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Abstract 10 

Per- and polyfluoroalkyl substances (PFAS) are a huge group of anthropogenic chemicals with 11 

unique properties that are used in countless products and applications. Due to the high stability 12 

of their C–F bonds, PFAS or their transformation products (TPs) are persistent in the 13 

environment, leading to ubiquitous detection in various samples worldwide. Since PFAS are 14 

industrial chemicals, the availability of authentic PFAS reference standards is limited, making 15 

non-target screening (NTS) approaches based on high-resolution mass spectrometry (HRMS) 16 

necessary for a more comprehensive characterization. NTS usually is a time-consuming 17 

process, since only a small fraction of the detected chemicals can be identified. Therefore, 18 

efficient prioritization of relevant HRMS signals is one of the most crucial steps. We 19 

developed PFΔScreen, a Python-based open-source tool with a simple graphical user interface 20 

(GUI) to perform efficient feature prioritization by several PFAS specific techniques such as 21 

the highly promising MD/C-m/C approach, Kendrick mass defect analysis, diagnostic 22 

fragments (MS2), fragment mass differences (MS2) and suspect screening. Feature detection 23 

from vendor-independent MS raw data (mzML, data-dependent acquisition) is performed via 24 

pyOpenMS (or custom feature lists) with subsequent calculations for prioritization and 25 

identification of PFAS in both HPLC- and GC-HRMS data. The PFΔScreen workflow is 26 

presented on four PFAS-contaminated agricultural soil samples from south-western Germany. 27 

Over 15 classes of PFAS (more than 80 single compounds with several isomers) could be 28 

identified, including four novel classes, potentially TPs of the precursors fluorotelomer 29 

mercapto alkyl phosphates (FTMAPs). PFΔScreen can be used within the Python environment 30 

and is easily automatically installable and executable on Windows. Its source code is freely 31 

available on GitHub (https://github.com/JonZwe/PFAScreen). 32 
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Introduction 37 

Per- and polyfluoroalkyl substances (PFAS) are a large group of anthropogenic chemicals 38 

characterized by containing multiple C-F bonds [1,2]. Due to their unique properties, they are 39 

used in a wide array of daily products and different industrial applications [3]. Their high 40 

chemical resistance and water- and oil repellency lead to the production of PFAS with a variety 41 

of different chemistries [4]. Due to the high stability of C-F bonds, the perfluoroalkyl chains 42 

of PFAS exhibit an intrinsic persistence that leads to a worldwide distribution of PFAS and 43 

their terminal transformation products (TPs) such as perfluoroalkyl acids (PFAAs) which were 44 

extensively produced and used in the past [5-8]. Nowadays, the number of known PFAS 45 

ranges from thousands to millions, depending on the definition and source of information. 46 

According to the updated OECD definition, all chemicals containing a CF3- or isolated CF2-47 

group are considered PFAS, which has increased the number of PFAS considerably [9,10]. 48 

Global regulatory efforts restricted the production of selected longer-chain PFAAs such as 49 

e.g., perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) due to their 50 

persistence, bioaccumulation potential, and adverse effects on humans and the environment 51 

[11]. This resulted in the production of replacement compounds of rather similar persistence, 52 

increasing the number of different PFAS on the global market that are also eventually emitted 53 

into the environment [12]. Therefore, PFAS are considered to be regulated as a chemical class 54 

in the European Union in the future [13].  55 

Several studies have shown that considerable fractions of organically bound fluorine (e.g., 56 

extractable organic fluorine) in environmental and human samples cannot be explained 57 

sufficiently by routinely analyzed PFAS (target screening), which usually include less than 50 58 

analytes [14-17]. Since almost no fluorinated organic compounds occur naturally, unknown 59 

fractions of organically bound fluorine are clear indications of anthropogenic chemicals [18]. 60 
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Due to the sheer number of different PFAS that transform into an even larger number of 61 

unknown TPs, a comprehensive use of authentic reference standards is usually not possible 62 

and most likely will not be soon [19,20]. The fact that PFAS are industrial chemicals that often 63 

underlie the trade secrets even complicates the availability of standards. Therefore, non-target 64 

screening (NTS) based on high-resolution mass spectrometry (HRMS) is necessary for a more 65 

comprehensive characterization of PFAS [21,22]. Several studies have shown that target 66 

analysis is insufficient to capture PFAS present in complex samples, which can easily result 67 

in the overlooking of important compounds even when present in high concentrations [23]. 68 

NTS-approaches led to the identification of more than 750 novel PFAS in various samples in 69 

the past worldwide, showing their high relevance in analytical approaches [24,22]. Since NTS 70 

is typically a time-consuming and often partially manual process, efficient prioritization 71 

techniques are needed to separate detected matrix components from the analytes of interest 72 

(often a data reduction from ~5000 detected compounds to 10-100 identified analytes or even 73 

less) [25].  74 

The intrinsic properties of PFAS (with a certain fluorine percentage) allow the use of several 75 

techniques for their prioritization [21,26]: The chemical mass defect (MD) of PFAS is 76 

typically lower (MDF = –1.6×10-3 Da) than the one of hydrocarbons (MDH = +7.8×10-3 Da) 77 

and has been used to remove detected features outside a predefined MD range (e.g., -0.25 Da 78 

to +0.1 Da) [27-29]. However, this range is not fixed, and depending on the structure, it is 79 

important to know that hydrocarbons of higher mass that exceed a MD of +0.75 Da can also 80 

fall into the same range. Similarly, polyfluorinated PFAS with a high H-content may bear a 81 

positive MD exceeding +0.1 Da. Recently, a promising approach based on the MD normalized 82 

to the carbon number (MD/C) vs. the mass normalized to the carbon number (m/C) was 83 

proposed to separate PFAS much more efficiently from other hydrocarbon features in HRMS 84 

data which was further systematically evaluated for ~200,000 PFAS from chemical databases 85 

[30,26]. The carbon number can be easily estimated for all HRMS features by using the 86 
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relative abundance of the M+1 isotope (13C). PFAS have a much higher m/C when their mass 87 

is dominated by fluorine (e.g., m/C ~ 50), while hydrocarbons of similar mass are dominated 88 

by carbon (m/C ~ 14), allowing a convenient separation. Details on the MD/C-m/C approach 89 

are summarized in Zweigle et al. 2023 [26]. Especially, the m/C dimension can be used to 90 

remove large fractions of non-PFAS features when applied appropriately. This is illustrated in 91 

Fig. 1 where we plotted a 2D histogram of the MD/C-m/C locations of over 50000 features 92 

from previous HRMS measurements of PFAS-contaminated soils and grease-repelling papers, 93 

where a clear separation of potentially highly fluorinated compounds is observed (region 94 

around m/C ≈ 40, MD/C = -0.002). It is important to note, however, that the MD/C-m/C 95 

separation works better the higher the percentage of fluorine in a molecule is, with an 96 

accordingly, higher F/C and a lower H/F ratio [26]. Like the MD, the MD/C-m/C approach 97 

cannot separate, for instance, hydrocarbons with one or two CF3 groups from other 98 

hydrocarbons. 99 

 100 

Fig. 1: 2D histogram of the number of compounds (log scale) (compound density) in the MD/C-m/C plot of 19 101 

measured samples used from several paper and soil extracts, standards, and blanks (19 samples with 51589 102 

features from [23,31,32]). Hydrocarbon features are located usually below m/C of 25 with a clearly positive 103 

MD/C (position 1), while at a certain C number the MD exceeds +0.5 Da yielding a position of a mathematical 104 

negative MD/C (position 2). Highly fluorinated compounds or compounds with other heavy heteroatoms are 105 

strongly shifted to higher m/C values (position 3). It becomes obvious that even with these high numbers of 106 

features in several samples from several different matrices, potential PFAS features with a certain fraction of 107 

fluorine within the molecule are efficiently separated from most matrix components The grey lines mark the 108 

CHxF2-x-line (0 ≤x ≤2) and the CFx-line (0 ≤x≤ 2) (for details on the MD/C-m/C plot see Zweigle et al. [26]). 109 
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Besides the MD and MD/C-m/C-approach, the Kendrick mass defect (KMD) analysis to 110 

detect homologous series of PFAS (e.g., with CF2 or CF2O as repeating units) is of great 111 

relevance since it allows the grouping of structurally related PFAS, simplifying their 112 

identification [27,33]. In the MS2 data, lists of PFAS-specific diagnostic fragments (DFs) as 113 

well as fragment mass differences and neutral losses can be used to prioritize fragmentation 114 

spectra [28,34,31]. These techniques are often combined with suspect screening by matching 115 

accurate mass (or further evidence) with PFAS lists [22,35].  116 

KMD, DFs, fragment mass differences, and especially suspect screening with large lists 117 

(e.g., PFASMASTER, gathering over 12,000 compounds [36]) in combination with complex 118 

samples (thousands of features) are prone to a high number of false-positive detections 119 

(depending on mass tolerance) that often need to be excluded manually, which is a time-120 

consuming process. Even with extremely high mass resolution, naturally occurring 121 

compounds can still mimic certain PFAS-specific repeating units such as CF2, complicating 122 

KMD analysis and making retention time shifts a necessary criterion [37]. Therefore, if the 123 

number of features can be preliminarily reduced by the MD/C-m/C approach before applying 124 

those techniques, a faster and more accurate NTS-workflow can be performed, decreasing both 125 

computational and manual effort regarding the further inspection of the features. 126 

To facilitate the non-targeted screening of PFAS in complex samples, we developed 127 

PFΔScreen, an open-source Python-based software tool with a simple graphical user interface 128 

(GUI) that combines the discussed techniques to efficiently prioritize PFAS in LC- or GC-129 

HRMS data. PFΔScreen can be applied vendor-independently either on mass spectrometric 130 

raw data (mzML, automated feature finding via pyOpenMS) or on custom feature lists 131 

(external feature finding by other software tools). The PFΔScreen workflow is here presented 132 

by application to four PFAS-contaminated agricultural soil extracts from south-western 133 

Germany (Rastatt case [38,27]), where several PFAS classes, including novel PFAS, were 134 

identified. The advantages of the combined workflow are discussed in detail. The source code 135 
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is available via GitHub and can be easily automatically installed and executed via batch files 136 

on Windows within the Python environment. 137 

Materials and Methods 138 

PFΔScreen workflow 139 

PFΔScreen is a fully automated tool for detection and prioritization of potential PFAS features 140 

(LC- or GC-HRMS) in raw mass spectrometric data written in Python (3.9.13) (Fig. 2). 141 

PFΔScreen is structured in several individual Python functions that are executed from one 142 

main file that allows data and parameter input via a simple GUI programmed with the tkinter 143 

library (Fig. S1). It can easily be automatically installed and executed on Windows using batch 144 

files. Detailed instructions on installation and functionality are provided in the SI. Input MS 145 

raw data can be converted vendor-independently from data-dependent acquisition (ddMS2) 146 

files into the mzML data format (.mzML) by using the MSConvert software from 147 

ProteoWizard [39,40]. Only mzML files with centroided spectra and one collision energy (CE) 148 

should be used. If profile data was acquired and MS2 spectra from several different CEs per 149 

precursor m/z are present, the peak picking (for centroiding) and subset functions (to keep 150 

only one desired CE) from MSConvert can be used to generate the correct mzML input files. 151 

In the following, the three main functionalities of PFΔScreen are explained in the same 152 

order as they can be executed in the GUI (Fig. 2 and Fig. S1). 153 

FeatureFinding. 154 

The first step usually performed in NTS is detection of features in the MS raw data 155 

characterized by chromatographic peak shapes of coeluting isotopes, resulting in a list of m/z, 156 

retention time (RT) and peak area. This task is performed with pyOpenMS, a Python interface 157 

to the C++ OpenMS library [41-45]. For feature detection, the FeatureFinderMetabo algorithm 158 

is used, which is designed for metabolites and small molecules [46-48]. Three parameters 159 
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(mass error (ppm), intensity threshold and an isotope model for more accurate detection of 160 

coeluting isotopologues) can be specified. The most important parameter is the intensity 161 

threshold, which is highly dependent on the instrument used, sample, and the underlying NTS 162 

question. After feature finding in the MS1 data, MS2 spectra can be aligned to their respective 163 

precursors by specifying an m/z- and RT-tolerance. Only one unique MS2 spectrum with the 164 

highest precursor intensity is assigned to the respective MS1 precursor. 165 

With PFΔScreen, a single sample with a corresponding (optional) blank can be processed 166 

at a time. Blank correction is performed by setting an m/z- and RT-tolerance as well as a fold 167 

change with the desired increase of abundance in the sample compared to the blank. Features 168 

appearing in both sample and blank within the specified criteria are removed from the dataset. 169 

After preprocessing, the raw data is ready for specific PFAS prioritization. If feature finding 170 

by an external software is desired (e.g., vendor software), the following steps can also be 171 

performed by loading a feature table (.xlsx, that requires m/z, RT, and intensities of the [M] 172 

and [M+1] isotopes) into PFΔScreen without feature detection via OpenMS. However, the raw 173 

mzML files are still needed to assign MS2 data to the features in the feature table (see SI). 174 

Besides pyOpenMS, the mass spectrometric Python library Pyteomics is used for selected 175 

calculations [49,50]. 176 

PFASPrioritization.  177 

The PFAS prioritization workflow is intended in an iterative manner: after feature detection, 178 

the MD/C-m/C plot should firstly be manually inspected to determine reasonable boundaries 179 

to remove most of the detected features (e.g., ~90%) that cannot be PFAS due to their MD/C-180 

m/C locations (depending on the underlying question). After determination of these cutoffs, 181 

the PFAS feature prioritization can be executed again focused on a subset of features, which 182 

will strongly decrease false-positives in KMD analysis, fragment matching, and suspect 183 

screening where the respective parameters can be adjusted accordingly without a strong 184 

increase of wrong assignments. Since the execution time of PFΔScreen is usually below one 185 
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minute (e.g., for ~4000 spectra per sample), input parameters can easily be varied to test their 186 

influence on the outcome. After execution, a folder is generated named after the sample file 187 

where important results are saved, including a summary in an Excel sheet which is formatted 188 

as a table that can be easily inspected, sorted and subset for a faster overview of the results 189 

(Fig. S2). Important plots are saved in the interactive HTML format which can easily be 190 

opened in any browser, allowing zooming and data inspection with interactive tooltips (Fig. 191 

S3). 192 

In the workflow to prioritize features according to their likelihood of being PFAS, several 193 

pieces of evidence are calculated individually for all detected features in the first place. For all 194 

MS1 features, the number of carbon atoms, MD, and both MD/C and m/C-dimensions are 195 

determined. To detect homologues series (HS), the KMD (with a predefined repeating unit 196 

required; e.g., CF2) is calculated and corresponding features belonging to a certain HS are 197 

aligned by providing a unique HS number (parameters: mass tolerance, minimum number of 198 

homologues). 199 

For all MS2 spectra, fragment mass differences are calculated comprehensively. Therefore, 200 

all fragment differences within each MS2 spectrum are calculated and matched against a 201 

predefined list of PFAS typical mass differences (e.g., ΔCF2, ΔC2F4, ΔHF, ΔC10H3F17, more 202 

details can be found in [31]). This allows an efficient detection of fragments indicative for 203 

PFAS without prior knowledge on their actual mass [31,23]. Furthermore, a list of typical 204 

PFAS diagnostic fragments (DFs, approximately 900 fragments) from literature are 205 

automatically matched with all fragmentation spectra (which is easily extendable) [51,52]. 206 

Both negative and positive fragments are considered depending on the measurement polarity 207 

which can be specified in the GUI. The most important parameter is the MS2 noise threshold, 208 

used to specify the lowest MS2 intensity to be considered for DF, and mass difference 209 

matching. It is of importance to select a suitable instrument-specific threshold as a too low 210 

input value may result in a high number of false-positive annotations. Besides a mass tolerance 211 
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for fragment matching, a minimal number of positive DFs or mass differences can be specified 212 

to flag a MS2 spectrum as potential hit. 213 

To enhance annotation in the MS2, fragments that have a defined mass difference to another 214 

already annotated fragment (accurate mass match and therefore also a chemical formula) are 215 

also annotated by subtraction or addition of the respective mass difference (e.g., ΔC2F4) to an 216 

annotated chemical formula (e.g., C12H5F12O4S + ΔC2F4). This allows the calculation of 217 

unknown chemical formulas for fragment masses that are not present in the list of DFs (see 218 

Fig. S6). 219 

In the third step, suspect screening by accurate mass match (with mass tolerance) can be 220 

performed. We used the PFAS NIST suspect list as a template, with extension of other in-221 

house identified PFAS. For suspect screening, three adducts can be chosen which are [M–H]- 222 

for negative polarity, and both [M+H]+ and [M]+ for positive polarity (compounds such as 223 

betaines present in various AFFF formulations are often detected as M+ ions) [53]. 224 

RawDataVisualization 225 

After feature finding or the complete workflow, the MS raw data can be directly visualized 226 

via the PFΔScreen GUI (Fig. 2 and S4).  227 

EIC extractor: Extracted ion chromatograms (EICs) can be generated by accurate m/z (e.g., 228 

from the Excel results file) and inspected in an external window. Several masses can be 229 

extracted together (comma separated) to investigate coelution or RT-shifts. To verify the 230 

systematic RT-shifts of detected HS, a repeating unit can be specified (e.g., CF2) and n EICs 231 

are extracted at once (Fig. 2 and S4), allowing fast checking for reasonable of peak shapes and 232 

elution order of suspected masses.  233 

MS1 extractor: To visualize single MS1 spectra, a certain RT of interest can be specified. 234 

Theoretical isotope patterns of chemical formulas from suspect hits can then be plotted on top 235 

of the experimental MS1 isotope pattern (Fig. 2 and S4).  236 
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MS2 extractor: MS2 spectra can also be directly accessed via the GUI by inputting the 237 

accurate m/z value. If DFs and fragment mass differences were detected, they are displayed 238 

within the respective MS2 spectrum (Fig. S4). 239 

EIC correlator: To detect potential in-source fragments (e.g., [M-HF]-) or adducts (e.g., 240 

[M+Br]- or [M+Acetate]-) by coelution correlation, an m/z of interest can be specified and all 241 

detected features within a certain RT-range are correlated (EICs) and only highly correlating 242 

ions can be visualized (e.g., correlation of R2 > 0.95). This can greatly enhance understanding 243 

of ionization processes and helps to find related ions that were not grouped during feature 244 

detection (more detailed explanation in the Results & Discussion section, Fig. 6 and S9). 245 

 246 

Fig. 2: Schematic overview of the PFΔScreen workflow in the structure of the GUI (Fig. S1). The FeatureFinding 247 

tab (1) allows detection of feature via pyOpenMS in MS raw data followed by MS2 alignment and blank 248 

correction resulting in a feature list for a sample of interest. PFAS feature prioritization (2) includes techniques 249 

such as the MD/C-m/C approach, KMD analysis, fragment matching, and fragment mass differences which 250 

generates a strongly reduced feature list of potential PFAS. The data from this list can be visualized and verified 251 

by the RawDataVisualization tool (3) together with other output file such as interactive HTML plots which allows 252 

efficient NTS (Fig. S3-S5). 253 

Soil collection and extraction 254 

To present the feature prioritization procedure via PFΔScreen, four different PFAS-255 

contaminated composite agricultural topsoil samples from Rastatt (R1 & R2) and Mannheim 256 
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(M1, M2) regions (Germany) were extracted and measured by HPLC-QTOF-MS (see 257 

sampling details and soil physicochemical properties in the SI (S3)). The R1, R2, S1, and S2 258 

soil names correspond to soils B, A, D, and H from Röhler et al (2023), respectively [54]. 259 

Agricultural fields in these regions were subjected to contaminated paper sludge in the past 260 

and found to be highly contaminated with several PFAS classes [27,32,54]. Information on all 261 

chemicals used can be found in SI (S4). Soil extraction was adapted from existing procedures 262 

[27]. Briefly, five g of dried soil (40 °C) were weighed in 50 mL polypropylene (PP) tubes 263 

and combined with 10 mL of methanol (MeOH). The suspension was sonicated for one hour 264 

and overhead shaken for 16 hours. After centrifugation (10 min @ 4000 rcf), the supernatant 265 

was transferred into a 20 mL glass vessel, and extraction was repeated. The combined extracts 266 

(20 mL) were evaporated under a gentle stream of N2 until dryness at 40 °C and reconstituted 267 

in one mL of MeOH, sonicated for 10 min and thoroughly vortexed for one min. In a last step, 268 

the enriched extract was filtered through a 0.2 µm regenerated cellulose syringe filter, 269 

transferred into PP HPLC vials, and stored in the fridge (4°C) until analysis. As quality control, 270 

an extraction blank following the identical extraction procedure but without adding any soil 271 

was prepared to account for background contamination. 272 

LC-HRMS measurements and data acquisition  273 

Soil extracts were analyzed with an Agilent 1260 Infinity HPLC system (Poroshell 120 EC-274 

C18 column; 2.1 mm × 100 mm; 2.7 µm particles at 40 °C) at a flow rate of 0.3 mL/min coupled 275 

to an Agilent 6550 QTOF-mass spectrometer. For compound separation, a 23 min gradient 276 

program was used (A: 95/5 H2O/MeOH + 2 mM NH4Ac; B: 5/95 H2O/MeOH + 2 mM NH4Ac) 277 

and both negative and positive measurements were performed (details in Table S1-S2). Data 278 

acquisition was performed in the data-dependent mode (ddMS2) using 3 scans/s (MS1 range: 279 

m/z 100−1700 and MS2 range m/z 70−1700) with a static exclusion list (resulting from prior 280 

MeOH blank injections) to avoid fragmentation of background signals. Furthermore, a rolling 281 
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exclusion list was used to iteratively exclude previously triggered precursor masses from 282 

previous measurements (three injections) of the same sample to maximize the MS2 coverage. 283 

The threshold for precursor selection was set to 1000 counts, and each precursor was excluded 284 

for 0.5 min after collection of three MS2 spectra. For collision induced dissociation, a linear 285 

m/z-dependent collision energy (CE) according to the following equation was used: 286 

CE(m/z) = 3
m/z

100
+15 eV. To prevent sample cross contamination, a three-fold needle wash in 287 

MeOH was performed in-between each injection. Each measurement sequence included 288 

several blanks and quality controls (PFAS reference standard mixture) to monitor instrument 289 

drift.   290 
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Results and Discussion 291 

PFAS prioritization and identification with PFΔScreen is aimed to be performed in an iterative 292 

process. This means that the program is executed multiple times allowing parameter 293 

adjustment to generate reasonable results. PFΔScreen runtimes are usually below one minute 294 

(e.g., for ~4000 spectra per sample) for the whole workflow. When changing specific input 295 

parameters (e.g., tolerances, thresholds, mass differences etc.), their effect on the output can 296 

directly be observed. In this way, input parameters can be conveniently adjusted depending on 297 

end-user needs and sample types. After feature detection, blank correction, and a short 298 

inspection of the results, the data can be reduced by the MD/C-m/C approach by setting an 299 

appropriate m/C cutoff value. Subsequent KMD analysis, fragment mass differences, DF 300 

matching and suspect screening then result in a detailed table of a manageable size. 301 

To demonstrate the PFΔScreen workflow, it was here applied to four contaminated 302 

agricultural topsoils. We started the iterative identification process with the soil extract of M1. 303 

After data preprocessing and application of prioritization techniques, the identified PFAS 304 

(including adducts and in-source fragments) were manually added to the suspect list, and the 305 

same workflow was applied to the next soil sample. In the following, the whole workflow 306 

starting from data reduction to final identification is discussed in detail.  307 

Data preprocessing 308 

After data-dependent acquisition (DDA), the raw MS data (.d files, Agilent) were converted 309 

into mzML with MSConvert [39]. For each soil, PFΔScreen was executed individually 310 

together with the extraction blank to remove background signals originating from both the 311 

extraction procedure and the HPLC system. The mass error for feature detection was set to 10 312 

ppm, the MS1 intensity threshold was set to 2000 counts and the metabolites (5% RMS) 313 

isotope model from OpenMS was used to exclude features with unusual peak shapes of 314 

isotopic traces. Peaks reported after feature detection have to have a full width at half 315 

https://doi.org/10.26434/chemrxiv-2023-r843x ORCID: https://orcid.org/0000-0002-7194-1567 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r843x
https://orcid.org/0000-0002-7194-1567
https://creativecommons.org/licenses/by-nc/4.0/


 
 

15 
 

maximum (FWHM) above one second and below 1 minute, and at least two isotopic traces. 316 

MS2 spectra were aligned with a mass tolerance of 5 mDa and an RT tolerance of 0.2 minutes 317 

(these tolerances can be verified by an interactive m/z vs. RT plot (Fig S3a)). Features detected 318 

in both sample and extraction blank that deviated by < 2 mDa at a RT difference of < 0.1 319 

minute and were not at least 5-fold more abundant in the sample were removed. Exemplified 320 

on soil M1, 4209 features were detected, that were reduced to 3750 features after blank 321 

correction in the ESI- mode. A total of 1026 out of 2450 acquired MS2 spectra corresponded 322 

to detected features, from which 417 unique spectra remained (~11% MS2 coverage in first 323 

iteration).  324 

Data reduction by m/C and MD/C 325 

After these feature preprocessing steps, the m/C and MD/C dimensions were used for data 326 

reduction. When looking at the MD/C-m/C plot of all soils together (containing more than 327 

12,000 features), a clear separation of three groups of compounds can be observed (Fig. 3a). 328 

Most features were located below m/C 30, which are a wide variety of different hydrocarbon 329 

molecules. A theoretical molecule exclusively consisting of (CH2)n-groups would be located 330 

at m/C = 14, while for the four soil extracts a clear peak distribution ranging from m/C ≈ 10 - 331 

25 and reaching a maximum around m/C ≈ 16 was observed (Fig. 3c). The determination of 332 

the carbon number strongly depends on the peak picking algorithm, since it is based on 333 

robustly integrated EICs from the monoisotopic mass and its corresponding M+1 isotope 334 

(C ≈ IM+1/IM/0.011145). Therefore, a certain uncertainty should always be expected, which 335 

increases with decreasing ion abundance. Nonetheless, ~92% of all detected features are 336 

clearly located below m/C = 30 (e.g., humic substances) (Fig. 3c). Therefore, here a cutoff at 337 

m/C = 30 was chosen since PFAS that are dominated by fluorine usually have a higher m/C 338 

(e.g., m/C6:2 diPAP ≈ 49; m/CPFOA ≈ 51; m/C6:2 FTAB ≈ 38). 6:2 FTAB is an AFFF constituent 339 

which already has a considerable fraction of hydrogen (C15H19F13N2O4S) compared to other 340 
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PFAS, while other organic compounds containing less fluorine (compared to hydrogen, high 341 

H/F ratio) such as the pharmaceutical Fluoxetine with only three fluorine atoms (C17H18F3NO, 342 

m/C ≈ 18) fall below the applied cutoff. Depending on the underlying NTS question, this cutoff 343 

can be adjusted accordingly. Attempting to remove further features, an MD/C cutoff of < 344 

+0.003 was set, although as seen in Fig. 3a the m/C dimension was much more effective for 345 

data reduction. The MD/C-m/C approach was more efficient to reduce features compared to 346 

the MD, as shown in Fig. 3b and 3d. When applying a MD range from -0.25 to +0.1 Da, which 347 

would include 92% of the PFAS in the PFASOECDNA list (EPA dashboard), 17% of the 348 

features remained, while the combined m/C and MD/C cutoffs led to only 7.4% of remaining 349 

features. It is very important to note here that the number of features that strongly exceed a 350 

MD of +0.5 is not negligible, since a conventional calculation of the MD would result in a 351 

negative MD (e.g., -0.2 Da for a saturated hydrocarbon with 60 carbon atoms (H(CH2)60H), 352 

whereas the true MD would be +0.8 Da). As can be seen from the carbon number, a 353 

considerable number of features has more than 60 carbon atoms (up to 80 carbons) which are 354 

in a PFAS typical MD-range (Fig. 3b). Therefore, setting an appropriate m/C cutoff is highly 355 

recommended, since these features are easily removed by this additional criterion. Eventually, 356 

when combining both m/C and MD/C cutoffs, only 949 features (7.4%) remain in all four soils 357 

together. This is an appropriate number of features for further PFAS specific calculations such 358 

as KMD analysis, DFs, fragment mass differences and suspect screening. It should be noted 359 

in particular that due to the removal of ~90% of the initial features, the false-positive rate 360 

decreases drastically (especially with large lists), and allows adjustment of selected tolerances 361 

with smaller effect on false positives. 362 
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 363 

Fig. 3: Data reduction by the MD/C-m/C approach compared to the MD. (a) MD/C-m/C plot for all detected 364 

features (12692) in the four soil extracts and (b) m/C vs. MD. The colorbars correspond to the calculated carbon 365 

number. In the MD/C-m/C plot, potential PFAS (3) are clearly separated from hydrocarbons (1) and 366 

hydrocarbons with many carbon atoms that exceed a MD of +0.5 and are therefore flipped to a similar MD region 367 

as the PFAS but are easily separated by m/C. The number of features is reduced to 8% by the m/C dimension 368 

when cutting at m/C > 30 and to 7.4% when including a threshold of MD/C < 0.003 (grey lines in subplot a). (c) 369 

Histogram of m/C and of the MD (d), showing that the m/C works more efficiently than the MD (17% of the 370 

features remain when cutting at -0.25 < MD > 0.1 which includes 92% of the PFASOECDNA list [27]). Many 371 

features strongly exceeding a MD of +0.5 would be wrongly prioritized. Note how the m/C dimension allows a 372 

much clearer cutoff from hydrocarbon-based features compared to the MD. 373 

 374 

KMD analysis, fragment differences, DFs and suspect screening 375 

For further prioritization and tentative identification, repeating units representative for PFAS 376 

such as (CF2)n and CF2O were applied to detect HS (mass tolerance was set at ± 2 mDa, with 377 

at least 3 homologues). Without any m/C cutoff, in soil M1, 74 (CF2)n-based HS were detected, 378 

likely including numerous false-positives (Fig. 4a) evidenced by a random RT pattern (no RT-379 

shift in linked KMD m/z vs. RT plot). The KMD analysis in PFΔScreen is performed without 380 

checking the systematic RT-shift, but the interactive KMD plot (HTML) allow a fast 381 

verification of RT-shifts. Each HS can be highlighted individually by clicking on it, and the 382 

respective m/z vs. RT correlation is visualized (Fig. S5). Obviously, many hydrocarbon 383 
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features were detected in the soil extract that are mimicking CF2-repeating units, which is a 384 

common issue of complex matrices [31,37]. These compounds have a higher CF2-based KMD 385 

(e.g., 0.2 to 0.5, or lower if their MD strongly exceeds +0.5 Da) compared to that of PFAS 386 

(Fig. 4a). If the combined MD/C-m/C cutoff is applied, the number of detected HS in soil M1 387 

is reduced to 26 (~65% data reduction, see Fig. 4b) which confirms the utility of this approach. 388 

 389 

Fig. 4: True and false-positive CF2-based HS in soil M1 (a) without (m/C > 0) and (b) with m/C-cutoff (m/C > 390 

30). An MS1 noise threshold of 1000 counts was used for feature detection, and the KMD mass tolerance was set 391 

to ± 1 mDa with a minimum of three homologues. Even with the low mass tolerance of ± 1 mDa many 392 

hydrocarbon matrix components are mimicking the CF2-repeating unit (see also Fig S5). Note: Multiple (CF2)n 393 

differences within the KMD tolerance are also assigned to the respective HS, therefore each datapoint has at least 394 

two HS partners. 395 
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For detection of fragment mass differences and DFs in the MS2 data, preliminary ΔCF2, 396 

ΔC2F4, ΔHF and the list of DFs were used (later specific mass differences were searched). 397 

This resulted in the detection of 30 MS2 spectra that contained the specified mass differences, 398 

and 47 spectra with DF hits out of a total number of 373 unique MS2 spectra at a mass tolerance 399 

set to ± 2 mDa and an MS2 intensity threshold of 2000 counts in the M1 soil extract (first 400 

iteration). 401 

In the suspect screening process, the hits by accurate mass (tolerance of 4 mDa) were 402 

reduced from 217 to 176 by the MD/C-m/C cutoff in soil M1. 403 

Manual identification process with the PFΔScreen results table 404 

The verification and (partially manual) identification process of prioritized features from 405 

the PFΔScreen results table (Excel) was performed by sorting the table according to decreasing 406 

intensity, after removing features based on defined MD/C-m/C cutoffs. For soil M1, this 407 

resulted in a feature list with 305 potential compounds. Note that some features appear 408 

multiple times in the list due to structural isomerism, resulting in multiple features at multiple 409 

distinct RTs depending on the degree of separation and the peak finding algorithm. Each 410 

feature was verified manually for occurrence in the extraction blank and reasonable peak shape 411 

(until <1% of the most abundant feature). Although a blank correction was performed, typical 412 

contaminations from the LC system with long tailing peaks can be integrated multiple times 413 

at different RTs. Therefore, they are not always correctly removed depending on the specified 414 

parameters. By using the RawDataVisualization tool of PFΔScreen, EICs of every m/z 415 

belonging to one HS (using the integrated HS extrapolator) can be verified for RT-shift and 416 

peak shape, eventually resulting in identification of homologues with very low abundances 417 

that were missed in the feature finding process due to the MS1 intensity threshold. The 418 

chemical formulas from suspect hits were used to check for reasonable isotope patterns with 419 
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the RawDataVisualization of PFΔScreen. SMILES codes were used to verify at least one 420 

candidate per HS by an MS2 spectrum. 421 

In total, nine PFAS classes could be identified via PFΔScreen in the four soils that exhibited 422 

at least one suspect hit per HS or compound (Fig. 5). Perfluoroalkyl carboxylic acids (PFCAs, 423 

C4 – C20), fluorotelomer alkyl phosphate diesters (diPAPs, 4:2/6:2 – 12:2/12:2), n:3 424 

fluorotelomer carboxylic acids (FTCAs, 5:3-13:3), fluorotelomer sulfonic acids (FTSAs, 6:2 425 

– 16:2), perfluorosulfonic acids (PFSAs, C4 – C10),  perfluorooctane sulfonamide (PFOSA),  426 

N-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA), and N-ethyl 427 

perfluorooctane sulfonamide ethanol–based phosphate diester (diSAmPAP) were identified in 428 

all four soils. Different chain-length distributions and abundances were observed (Fig. 5). 429 

diPAPs were detected as complex mixtures of several structural isomers depending on their 430 

chain-length (e.g., 6:2/10:2 and 8:2/8:2, shown by MS/MS). Additionally, their EICs showed 431 

peaks at much later RTs corresponding to in-source fragments of triPAPs (Fig. S7). While all 432 

telomer-based PFAS were detected as linear chains, the PASF-based PFAS (PFSAs, N-433 

EtFOSAA, PFOSA, and diSAmPAP) showed typical chromatographic peak shapes of 434 

mixtures of branched and linear isomers [55]. In these cases, the dominance of a C8-based 435 

chemistry can be observed (see PFSAs in Fig. 5).  436 

All four soils had a similar contamination pattern. However, for soils M1 and M2 437 

(Mannheim region) another very abundant precursor class, namely FTMAPs, were detected 438 

(including isomeric profiles ranging 6:2/6:2 – 10:2/12:2), as well the previously identified TPs 439 

FTMAP-sulfoxides [31]. 440 

The 6:2 fluorotelomer mercapto alkyl phosphate esters (6:2/6:2 FTMAP) could be 441 

confirmed with an in-house synthesized reference standard, leading to identification levels of 442 

1 for 6:2 FTMAP and 2a for the further homologues due to clear MS/MS evidence [56]. In 443 

general, all identified PFAS are in good agreement with previous studies including 444 
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biotransformation that characterized other soil samples from both Rastatt and Mannheim 445 

[27,32,31,38,54]. 446 

The PFΔScreen results table also revealed several unknown HS that were detected but did 447 

not have an accurate mass match with the suspect list. Their identification with the help of the 448 

EIC correlator of PFΔScreen is discussed in the following. 449 

 450 

Fig. 5: Qualitative summary of identified PFAS in the four soils (M1, M2, R1, and R2). Each class (e.g., PFCAs, 451 

diPAPs) is normalized to the peak area of the most abundant homologue within all four samples. Further 452 

abbreviations: FTMAP O: FTMAP-sulfoxide, FTMA diol O: FTMA-diol-sulfoxide, FTMA diol O2: FTMA-diol-453 

disulfoxid or -sulfone, FTMA diol O3: FTMA-diol-sulfoxide-sulfone, FTMA diol O4: FTMA-diol-disulfone, 454 

Note that depending on chain length and sulfur oxidation degree, diPAPs, FTMAPs and FTMA-diols were 455 

detected as complex mixture of structural and positional isomers (e.g., 6:2/10:2 ≠ 8:2/8:2, or disulfoxide ≠ 456 

sulfone). Very small abundant identifications and triPAPs are not shown in Fig. 5. 457 

EIC correlator: Coelution correlation analysis for identification of 458 

unknowns 459 

After identification of the PFAScreen results, there were several C2F4-based HS left without 460 

any hit in the suspect list. When looking at several MS1 spectra of different homologues, many 461 

coeluting ions were observed, often characterized by HF losses and other mass differences 462 

(Fig. S8). This is an indication of in-source fragmentation of these classes [57,58]. To be able 463 

to efficiently group corresponding in-source fragments and potential adduct ions together, the 464 
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EIC correlator from the raw data visualization tools of PFΔScreen was used to correlate the 465 

EICs of suspected features (from a given HS) with the EICs of all detected features that coelute 466 

within a given RT-range of ± 25 seconds. Strong correlation of EICs can be used to detect 467 

related ions and allows their isolation from other ions in consecutive MS1 spectra without 468 

knowing their mass differences [59-62]. This is exemplified on the unknown m/z 966.9944 469 

which is a member of a suspected HS. When correlating the EIC of m/z = 966.9944 with the 470 

EICs of all coeluting features within a RT range of 50 seconds, 12 out of 368 EICs correlated 471 

with an R2 > 0.96 at an extraction width of 5 mDa (see Fig S9 for more details). The result is 472 

an MS1 spectrum that only contains co-eluting ions (correlation spectrum) of several in-source 473 

fragments and adducts (Fig. 6). Since well-known mass differences such as ΔC2F4 and ΔHF 474 

were found in this MS1 spectrum, a telomer-based PFAS with potentially two telomer-chains 475 

(e.g., 6:2/8:2) was suspected [31]. When looking at the mass differences of detected coeluting 476 

ions, [M+Cl]-, [M+Br]-, [M+Ac]- adducts and several other in-source fragments could be 477 

observed. The detection of [M+Cl]- and [M+Br]- ions were of great importance since they 478 

allowed the determination of [M] rather easily which then also allowed the identification of 479 

other adducts and the molecular formula. The m/z = 966.9944 (in-source fragment) 480 

corresponds to a FTMAP related substance, which was tagged FTMA-diol-sulfone-sulfoxide 481 

or FTMA-diol-O3 (see Fig. 5 and 6). With this correlation technique, several tens of unknown 482 

HS could be grouped into four novel FTMAP related compound classes (Fig. 6). They were 483 

identified with one oxygen (sulfoxide) and up to 4 oxygens (disulfone) and to the best of our 484 

knowledge not reported in literature before. They could be microbial or photochemical 485 

FTMAP TPs and close the unknown gap in a previous FTMAP-related transformation study 486 

[63], or they could be used intentionally or as side-products in PFAS-coated papers that 487 

contaminate these soils. These kind of correlation spectra made identification possible since 488 

the MS2 spectra of the adducts ([M-H]- ions of the FTMA-diols were not detected at all which 489 

makes sense with ESI) barely formed useful fragments except for Br- which made them hard 490 

https://doi.org/10.26434/chemrxiv-2023-r843x ORCID: https://orcid.org/0000-0002-7194-1567 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r843x
https://orcid.org/0000-0002-7194-1567
https://creativecommons.org/licenses/by-nc/4.0/


 
 

23 
 

to interpret. The use of in-source fragments for identification has the advantage that isotope 491 

patterns are available for all ions (features), which is often not the case in MS2 spectra 492 

depending on the isolation width of the precursor ion. All these FTMAP-related substances 493 

form multiple in-source fragments (and adducts), all could be confirmed with rather high 494 

confidence (identification level of 2b). They all could be grouped by C2F4- and O-based KMD 495 

(for O-KMD see Fig. S10) with systematic RT-shifts, besides eluting at higher RT than 496 

FTMAPs due to their lower polarity attributed to the loss of the phosphoric acid group.  497 

 498 

Fig. 6: Detection of coeluting in-source fragments and adducts via the EIC correlator of PFΔScreen for the 499 

identification of 6:2/8:2 FTMA diol sulfoxide sulfone. The EIC of the unknown insource fragment m/z = 500 

966.9944 (which was detected as one member of a HS via KMD) was correlated with all EICs eluting at its RT 501 

± 25 s resulting in non-targeted detection of related ions. In total, 4 HS corresponding to 21 novel FTMAP TPs 502 

were identified via the use of this tool (see Fig. 5). A RT-shift with increasing oxidation degree (1 O up to 4 O) 503 

was observed due to increasing polarity. Note that the EICs of [M+37Cl] and [M+79Cl] are also in the raw MS1 504 

spectra, however they were combined into one feature by feature finding algorithm of pyOpenMS (in case of Br 505 

a wrong isotope grouping occurred) and therefore not detectable by the correlation analysis.  506 

Conclusions 507 

PFΔScreen can efficiently be used for prioritizing features in both LC- and GC- HRMS raw 508 

data in all kinds of samples independently of the vendor of the mass spectrometer used. 509 

Especially, the MD/C-m/C approach is a powerful tool to drastically decrease the number of 510 

features and thus reduce false-positive assignments, overcoming a common issue during NTS. 511 

Due to the short computational time of PFΔScreen (less than one minute for 4000 spectra), 512 

input parameters can be conveniently adjusted depending on the tested sample, instrument 513 

used and end-user needs. Since the number of unknown PFAS in complex environmental and 514 

technical samples is still unknown, NTS approaches that combine several data reduction 515 
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techniques for an efficient workflow are of importance to comprehensively elucidate the 516 

identity occurrence and fate of organic pollutants such as PFAS. 517 
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