dataset24

consists of roughly 5 million examples labeled with the ωB97X functional with both the 6-

31G(d) and def2-TZVPP basis sets whereas the ANI1-CCX dataset is 500,000 examples

labeled with DLPNO-CCSD(T)/CBS.20 The OrbNet Denali dataset consists of roughly 2

million examples labeled at the ωB97X-D3/def2-TZVP level,25 and finally the SPICE dataset

was reported with 1.1 million examples at the ωB97M-D3(BJ)/def2-TZVPPD level.26 None

of these datasets can be naively combined since they represent different model chemistries.

Many settings used in a DFT calculation can affect the absolute energy, and as more datasets

appear they will likely have small (or large) differences which would give one pause when

combining the data naively. Examples include seemingly minor modifications of a functional

(e.g. ωB97X, ωB97X-D, ωB97X-D3), similar but incompatible basis sets (e.g. def2-TZVP,

def2-TZVPD), the use of integral approximations such as density fitting or pseudospectral

approximations, use or lack of a pseudo or effective core potential and even various integral,

self-consistent field convergence, and linear dependence thresholds. Nonetheless, each new

dataset entering the literature brings some new value. It is desirable to use methods which

are able to extract valuable information from all datasets appearing in the public domain

without the need to relabel them, in order to build a more general, transferable model.

One way to benefit from incompatible data is hinted at by the work of Smith et al.20 but

we believe can be generalized such that many levels of theory can be simultaneously trained

to. In their work, an HDNNP (ANI-1x) was pre-trained to the very large ANI-1x dataset

(see above). Several of the layers of each atomic network were then frozen and the remaining

unfrozen parameters were re-optimized by training to a much smaller dataset with labels from
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Figure 1: A multitask model shown for one element. The model transforms some input
feature vector to a shared latent vector. Each output head transforms this shared vector
into a different prediction. All of the parameters of the model are trained simultaneously
on a collection of datasets with incompatible labels. There is a one-to-one mapping between
output heads and datasets.

a higher level of theory (DLPNO-CCSD(T)/CBS). We can re-interpret the work of Smith,

not as a single transfer-learned model, but as a pair of models which utilize hard parameter

sharing over the frozen layers in the transfer learning protocol. If one were to then merge

the frozen layers of the two models (they are identical after all) then these two models could

be interpreted as one single multitask model with two outputs. This type of architecture is

depicted in Fig. 1. Here, for an atomic neural network with a total of N layers, the first M

layers are shared and used to transform some input feature vector into an intermediate, or

latent, representation which is finally transformed into two or more output energies. In an

HDNNP these output atomic energies are summed independently to give molecular energies.

This interpretation of transfer learning as multitask learning has several useful advantages:

It can be generalized to many outputs, does not require pre-training to one output, both

outputs can improve as information about different chemical spaces is incorporated into the

latent space that is shared by the various output heads and no empirical selection of frozen

layers is required. Finally, we point out that this architecture is not novel and in fact many

MLFF methodologies already use multiple output heads to train to different properties such
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as energy, dipole moment, polarizability, HOMO-LUMO gap, etc.3–5 For such models there

is no change in architecture required, one must simply update the loss function to include

contributions from more than one energy. As far as we are aware multitask learning to

multiple levels of theory has not been previously reported. A similar strategy has, however,

been recently used by Takamoto et al.19 where the model is conditioned on the task to be

predicted (i.e. used as a feature). While no detailed comparison on the effectiveness of that

approach was reported it seems such an approach would have similar benefits as the one

described in detail here.

In this article we will train single and multitask models on four publicly available datasets

(ANI-1x,20 ANI-ccx,20 OrbNet Denali25 and SPICE26) and then evaluate the performance of

all of the output heads on single point energy tasks covering a range of interaction types. We

will train to energies and dipole moments. Some of the datasets also have labeled forces but

we do not use this data for consistency. Some of the datasets also lack dipole information but

we view this data as secondary in importance. First we will reproduce the results of Smith

et al.20 and show that we can perform multitask training as an alternative to pre-training

a model on ANI-1x and then freezing layers and re-training to the ANI-ccx dataset. We

will then show that adding the OrbNet Denali dataset can improve the performance of the

ANI-1x and ANI-ccx predictions on torsion profiles of both neutral and ionic molecules even

though the ANI-1x and ANI-ccx datasets contain no ionic examples. Finally we will show

that adding the SPICE dataset improves the performance of intermolecular interactions of

the ANI-1x, ANI-ccx and OrbNet Denali outputs, as measured by errors on the popular

S66x8 dataset.27,28

2 Details

The single task QRNN model was described recently12 and is only briefly summarized here;

the only modification was to add additional output heads to each atomic energy neural
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network (NN) such that for a model trained to N tasks, each atomic NN produces N outputs.

These atomic energies are summed to produce N total energies. QRNN is an example of

an HDNNP and utilizes two separate NN for each atom type that is supported. The first

such NN takes modified Behler-Parinello type symmetry functions1,13 as input and predicts

atomic electronegativities. These then enter into a simplified charge equilibration equation

that predicts atomic charges. These charges are determined recursively by using them as

features into the same NN. We only perform two recursive steps and then use the final

charges as features, in addition to geometric symmetry functions and charge-weighted radial

symmetry functions, as input to a NN which predicts atomic energies. Finally we sum the

atomic energies, together with a damped coulomb interaction based on the predicted atomic

charges and Grimme’s D2 dispersion correction29 to predict a total energy.

As in previous work we use a multitask loss function30

Lmtl =
∑
I

LEI

2σ2
EI

+
Lq

2σ2
q

+ log(σq

∏
I

σEI
) . (1)

LEI
and Lq are the loss functions for the I th energy task and the charge task, respectively.

The inverse weights, σEI
and σq are trainable parameters. This approach obviates the need

to hand tune the weights of the individual tasks in the overall loss function. The energy

loss function is taken to be the squared error between the predicted energies and energy

labels. We also train to the squared error of predicted dipole moments to those predicted

by DFT. Unlike the treatment of energy we do not differentiate atomic charge by level

of theory, instead assuming that dipole moments from all levels of theory are equivalent.

The charges could be treated separately, as we do energies, but leave that to future work.

We suspect the differences in atomic charges is much less important to model than the

difference in energies, as the electron density tends to be similar between different density

functionals,31 and the partial charges are more dependent on the partitioning scheme. Since

the energy predicted by our models is dependent on the predicted atomic partial charges,
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it is possible to backpropagate through the whole model and train both of the atomic NNs

to energies alone. However, unless the training set contains many examples of atomic pairs

with distances greater than the NN cutoff the predicted charges may not produce accurate

long range interaction energies. Training to dipole moments aids in giving correct long range

electrostatic interactions and helps to refine the charge predictions.

To minimize the loss function we use the AdamaxW optimizer (Adamax with decoupled

weight decay) with a weight decay of 1.0e-4. We utilize early stopping with a patience of zero

and a maximum of 100 cycles, where each cycle consists of training to 5 million examples in

batches of 128. We do not optimize batches to balance the frequency of seeing the various

labels. We simply select a random batch and update the loss function for the labels that we

encounter. We train ensembles with 7 members and each ensemble member is trained to a

90/10 train/validation random split of the training data which is performed independently

at run time (as such there is some degree of overlap between the training sets of the ensemble

members). We use exponential moving averaged weights and biases to evaluate validation

and test errors, which are updated every 10 batches with a smoothing factor of 0.001. As is

standard practice we reduce the range of the energy labels and center them towards zero by

subtracting an offset energy for each atom, defined by fitting a linear model to each level of

theory. For purposes of multi-label training, this procedure has the further benefit of making

the different labels more similar to each other by effectively removing the differences between

levels of theory. All models are implemented and trained in a locally modified copy of the

TorchANI open source software package,32 which is an implementation of HDNNP models

in PyTorch. Each neural network is trained on a single GPU with single-precision floating

point, and all test results are computed with double-precision inference. Hyperparameters

defining the network dimensions and AEVs are taken from previous work.12 The output

heads in this study are defined as a single layer, and as such, the multitask model has the

same layer dimensions as the single task models described previously, and trained here.12
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3 Results

Table 1: Summary of properties of datasets used in this work: ANI-1x,20 ANI-ccx,33 OrbNet
Denali25 and SPICE.26 Abbreviated names of the datasets we use throughout are given in
parenthesis.

Dataset Number Level Has Targeted
of of dipole chemical

examples theory moments space
(millions)

ANI-1x 5 ωB97X/ Yes neutral
(1X) 6-31G(d) molecules

ANI-ccx 0.5 DLPNO-CCSD(T)/ No neutral
(CCX) CBS molecules

OrbNet Denali 2 ωB97X-D3/ No neutral and ionic
(D) def2-TZVP molecules

SPICE 1 ωB97M-D3(BJ)/ Yes neutral and ionic
(S) def2-TZVPPD molecules and clusters

The four datasets we use here (ANI-1x, ANI-ccx, OrbNet Denali and SPICE) will be

abbreviated as 1X, CCX, D and S, respectively. We will denote a QRNN multitask model

trained to datasets X, Y and Z as QRNN(X, Y, Z). (The order X, Y, Z does not matter as

all are trained simultaneously.) Further, we will refer to predictions made by such a model

using the output head corresponding to dataset Y as QRNN(X, Y, Z)[Y]. For singletask

models we will often omit the square bracket notation since there is no ambiguity in this

case. The properties of the four datasets relevant to this work and the abbreviations just

described are summarized in Table 1.

The ANI-1x dataset was constructed utilizing active learning to broadly cover the space

of conformations of neutral druglike molecules and utilizes the ωB97X functional in con-

junction with a rather modest double zeta quality basis set, 6-31G(d).24 A subset of this

data was subsequently labeled with a much higher coupled cluster level of theory combined

with a near complete basis set (DLPNO-CCSD(T)/CBS) and was utilized to demonstrate

a transfer learning protocol.20 The authors of that work show that this procedure gives

significantly improved results when testing on challenging reaction energies of isomers and
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reproduction of torsional energy profiles in reference to high levels of theory. In Sec. 3.1 we

show that multitask training on these two datasets is a viable alternative with results nearly

indistinguishable from those of the original transfer learning protocol.

As we have pointed out previously15 the impressive results for rotamer scans of ANI-1x

and ANI-ccx trained models degrade when one investigates a broader sampling of chemical

space. In Sec.3.2 we train to all four datasets and show that the ANI-1x and ANI-ccx output

heads improve in this regard. We also show that predictions at these levels of theory greatly

improve for chemical spaces that are lacking in the corresponding datasets: ionic molecules

and intermolecular interactions. By multitask learning to datasets that cover these new

chemical spaces, knowledge can be transferred amongst the output heads. We offer some

concluding remarks in Sec. 5

3.1 Multitask learning on ANI-1x and ANI-ccx datasets

As a first test we explore whether our method can qualitatively reproduce the results of

Smith et al. Figure 2 shows the error, relative to high level references on the HC7/1134 and

ISOL35 test sets. In this test each molecule is re-optimized using the potential from each

model. These test sets probe hydrocarbon reaction and isomerization energies and organic

molecule isomerization energy, respectively. The first interesting feature to note is that the

combination of ωB97X with a double-zeta quality basis shows fairly poor agreement with

the high level reaction energies, displaying errors as high as 40 kcal/mol. The predictions

from ANI-1x closely track the reference it was trained to, as does our multitask model, when

using the ANI-1x output head. In contrast, the transfer learned ANI-ccx shows significant

improvement over ANI-1x and qualitatively tracks the reference data, with the largest error

reduced to 5 kcal/mol. Our multitask model reproduces this behavior and displays a max-

imum error of 4 kcal/mol. Overall, our multitask model modestly outperforms ANI-1x and

ANI-ccx on this test. Compared to the references the models were trained to, the ANI-1x

model yields MUEs of 4.4 and 1.5 kcal/mol for the HC7/11 and ISOL tests whereas our
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Figure 2: Errors of various methods relative to reference results. The HC7/11 dataset ref-
erence is MP2/6-311+G(2df, 2p)34 whereas the reference for the ISOL test set is CCSD(T)-
F12/aug-cc-pVDZ35 ANI-1x, ANI-ccx, ωB97X-D/6-31G(d) and DLPNO-CCSD(T)/CBS
values are taken from Smith et al.20 The QRNN results simultaneously trained to both
ANI-1x and ANI-ccx but evaluated on either the ANI-1x [QRNN(1X, CCX)[1X]] or the
ANI-ccx [QRNN(1X, CCX)[CCX]] output head reproduce the results of Smith.

multitask model gives MUE of 0.9 and 1.6 kcal/mol. The ANI-ccx model affords MUEs

of 1.9 and 0.9 kcal/mol for these benchmarks while our multitask model evaluated on the

ANI-ccx output head gives MUEs of 0.7 and 0.9 kcal/mol.

Figure 2 highlights the fact that the two output heads are able to display very different

behaviors. For example, the reaction energy in reaction 6 of the HC7/11 dataset differs

by over 40 kcal/mol between the ωB97X-D/6-31G* and DLPNO-CCSD(T)/CBS levels of

theory. This difference is accurately captured by the multitask model where both output

heads predict the reaction energy of their reference data to an accuracy of about 1 kcal/mol.

10

https://doi.org/10.26434/chemrxiv-2023-8n737 ORCID: https://orcid.org/0000-0002-3563-7584 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8n737
https://orcid.org/0000-0002-3563-7584
https://creativecommons.org/licenses/by/4.0/


This is surprising in light of the fact that the output heads are only differentiated by a single,

linear layer, this will be discussed further in Sec. 4.

Next, we turn our attention to the performance of the multitask models on reproducing

relative energies over torsion scans on a set of small organic molecules. Here we compare

single-task QRNN models trained solely to either the ANI-1x or ANI-ccx datasets to a

multitask model trained to both and evaluated on the two output heads. Mean Absolute

Deviations (MADs) of the relative energy over each torsion scan are computed for a subset

of the dataset of Sellers et al.36 We restrict our attention only to molecules composed of the

elements Hydrogen, Carbon, Nitrogen and Oxygen (HCNO), of which there are 45 examples

in this dataset. Here, the reference energy is CCSD(T)/CBS and we utilize the reference

geometries from Sellers. Figure 3 shows that the behavior of the models trained to two

datasets is slightly improved over single-task models trained to only a single dataset. The

median of the MAD of the models predicting on the ANI-1x output are the same, 0.47

kcal/mol. The median MAD of the single task model on the ANI-ccx output head is 0.31

kcal/mol whereas the multitask model gives a median MAD of only 0.26 kcal/mol. It is also

clear from Figure 3 that the spread of errors is much smaller for the multitask model on the

ANI-ccx head and the upper quartile is greatly diminished. Training to the combination of

the two datasets appears to modestly improve the results on this dataset as compared to

training to only the ANI-ccx dataset. Our results are in good agreement with those of Smith

et al.20 who report a median MAD of 0.23 kcal/mol for the ANI-ccx model.

3.2 Multitask learning on four datasets

In Sec. 3.1 we demonstrated that our multitask procedure is a simplified, but viable alter-

native to the transfer learning procedure of Smith et al. Next we turn to study the behavior

of the procedure when we train to more than two datasets. We now include the OrbNet De-

nali25 and SPICE26 datasets. Here we will use the HCNO subset of a test set of torsion scans

of neutral druglike molecules reported previously to probe torsion profiles over a broader re-
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Figure 3: Mean average deviation (MAD) of a relative conformational energies over torsion
scans of small organic molecules in kcal/mol relative to CCSD(T)/CBS estimates. Errors of
QRNN models trained to the single datasets ANI-1x and ANI-ccx are shown alongside those
trained to both datasets in conjunction. The box shows the first and third quartiles whereas
a line is given at the median. The whiskers show the maximum and minimum points outside
of the box but inside 1.5 times the interquartile range.

gion of chemical space than that probed by the Sellers dataset studied in Section 3.1.15 We

have relabeled this test set with the ωB97X-D3/def2-TZVP level of theory and use that as

the reference. We believe this reference is sufficient for our purposes and the error between

this level of theory and CCSD(T)/CBS for these relative conformational energies are likely

to be much smaller than the errors between the models and CCSD(T)/CBS results.37 This

dataset contains 369 torsion scans and covers a much more significant sample of chemical

space, representing a stronger test of transferability.

For each torsion scan we compute an RMSD, choosing the structure with lowest reference

energy to define the energy zero. Figure 4 shows the distribution of these errors. Here, we

compare results for models in several training experiments. Four models were trained to

single datasets (QRNN(1X), QRNN(CCX), QRNN(D) and QRNN(S)), a model trained to

two datasets QRNN(1X, CCX) and a model trained to all four datasets QRNN(1X, CCX, D,

S). Multitask models predicting on the 1X, CCX and S output heads generally improve over

singletask models whereas multitask results slightly degrade when using the D output head.

Concretely, the median RMSD increases from 0.49 kcal/mol when training to only OrbNet
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Figure 4: Root mean square deviation (RMSD) of relative conformational energies over
torsion scans of small organic molecules in kcal/mol relative to ωB97X-D3/def2-TZVP es-
timates. The box shows the first and third quartiles whereas a line is given at the median.
The whiskers show the maximum and minimum points outside of the box but inside 1.5
times the interquartile range.

Denali data to 0.58 kcal/mol when training to all four datasets. The effect of adding more

data is most pronounced in the CCX results where the median RMSD for QRNN(CCX),

QRNN(1X, CCX)[CCX] and QRNN(1X, CCX, D, X)[CCX] declines from 1.14 kcal/mol to

0.90 kcal/mol and finally to 0.63 kcal/mol. These results show that additional data at other

levels of theory significantly improve the transferability of the model.

Now we turn to investigate the effect of adding data from qualitatively different parts of

chemical space. The 1X and CCX datasets focus entirely on neutral organic molecules. As

such, performance for torsion scans on ionic molecules are expected to be quite poor. To

validate this expectation we evaluate RMSD over the HCNO subset of torsion scans of ionic

molecules that we have previously published,12 but relabeled the reference energies at the

ωB97X-D3/def2-TZVP level. The median RMSD of QRNN(1X) and QRNN(CCX) over this

set of 247 torsion scans is 1.51 and 2.36 kcal/mol respectively, justifying our expectation.
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Figure 5: Root mean square deviation (RMSD) of relative conformational energies over
torsion scans of ions of small organic molecules in kcal/mol relative to ωB97X-D3/def2-TZVP
estimates. The box shows the first and third quartiles whereas a line is given at the median.
The whiskers show the maximum and minimum points outside of the box but inside 1.5
times the interquartile range. There are seven large error cases for the QRNN(CCX) model
that are not show in order to restrict the range of the plot.

Figure 5 shows that very large errors are also present; In fact the QRNN(CCX) dataset

displays a maximum error of 23 kcal/mol (above the y-axis in this plot). As in the neutral

torsion results we once again see that the 1X, CCX and S predictions improve when adding

additional data whereas the D predictions slightly degrade. The most impressive improve-

ment is for the CCX results whose median error improves from 2.36 for the QRNN(CCX)

model to 0.99 kcal/mol for the QRNN(1X, CCX, D, S) model. Again the QRNN(D) models

yields the lowest errors with a median error of 0.74 kcal/mol growing to 0.91 kcal/mol when

training to all four datasets.

Finally, we investigate errors on intermolecular interactions, as probed by the popular

S66x8 benchmark.27,28 This dataset provides high level estimates (CCSD(T)-F12/CBS) of

the binding energy of 66 molecular dimers, each at 8 intermolecular separations. For each of
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Figure 6: Root mean square deviations (RMSD) of binding energies of small dimers in the
S66x8 dataset relative to reference energies at the CCSD(T)-F12/CBS level. The box shows
the first and third quartiles whereas a line is given at the median. The whiskers show the
maximum and minimum points outside of the box but inside 1.5 times the interquartile
range.

the 66 dimers we compute RMSD in binding energy along the scan. The results are shown in

Figure 6 and follow a similar trend as seen for the other tests. The predictions on 1X, CCX

and D all systematically improve with addition of different datasets whereas the results on

predictions of the S dataset slightly worsens. More specifically, the median error for CCX

predictions using the QRNN(CCX) model is 1.89 kcal/mol and decreases significantly to

0.89 kcal/mol in the QRNN(1X, CCX, D, S) model. Predictions on the S dataset give the

best results and training only to that dataset yields a median error of only 0.42 kcal/mol

whereas training to all datasets and evaluating on the S output head yields a median error

only negligibly worse, at 0.43 kcal/mol.
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Table 2: Summary statistics for the performance of models on all test sets investigated. All
errors are mean RMSD given in kcal/mol. The best model for each row is given in bold.

output 1X CCX D S
training sets 1 4 1 4 1 4 1 4

ZINC rotamers 1.03 1.00 1.32 1.00 0.60 0.69 0.86 0.70
ionic rotamers 1.85 1.38 3.08 1.28 1.04 1.18 1.64 1.21

S66x8 1.71 1.15 2.66 0.96 1.78 0.61 0.51 0.58
overall 1.53 1.17 2.35 1.08 1.14 0.82 1.01 0.83

4 Discussion

Table 2 summarizes the multitask training results presented in Sec. 3.2 for training to one or

four datasets. In every case the performance of predictions on the 1X and CCX output heads

improves when training to four datasets as opposed to one. For tasks that are not represented

in the training set of a particular output head (ionic and intermolecular interactions for 1X

and CCX) the improvement is significant. In each of the three datasets a model trained

to a single level of theory performs best (D or S) and worsens when performing multitask

training. However, if we average the errors over the three tasks with equal weight we find

that the best model overall is a multitask model. The 1X and CCX datasets primarily

focus on single, neutral molecule conformational energies and these results highlight the fact

that information can be transferred amongst different output heads by utilizing datasets

covering different regions of chemical space and different interactions. This may sacrifice

some accuracy on an output head for a particular task that is already well represented in

a dataset. Certainly, providing all data at the targeted level of theory would be superior,

but incorporating freely available datasets also provides significant value when building a

foundational model.

There are a few mechanisms by which information can be transferred between the output

heads during training. The first is the most direct, which is that the latent representation of

the input molecule is improved and this representation is shared amongst all of the output

heads. This improved description can improve predictions on all output heads. Another
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mechanism is the improvement of the description of the point charges, which are shared

by all output heads. Two of the datasets we train to (CCX and D) do not contain dipole

moments to train to and thus the charges are only trained via minimization of energy errors.

Datasets that add dipole moments may give improved point charges and thus improved

performance. The fact that the predictions on the D output head are often the best and

this dataset does not have any dipole moments to train to suggests that this is a secondary

effect, though it may be quite important for prediction of long range energies probed by the

S66x8 dataset, for which the single-task D model is poor.

The output heads used in this work only perform a linear transformation of the latent

space to the final output. This implies that the various outputs are also linearly related.

At first glance it seems quite surprising to suggest that two levels of theory as seemingly

different as CCSD(T) and ωB97X, based on dramatically different physical assumptions,

could be linearly related. A few factors help to explain this. First, one can formally relate

two levels of theory using parameters from the multitask model, but doing so requires that the

weight matrices of the final layer are invertible, which may not be the case; any parameters

from the latent space which are given zero weight by one output head and nonzero weight

by another will lead to a non-invertible mapping. Further, the transformation operates on

atomic energies, which are then summed, so in order to transform between levels of theory

by this means one must possess a reasonable decomposition of the total energy into atomic

contributions. These atomic energies are nonlinear functions of the atomic positions and may

be difficult to determine. It therefore seems unlikely to us that it would be generally possible

to find a transformation between levels of theory given only pairs of molecular energies.

We have seen some evidence that the linear transformation just discussed is not suffi-

ciently flexible. In three cases we see that training to a single dataset can outperform the

multitask model on a given task. This indicates that the multitask model does not have

sufficient capacity when training to datasets that yield models that perform worse on that

particular task. On the other hand, as one increases the expressiveness of the output trans-
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formation the amount of information shared between heads will likely decrease, resulting in

less information transfer. One must therefore balance this trade off.

There are three limitations worth mentioning. Our models utilize point charges to account

for long range interactions and to distinguish molecules of differing net charge12 and in this

article we do not differentiate charges by level of theory; our model predicts only one set

of point charges and multiple energies, essentially assuming that all DFT functionals yield

approximately equivalent densities. Future work may distinguish charges between different

levels of theory. Second, we do not define a mechanism besides the latent space for sharing

information between output heads. This may be of interest if training to two levels of theory

that are highly correlated, for example one training set which utilizes some approximation

to four index integrals and one that does not. In such a case harmonically tethering the

parameters of the outputs may be a successful strategy. The final limitation is that the

chemical elements found in any dataset should ideally be present in all datasets. In an

HDNNP trained with separate neural networks for each chemical element this seems to be a

requirement for successful prediction on molecules containing a specific element. It is possible

that models utilizing an atom embedding featurization scheme could infer the behavior of

elements on a level of theory for which there is no training data.

5 Conclusions

In this article we have presented a conceptually simple procedure to incorporate datasets

computed at different levels of theory into the training of a transferable MLFF. Due to

the different interests and preferences of independent researchers, each new dataset that

enters the public domain will contain complementary and incomplete data relative to what is

needed to train a universal MLFF. These datasets will likely continue to be published utilizing

different density functionals, basis sets and approximations. We believe that a method similar

to what we have discussed in this article will be widely adopted when training foundational
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MLFFs in the future. We have demonstrated that one can transfer knowledge of different

tasks, such as the description of the conformational energies of ions and intermolecular

interactions, when adding datasets of different levels of theory. That is, the different datasets

do not need to share the same chemical space.
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