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Abstract 

Previous studies (Sparavigna, 2023) have demonstrated the Tsallis q-Gaussian functions suitable for the 
analysis of Raman spectra. Here we consider two asymmetric forms of them, with the aim of further 
improving the fitting of Raman spectra. The first asymmetric form, that we are here proposing for the first 
time, is a generalization of the Breit-Wigner-Fano function. The other profile is that made by two different 
half q-Gaussian functions, chosen to fit the two sides of a Raman band. The case study that we will discuss 
in detail is that of the Raman LO mode of Silicon Carbide. 

Keywords:  Tsallis q-Gaussian distribution, asymmetric q-Gaussian distribution, Breit-Wigner-Fano 
distribution, Raman spectroscopy. 

 

q-Gaussian functions, also known as "Tsallis functions", are probability distributions derived from the 

Tsallis statistics (Tsallis, 1988, 1995, Hanel et al., 2009). The q-Gaussians are based on a generalized 

form of the exponential function (see discussion in Sparavigna, 2022), characterized by a continuous 

parameter q in the range 1 < q < 3.  As given by Umarov et al., 2008, the q-Gaussian function is based 

on function 𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2) , where 𝑒𝑞(. ) is the q-exponential function and 𝐶 a constant.  In the 

exponent, we use 𝛽 = 1 (2𝜎2)⁄  , with variance σ. The q-exponential has expression:  𝑒𝑥𝑝𝑞(𝑢) =

[1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄  , which possesses a bell-shaped profile. In the case that we have the peak of the 

function at position  𝑥𝑜, the q-Gaussian is given as: 

 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝛽(𝑥 − 𝑥𝑜)2) = 𝐶[1 − (1 − 𝑞)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

For q equal to 2, the q-Gaussian is the Cauchy-Lorentzian distribution (Naudts, 2009).  For q close to 

1, we have the usual Gaussian form. For the q-parameter between 1 and 2, the shape of the q-Gaussian 

function is intermediate between the Gaussian and the Lorentzian profile. This behavior turns the q-

Gaussian into a function suitable for the analysis of Raman spectra, where the spectral bands are 

characterized, in the same manner, by intermediate profiles between Lorentzian and Gaussian outlines 

(Kirillov, 2004a). Besides these two functions, which remain the most popular for fitting Raman spectra, 

linear combinations (pseudo-Voigt distributions) or convolutions of them (Voigt distributions) are used 

too (Meier, 2005). The Voigtian function is essentially a Lorentzian height weighted by a Gaussian 

profile. 

Gaussian, Lorentzian, Voigtian and pseudo-Voigtian functions, such as the q-Gaussians are symmetric 

functions. In fitting the Raman bands, we have encountered peaks which are asymmetric. For instance, 

in the case of Diamond, (see SSRN), we had the necessity to use three q-Gaussians to fit the asymmetric 
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Raman peak of the synthetic diamond spectrum. Of course, the presence of more bands producing what 

looks like an asymmetric peak can be motivated by physical reasons; in any case, alternative approaches 

can be used to fit asymmetric profiles, for instance by means of Breit-Wigner-Fano (BWF) functions or 

by pseudo-Voigt (Schmid et al., 2014) or Voigt asymmetric profiles (Ciuryło et al., 1993).  

For what is regarding the BWF functions, which are based on Lorentzian functions, we are here 

proposing their q-generalized form, that is a form based on the q-Gaussian exponential (to the best of 

author knowledge, this is the first time a q-BWF function is proposed). However, to substitute the 

asymmetric pseudo-Voigtian or Voigtian functions, a different form of asymmetric q-Gaussian function 

exists, and it is that used by S. Devi, 2021, for modeling the financial market dynamics. The asymmetric 

q-Gaussian is made by two different half q-Gaussians, chosen to fit the two sides of the band. 

Here we consider q-BWF functions and asymmetric q-Gaussians in some cases. A specific discussion 

will be devoted to the Raman LO mode band of Silicon Carbide. Let us start form the q-BWF function. 

 

q-BWF function 

The Breit-Wigner-Fano function is given as: 

 

𝐵𝑊𝐹 = 𝐶
[1 + 𝜉𝛾1 2⁄ (𝑥 − 𝑥𝑜)]

2

[1 + 𝛾(𝑥 − 𝑥𝑜)2]
 

 

In it, ξ is the asymmetry parameter (see Hasdeo et al., 2014, for the use of Breit-Wigner-Fano line shapes 

for the Raman spectrum of graphene). Parameter γ is the reciprocal of the width. We could generalize 

the BWF in the q-form (q-BFW): 

 

q-BWF =  𝐶[1 + 𝜉𝛽1 2⁄ (𝑞 − 1)1 2⁄ (𝑥 − 𝑥𝑜)]
2

 [1 + (𝑞 − 1)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

However, we can further generalize the asymmetric form in the following manner: 

 

q-BWF =  𝐶[1 + 𝜉𝛽1 2⁄ (𝑞 − 1)1 2⁄ (𝑥 − 𝑥𝑜)]
2𝛼

 [1 + (𝑞 − 1)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

When q=2, α=1, we have the function BWF.  

Hasdeo and coworkers are giving, in their Eq.(1), the BWF line shape composed by three terms: “a 

constant continuum spectrum, a discrete Lorentzian spectrum, and an interference effect between both 

spectra”. The interference term is producing the asymmetry of the profile, according to the positive and 

negative values of argument (x-xo). The dimensionless ξ parameter is “mimicking the ratio between the 

probability amplitude of the continuum spectra to that of the discrete spectra” (Hasdeo et al., 2014).  

In Prawer and Nemanich, 2004, we can find mentioned the asymmetry of Raman peaks according to 

some specific effects; we find also the “phonon confinement effects for finite crystal domains” (Richter 

et al., 1981).  In Campbell and Fauchet, 1986, we can easily see the effects of microcrystal size on the 

shape of Raman spectra. In their Fig.4, an asymmetric peak for a thin film of silicon on saphire (SOS) 

is shown.  
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Let us start from fitting with q-BWF the curve proposed in the Fig.3(a) by Hasdeo et al. (data have been 

recovered from the figure). The continuous curve is given by Hasdeo and coworkers according to a 

theoretical model. The fitting result is shown in the following Figure 1. We can see that the q-BWF is 

a BWF function, as expected by the theory. 

 

 

Fig. 1: The best fit (blue) onto the curve (red) given by Hasdeo et al. A q-BWF is used (the values of α, 

ξ and q-parameters are given in the figure). The misfit is proposed in the lower part of the plot. On the 

right, the same fit is shown with the log scale for y-axis (semi log scale). Data and q-BWF are given as 

functions of integers n (equally spaced points), for the x-axis which is representing the Raman shift. A 

convenient scale is used for the y-axis (intensity axis). The fitting calculation is obtained by minimizing 

the sum of the squares of the deviations (sum from n=1 to n=660). The value of this sum is 5.5 x 10−5. 

Some misfit exists but it is due to the recovering of data from the figure in Hasdeo et al.  

 

Let us consider the work by Campbell and Fauchet, 1986, and their Fig.4, with the peak at 524.5 cm−1 

for a thin film of silicon on sapphire (SOS). 

 

 

Fig. 2: The best fit (blue) onto the curve (red) given by Campbell and Fauchet, 1986.  A q-BWF is used 

(the values of α, ξ and q-parameters are given in the figure). The misfit is proposed in the lower part of 

the plot.  The fitting calculation is obtained by minimizing the sum of the squares of the deviations (sum 

from n=1 to n=230). The value of this sum is 8.5 x 10−4. 
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Then, let us try to apply the q-BWF to a specific case, that of the Raman LO mode band of a material 

which possesses remarkable properties, such as a high thermal conductivity (Sparavigna, 2002), that is, 

the Silicon Carbide. Data are obtained from the Raman Open Database, a database developed in the 

framework of the project SOLSA H2020 (El Mendili et al., 2019). In the file at the web page 

https://solsa.crystallography.net/rod/1000172.html , it is told that the Raman spectrum is related to a 

6H-SiC structure, sampled from a terrestrial moissanite, locality at 150 km NW from Izmir, Turkey. 

About the moissanite and the LO mode in SiC see please Chafai et al., 2001, Rashid et al., 2016, 

Koyanagi et al., 2016, Liu et al., 2010, Xu et al., 2008, Kiefert et al., 2002, and Shiryaev et al., 2011.  

 

 

 

Fig.3: Upper part: data of ROD 1000172 (related ref. Capitani et al., 2007) of the LO mode band (peak 

at position 968.5 cm−1). On the right, the data with log scale y-axis (semi log scale). Lower part: the 

best fit (blue) onto data (in red). A q-BWF is used (the values of parameters are given in the figure). 

The fitting calculation is obtained by minimizing the sum of the squares of the deviations (sum from n=1 

to n=660). The value of this sum is 6.6 x 10−4. 
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The fit is rather good. However, it seems that the peak at 968.5 cm−1 has a left shoulder; moreover, the 

left wing is not properly fitting the data, as we can easily see in the semi log scale. So let us consider 

fitting this peak with the other form of the asymmetric q-Gaussians, but before we must consider the 

fitting with the symmetric q-Gaussians. 

 

Symmetric q-Gaussians for LO mode SiC 

In the following plots, the fits by means of symmetric q-Gaussians are shown for the same LO mode in 

SiC, which we have previously considered. 

 

 

Fig.4: The best fit (magenta) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). A 

symmetric q-Gaussian is used. The sum of the squares of the deviations (sum from n=1 to n=660) is 

equal to 1.82 x 10−3. 

 

 

 

Fig.5: The best fit (green) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). Two 

symmetric q-Gaussians are used (magenta, blue). The sum of the squares of the deviations (sum from 

n=1 to n=660) is equal to 2.94 x 10−5. 
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In the Figure 5 we have a good fit, however the result is posing a question. We have two components 

with the same approximate height: are these components adequate to describe the peak, or further 

components are required? Let us add a third component on the left (Fig.6), and then a further component 

on the right (Fig.7).  

 

 

 

Fig.6: The best fit (green) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). Three 

symmetric q-Gaussian have been used (A, B and C). The sum of the squares of the deviations (sum from 

n=1 to n=660) is equal to 1.25 x 10−5. 

 

 

 

Fig.7: The best fit (green) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). Four 

symmetric q-Gaussian have been used. The sum of the squares of the deviations (sum from n=1 to 

n=660) is equal to 6.8 x 10−6. 
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Asymmetric Tsallis q-Gaussian lines 

Figures 6 and 7 are evidencing that, if we use a fitting model based on symmetric q-Gaussians, we can 

have a main component and a relevant shoulder on its left. This suggests us that we can try to fit the 

peak in the three following asymmetric manners. The first is that of using a single asymmetric function. 

The second manner is to imagine A and B components (see Fig.6) merged in an asymmetric function 

and the C component represented by a symmetric q-Gaussian. The third manner is that of fitting A with 

a symmetric q-Gaussian and B and C merged into an asymmetric function. Instead of using the 

previously proposed q-BWF function (Fig.4), here we consider the asymmetric Tsallis q-Gaussians as 

given in Devi, 2021, that is: 

 

q-Gaussian_LEFT = 𝐶𝑒𝑥𝑝𝑞𝐿
(−𝛽𝐿(𝑥 − 𝑥𝑜)2) = 𝐶[1 − (1 − 𝑞𝐿)𝛽𝐿(𝑥 − 𝑥𝑜)2]1 (1−𝑞𝐿)⁄ ,  

when 𝑥 − 𝑥𝑜 < 0 

 

q-Gaussian_RIGHT = 𝐶𝑒𝑥𝑝𝑞𝑅
(−𝛽𝑅(𝑥 − 𝑥𝑜)2) = 𝐶[1 − (1 − 𝑞𝑅)𝛽𝑅(𝑥 − 𝑥𝑜)2]1 (1−𝑞𝑅)⁄ ,  

when  𝑥 − 𝑥𝑜 > 0 

 

Parameters q and β of the two half parts are different. 

Here in the resulting plots with one and two components. The Fig.8 is the peak fitted in the first manner, 

with a single asymmetric q-Gaussian. 

 

 

 

 

Fig.8: The best fit (blue) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). An 

asymmetric q-Gaussian has been used. The sum of the squares of the deviations (sum from n=1 to 

n=660) is equal to 2.9 x 10−4. 
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Fig.9: The best fit (green) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). An 

asymmetric (blue) q-Gaussian and a q-Gaussian (magenta) have been used. The sum of the squares of 

the deviations (sum from n=1 to n=660) is equal to 1.55 x 10−5. 

 

The second manner is that of a fit with a main asymmetric component and a shoulder on the left (Fig.9).  

We could also add a further component to the right of the band, but this is not increasing information 

about the role of asymmetry. 

A discussion about the use of one or two mode methods for the asymmetric LO band was proposed by 

Sun et al., 2013. Their Fig.4 is suggesting us the use of the third method of fitting, that is the use of a 

symmetric q-Gaussian function for the largest component and an asymmetric q-Gaussian for the should 

om its left. 

 

 

Fig.10: The best fit (green) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007). An 

asymmetric (blue) q-Gaussian and a q-Gaussian (magenta) have been used. The sum of the squares of 

the deviations (sum from n=1 to n=660) is equal to 1.55 x 10−5. 
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The results proposed in the previous plots, regarding the case of the LO mode of SiC are encouraging 

for applying the asymmetric q-Gaussian to fit the bands of the Raman spectrum.  

Let us conclude adding the fit with asymmetric q-Gaussians of the data by Campbell and Fauchet, 1986, 

which seems being good too.  

 

 

 

 

Fig. 11: The best fit (blue) onto the curve (red) given by Campbell and Fauchet, 1986.  Upper part: an 

asymmetric q-Gaussian is used (the values of the q-parameters are given in the figure, note that one of 

them is larger than 2). The misfit is proposed in the lower part of the plot.  The fitting calculation is 

obtained by minimizing the sum of the squares of the deviations (sum from n=1 to n=260). The value of 

this sum is 3.5 x 10−4. The fit seems being slightly better than that proposed in the Fig. 2. Lower part: 

an asymmetric q-Gaussian and a q-Gaussian are used for the fit. Parameters q are given in the panel 

on the right. The sum of the squares of deviations is equal to 5.4 x 10−5. 
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The fit in the lower part of the Fig.11 is showing the case with an asymmetric main component and a 

flat q-Gaussian shoulder. If we use an asymmetric shoulder and a symmetric main component (see 

Fig.12), the result turns out being worse 1.4 x 10−4.  Note that the asymmetric function in the Fig.12 is 

like that shown in the Fig.10. 

 

 

Fig. 12: Using an asymmetric shoulder and a symmetric main component, the result turns out being 

worse than that given in the Fig.11 (lower part). 

 

Discussion about asymmetry 

For our discussion we start from the work by Wieligor et al., 2005, which is displaying the Raman 

spectra of silicon carbide in the form of small particles and nanowires. It is observed that SiC has the 

main Raman peaks centred at 796 and 973 cm−1 . The first peak corresponds to the transverse optic (TO) 

mode, the second to the longitudinal optic (LO) mode. “The LO band has its intensity dependent on the 

wavelength of the incident laser”. If a 514 nm laser excitation is used, “the LO band had its intensity 

similar to that of the TO band, but when the 780 nm laser was used, the LO band had intensity much 

smaller than the TO peak” (Wieligor et al., 2005). 

Wieligor and coworker stress the role of the laser power. “Silicon carbide is a material that effectively 

absorbs light, including the incident laser light. During this process the sample’s temperature increases 

and this may cause frequency shifts. This effect may overlap with shifts due to other effects and must 

be separated. … To reduce laser induced heating effects, during” their studies, Wieligor and coworkers 

“applied a very small laser power of 0.01 W, and to collect spectra of high signal to noise ratio” they 

“used long exposure times.” (Wieligor et al., 2005). Moreover, Wieligor and coworkers observe that 

“with decreasing grain size the intensity of the Raman lines of SiC was decreasing, the LO and TO 

peaks became increasingly broader and asymmetric, and their frequency shifted”. The researchers also 

remember that Nemanich et al., 1981, “observed asymmetric broadening of Raman lines and frequency 

shifts when the crystal size was decreasing. They explained these effects in terms of the phonon 

confinement model”. Nemanich and coworkers investigated BN microcrystalline samples.  

By means of their investigations, Wieligor and coworkers noted that “For small size crystals the TO 

peak is accompanied by a shoulder on the low frequency side. For SiC of average grain sizes of 400 and 

220 nm the shoulder was observed at 765.5 cm−1. For 20 nm crystals it was observed at 761.5 cm−1 and 

for NW-B [sample] at 757 cm−1. … Recently, Rohmfeld et al. showed that the separation between the 

TO peak and the shoulder reflects the average distance between stacking faults” (Wieligor et al., 2005). 
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Stacking faults are the most common defects observed in silicon carbide (Wieligor and coworkers, 

mentioning Vetter and Dudley, 2004). 

In the article by Wieligor and coworkers, it follows a detailed discussion about Brillouin zone activity 

in the first-order Raman scattering and about the grain size effect, concluding that, “in view of the 

discussion of the TO band position dependence on effects other than the crystal size, it is reasonable to 

assume that the LO band is also affected by the presence of defects, strains and surface layer, and the 

observed frequency shift cannot be used to evaluate grain sizes. The existence of defects is also 

manifested by large band widths and the presence of shoulders” (Wieligor et al., 2005). 

Let us also report the following observations from Wieligor et al., 2005: “For small particles the number 

of atoms close to the surface is comparable to that in the interior of the particle. The core-shell model 

of nanosize crystals assumes that in the core atoms are arranged in the crystallographic structure 

identical to that of bulk crystal, but the outer layers of the nanocrystals, the shells, although also arranged 

in the same crystallographic structure, have interatomic distances that are slightly increased (SiC, 

diamond) or decreased (GaN)” (see references given by Wieligor et al.). “The surface atoms may 

contribute less to the polarization than the core atoms because of the lack of counter-ions outside the 

grain” (Wieligor et al., 2005).  

Regarding the asymmetry of Raman peak profiles, Gao and Yin, 2017, discuss its origin in the case of 

Silicon nanocrystals. “The asymmetric peak broadening towards the low-frequency side of the Raman-

active mode of Si nanocrystals with the decreasing size has been extensively reported in the literatures”. 

Gao and Yin are proposing an atomic model “to study the origin of the ubiquitous asymmetric peak on 

the optical phonon fundamental in the Raman spectra of Si nanocrystals”. The model “revealed that the 

observed asymmetric broadening is mainly caused by the surface bond contraction and the quantum 

confinement”. As asserted by Gao and Yin, “The asymmetry and broadening around the main Raman 

peak in symmetric stretching vibration region undoubtedly correspond to the variant of secondary-

structure, which is usually considered as a surface effect of nanocrystals, and assigned as a “surface 

optical” phonon”. 

In Gao and Yin we can find the Richter-Wang-Ley (RWL) theory for the Raman intensity, that is the 

theory which is representing the effect of the phonon confinement in the finite crystal domains, as giving 

the following intensity: 𝐼(𝜔) = ∫ | 𝐶𝐷(𝑞)|𝐿(𝜔, 𝑞)𝑑𝑞.  𝐶𝐷(𝑞) is the Fourier coefficients of an envelope 

function. D is the nanocrystal size. 𝐿(𝜔, 𝑞) corresponds to the Lorentzian profile "associated to each 

Raman active phonon" (Gao and Yin). This model is good for microcrystals but not proper for 

nanocrystals. Gao and Yin, "considered to analyze the Raman spectra of Si nanocrystals by 

decomposing Si nanocrystal into four type of Si atoms". We find in their model the one-coordinated Si 

atoms, Si(1), such as the two-, three- and four-coordinated Si atoms, denoted as Si(2), Si(3) and Si (4). 

Si(1), Si(2) and Si(3) are related to surface atoms, whereas  Si(4) is representing the atoms inside the 

nanocrystallite core. "Each type of Si atoms can produce a Raman subpeak. The Raman spectrum of Si 

nanocrystals is a sum of four broadened symmetric Lorentzian subpeaks of Si atoms with different 

coordination. The ratio of the relative integrated intensity between each two different coordinated Si 

atoms is proportional to their number of atoms".  

As we have previously seen, three q-Gaussians components are able, as in the Fig.6, to fit the 

asymmetric LO mode of SiC (the fit is further improved if four components are used). In the framework 

of a RWL model, we can assume to use an asymmetric q-Gaussian accompanied by a symmetric q-

Gaussian as in the Fig.9. According to the discussion previously given, both approaches can be adopted 

for fitting asymmetric peaks. 
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