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Abstract

NMR spectroscopy is an important analytical technique in synthetic organic chem-

istry, but its integration into high-throughput experimentation workflows has been lim-

ited by the necessity to manually analyze NMR spectra of new chemical entities. Cur-

rent efforts to automate the analysis of NMR spectra rely on comparisons to databases

of reported spectra for known compounds, and, therefore, are incompatible with the

exploration of new chemical space. By reframing the NMR spectrum of a reaction mix-

ture as a joint probability distribution, we have used Hamiltonian Monte Carlo Markov

Chain (HMCMC) and density functional theory (DFT) to fit predicted NMR spectra

to those of crude reaction mixtures. This approach enables the deconvolution and

analysis of spectra of containing mixtures of compounds, without relying on reported

spectra. The utility of our approach to analyze crude reaction mixtures is demon-

strated with experimental spectra of reactions that generate a mixture of isomers, such
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as Wittig olefination and C–H functionalization reactions. The correct identification

of compounds in a reaction mixture and their relative concentrations is achieved with

mean absolute error as low as 1%.

Introduction

The synthesis of novel chemical compounds is a crucial component of organic chemistry, and

the preparation of novel compounds requires significant experimentation to identify reaction

conditions that form products with acceptable yield, chemo- and stereoselectivity, purity,

cost, and environmental footprint. High-throughput experimentation (HTE) techniques al-

low researchers to conduct hundreds or thousands of experiments quickly, but analysis of

those experiments remains a significant bottleneck.

The most common approach to identify and quantify the reaction products in reaction

mixtures in a high-throughput fashion is gas or liquid chromatography. This approach re-

quires authentic standards of the expected products to confirm the presence of reaction

products and calibration curves to accurately quantify product concentrations.1 When only

a small number of products are being considered, it is manageable to isolate or independently

generate an authentic standard for each potential product or byproduct. However, if a large

library of novel compounds is made, isolating or independently synthesizing each compound

under consideration is prohibitively time consuming. The synthesis of large libraries of com-

pounds that span unexplored areas of chemical space is critical for the diversity-oriented

synthesis approach in drug discovery,2 the generation of training data for machine learning

models,3,4 and the automated discovery of novel reactions.5 Methods for reaction analysis

that are based on mass spectrometry have limited ability to differentiate compounds that

are isomers of one another, and cannot be used easily to quantify the concentrations of novel

products.6–8

In contrast to gas or liquid chromatography, nuclear magnetic resonance (NMR) spec-

troscopy is commonly used to determine the relative concentrations of reaction products
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without the need for an authentic standard or calibration curve. Moreover, NMR spec-

troscopy provides detailed information about the identity of products, allowing it to be used

to determine the structure of new chemical compounds. The use of NMR spectroscopy to

analyze the data generated by HTE would dramatically expand the capabilities of HTE,

especially when large numbers of novel compounds are synthesized. However, in most cases,

NMR spectra are analyzed by experts, slowing down the process of an otherwise automated

workflow. A tool that automatically analyzes the NMR spectra of an unpurified reaction

mixture (henceforth referred to as the crude spectrum) would greatly enable HTE campaigns.

Prior approaches to the automated analysis of NMR spectra employ machine learning

models to analyze spectra. The majority of current models analyze the spectrum of a pure

sample of an unknown compound to determine its identity.9–13 These models can be employed

only on spectra that contain a single compound, but full workflows capable of analyzing

multi-component spectra are becoming more commonplace.14–18 Although powerful for their

trained tasks, these machine-learning models require a database containing spectra of each

potential component, and cannot identify novel compounds.

Markov Chain Monte Carlo (MCMC) methods have been used for a diverse range of appli-

cations related to NMR spectroscopy,19–23 including MCMC methods for the deconvolution

and quantification of multicomponent spectra, given a library of known compounds.24,25 Like

the machine learning approaches, this approach has not been used to identify or quantify

compounds for which a spectrum is not already documented, and this limitation leads to the

same need for authentic standards that hampers analysis by gas and liquid chromatography.

Therefore, a tool is needed that performs the automated analysis of crude NMR spectra

without purified NMR spectra of individual components.

Hamiltonian Monte Carlo Markov Chain (HMCMC) modeling is a statistical sampling

method that allows for the efficient sampling of a conditional probability distribution when

only a joint probability distribution is available. By reframing the NMR spectrum of a

reaction mixture as a joint probability distribution, it could be possible to use HMCMC
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to fit DFT-predicted spectra to crude reaction spectra. In most cases, a synthetic chemist

knows which products or side products are likely to have formed in a reaction and can provide

structures of all relevant products. It is also becoming more common for reaction-prediction

models to enumerate probable reaction products.26–31 One could imagine creating a tool that

considers a list of products provided by a user, identifies which products are in the crude

spectrum, and determines their relative concentrations. This approach relies on the use

of computed spectra in place of experimentally determined spectra of authentic products,

thereby dramatically increasing the utility by enabling the identification and quantification

of products in a reaction mixture that have not been previously described.

To address this need, we have developed a combined DFT-HMCMC workflow to analyze

crude NMR spectra of reaction mixtures without the need for an experimentally generated

library of known spectra. This workflow consists of: 1) obtaining ground state conformers

of a set of candidate compounds, 2) calculating the NMR isotropic shielding constants via

DFT to predict the 1H-NMR spectrum of each compound in solution, and 3) varying the

stoichiometric weights and chemical shifts of each candidate compound via HMCMC anal-

ysis to identify the products and the relative ratios of those products. We show that this

model can analyze experimental spectra of various reaction types, enabling the automatic

identification of reaction components and the quantification of their relative concentrations.

Methods

NMR Simulations

All molecular dynamics and ab initio calculations were performed at the National Energy

Research Scientific Computing (NERSC) facility Cray XC40 computer running an Intel

Xeon Processor E5-2698 v3 node with 128 GB of memory. For each compound, a conformer

search was performed using the Conformer-Rotamer Ensemble Sampling Tool (CREST)32

simulating a solvent environment of CHCl3. The ground state conformer found via CREST
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was optimized, and the NMR shielding tensors and J -coupling tensors were calculated using

approximate density functional theory (DFT) in QChem v6.0.1.33 A generalized gradient

approximation (GGA) density functional was used following an implementation of Becke’s

B3LYP GGA functional.34

Dunning’s correlation consistent triple-ζ cc-PVTZ basis set35 was used to optimize the

geometry of the structure and calculate the shielding tensor, as suggested by Flaig et al.36

Jensen’s polarization consistent pcJ-2 basis set37 was used for the J -coupling calculation.

These functionals and basis sets were chosen to balance speed and accuracy; while more

accurate methods exist to calculate isotropic shieldings and J -couplings,37–43 many of these

methods are prohibitively expensive for application in high throughput workflows. We used a

linear scaling approach to compensate for the systematic errors of DFT calculations. We show

that the fitting procedure developed herein enables the accurate identification of products,

despite the relatively low accuracy of the DFT calculations.
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Figure 1: Experimental isotropic chemical shielding versus the calculated isotropic chem-
ical shift derived from the DFT-calculated isotropic nuclear shielding using the equation
δiso = -0.9548σiso

gas + 30.435 which has an R2 = 0.9941 and an MAE of 0.1 ppm.

The HMCMC analysis is robust against small (ca. 0.1 ppm) errors in isotropic chemical

shifts, but it cannot accommodate large errors in the predicted chemical shifts. The accu-
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racy of the isotropic shifts obtained from DFT calculations was improved by correlating the

calculated isotropic shieldings to the experimentally observed isotropic shifts, rather than

referencing the calculated chemical shifts to the calculated chemical shift of a standard com-

pound, such as trimethylsilane (TMS). Kwan and Liu43 have shown that such calibrations

serve as simple rovibrational corrections to the predicted isotropic shifts of the ground state

conformations of small molecules. To create a calibration line, 33 experimental NMR spec-

tra of compounds in CDCl3 solvent were obtained from the Spectral Database for Organic

Compounds (SDBS)44 (all compounds are listed in the Supporting Information). The se-

lected compounds were subjected to the procedure above to obtain isotropic shieldings for

non-labile protons. The error in the calibration curve shown in Fig. 1 is 0.1 ppm and fits a

functional form of

δisoCDCl3
= −0.9548σiso

gas + 30.435 (1)

in which δisoCDCl3
is the isotropic chemical shift in a CDCl3 solvent environment and σiso

gas is

the DFT-calculated isotropic nuclear shielding. This relationship was used to convert the

nuclear shieldings calculated by DFT to isotropic chemical shifts.

Spectral Fitting with HMCMC

In our method, an initial trial spectrum is generated as a linear combination of the spectra

calculated for the compounds hypothesized to be in the reaction mixture. That trial spec-

trum is then fit to the experimentally observed NMR spectrum. To do so, we reframe the

NMR spectrum as a statistical distribution of stoichiometric coefficients (relative concentra-

tions) and NMR parameters (chemical shifts) and use Hamiltonian Markov Chain Monte

Carlo (HMCMC) to fit a trial spectrum to the observed spectrum. HMCMC is a technique

that is widely used to sample from target distributions when direct sampling is not avail-

able. Typical MCMC methods are inefficient for this application because they scale poorly

with the number of dimensions. HMCMC uses the principles of Hamiltonian dynamics to
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Figure 2: Overview of three-step procedure for deconvoluting NMR spectra.

produce Markov chains and scales more efficiently45 than MCMC methods as the number of

dimensions increases.

A workflow was created around HMCMC modelling, as shown in Fig. 2, to determine the

true composition of an NMR spectrum containing multiple species, given a set of candidate

products. In the first step, approximate NMR spectra for each candidate compound are

calculated with DFT, and the calculated isotropic shieldings are converted to isotropic shifts

using Eq. 1. Next, to simplify fitting the spectrum, regions of the spectrum that are most

likely to eliminate potential products are identified and fit iteratively. The spectrum is

divided into sub-spectra by creating intervals of ±0.5 ppm around each observed peak.

Overlapping intervals are merged across all compounds in the spectral library, and a set

of spectral intervals is determined. The information content (described in section Spectral

Information Content, below) of these intervals is used to rank the order in which intervals

are fit. Finally, iterative HMCMC fitting is used to remove compounds present in low

concentrations, based on a cutoff criterion.

To a first approximation, a spectrum in the time domain, S(t), may be modelled as a
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sum of time signals, s(t), for each proton, l,:

S(t) =
∑
l

sl(t), (2)

in which

sl(t) = alexp(2πiΩlt) (3)

al is the weight of the time signal, and Ωl is the frequency for each proton. The presence of

J -couplings splits the signals into a predictable pattern, wherein the number of splittings is

given by the familiar N+1 rule, with the spacing between split peaks given as J/2 and the

new intensities following pascals triangle:

a
(r)
l = al

n!

(n− r)r!
. (4)

To approximate the decay characteristic of real NMR signals, an exponential decay term, λ,

is added to give

sl(t) = alexp(2π(iΩl − λ)t). (5)

Upon Fourier Transform into the frequency domain, the real part of the spectrum is given

by a sum of Lorentzian lineshapes

Re{S(Ω)} =
∑
l

al
λ

λ2 + (Ω− Ωl)2
. (6)

In the case of an expermentally acquired spectrum, the frequencies are referenced to some

compound, often TMS, and chemical shifts, δl, are used rather than the frequencies.

For a library of candidate compounds derived from chemical intuition, such as all possible

constitutional isomers that could form by a C–H bond functionalization reaction, we calculate

the conditional probability distribution of the component weighting factors, given the set of
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NMR parameters and the experimental spectrum, Sexp,

P ({al}|{δl,i}, {Jl,ij}, Sexp). (7)

From the DFT simulations, however, all that is available is the joint probability distribution

P ({al}, {δl,i}, {Jl,ij}, Sexp). (8)

Fortunately, HMCMC allows one to generate samples from the conditional probability dis-

tribution, given only the joint probability distribution (up to some constant). For more

information on the HMCMC algorithm, we refer the reader to the numerous reviews on the

topic.46,47

It is worth highlighting that our approach involves approximating the NMR spectrum

as a probability distribution. This approximation introduces the potential for inaccuracies

in the predicted chemical shifts, especially in spectral regions where significant overlap oc-

curs. Nonetheless, the HMCMC algorithm accurately fits probability densities, leading to

precise predictions of concentration in our case. Moreover, leveraging the representation of

probability distribution of the NMR spectrum alongside the HMCMC technique accelerates

convergence, compared to conventional methods like least squares minimization.

All HMCMC runs were performed at the NERSC facility Cray XC40 computer running an

Intel Xeon Processor E5-2698 v3 node with 128 GB of memory. The HMCMC runs followed

the python package NumPyro 48,49 implementation, along with the No-U-Turn Sampler.50

Component weighting factors were sampled using a Half Cauchy prior distribution, and

isotropic chemical shifts were sampled from a normal distribution centered about the isotropic

shift with a standard deviation based on the error of the DFT calculations (0.1 ppm). For

simplicity, the J -couplings were held constant. The HMCMC run was initialized with 1000

warmup samples and 3000 samples.

Calculated NMR lineshapes closely approximate delta functions, so a Gaussian apodiza-
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tion was applied to the simulated NMR lineshapes to broaden them and better approximate

an experimental spectrum. A full-width-half-max (FWHM) of 2 Hz was determined (based

on fitting spectra to the starting materials as described herein) and applied to each simulated

NMR spectrum. To increase gradient overlap between NMR peaks in the simulated and ex-

perimental spectrum, an additional broadening filter was applied to both the experimental

and simulated spectra. We found that a Gaussian apodization with FWHM of 10 Hz was

sufficient for increasing the gradient overlap in the HMCMC procedure.

The HMCMC procedure was conducted iteratively with the library of candidate com-

pounds to fit the simulated spectra to the experimental spectrum. Compounds with a

calculated concentration under a threshold level (initially set to 10 %) were removed from

the library, and HMCMC was repeated on the remaining candidates. This procedure was

repeated until all remaining compounds were predicted to be present in the mixture corre-

sponding to the spectrum.

Analytical Statistics

To measure the performance of our approach, we considered two goals: (1) correctly iden-

tifying which candidate compounds are present in a reaction mixture, and (2) correctly

calculating the relative concentrations of each compound in a reaction mixture. To deter-

mine the accuracy of the HMCMC procedure when finding the correct components of a

mixture, we use classification accuracy. Classification accuracy is defined as the ratio of the

correctly labelled components to all classifications:

Acc. =
TP + TN

TP + TN + FP + FN
(9)

in which TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives.

We next calculated the accuracy of our approach that determines the concentrations of
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each compound in the mixture. Concentrations form a simplex (i.e. the sum of concentra-

tions for the set is a constant, often normalized to 1), and statistics over the simplex do not

follow the same rules as statistics over the unbound Rn. Two common approaches to handle

compositional data analysis over a simplex are the logratio analysis method and the unit

simplex method; in this case the unit simplex method was used for simplicity. For further

information on compositional data analysis and these two approaches, we refer the reader to

prior reports.51,52

Given a D-part composition, the composition vector is given as x = Ĉ[x1, x2, ..., xD] in

which each xi is a composition. Ĉ is the closure operator which normalizes the composition

vector to 1 by dividing each element of the vector by the sum of the components. For the

purposes of statistics over this simplex, the sample space, SD, is given as the set

SD =
{
[x1, x2, ..., xD] : xi > 0 ∀ i ∈ [1, 2, ..., D],

∑
xi = 1

}
. (10)

Given N measurements of the composition vector, we construct a D × N matrix, which

contains observations of compositions, xN = [x̂1, x̂2, ..., x̂D], in which each x̂i is a column

vector of the xi composition for that observation. We are most interested in the measure of

central tendencycenter, ξ of the data, which is similar in interpretation to the mean of the

data set in Euclidean statistics. The center of the data is given as

ξ = Ĉ[g1, g2, ..., gD] (11)

in which gi is the geometric mean of the component vector x̂i. To report the error between

the true and predicted compositions, we use the mean absolute error (MAE) as the absolute

difference between the two composition vectors normalized by the size of the vectors.

In order to consider only a subset of the elements of a mixture, we form a subcomposition

(or subsimplex). Given a D-part composition, a C-part subcomposition, for which C < D,

may be formed via xC = Ĉ[x1, x2, ..., xC ], in which all xi ∈ C. The calculation of MAE
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follows as above for a subcomposition.

Spectrum Acquisition

Simulated experimental spectra were obtained by combining known quantities of commer-

cial reagents and directly acquiring an NMR spectrum. Crude experimental spectra were

obtained by analyzing the reaction mixture at the end of an experiment, without any purifi-

cation. NMR spectra were acquired on 400, 500, and 600 MHz Bruker instruments at the

University of California, Berkeley NMR facility. Chemical shifts were reported relative to

residual solvent peaks (CDCl3= 7.26 ppm for 1H)

The crude experimental spectra were obtained following either the borylation of arene C–

H bonds or the olefination of aldehydes with a Wittig reagent. The borylation of C–H bonds

was accomplished by the following procedure:53 In a nitrogen-filled glove box, B2Pin2 (10.4

mg, 0.04 mmol), [Ir(COD)OMe]2 (1.7 mg, 0.0025 mmol, 6.25 mol %), Me4Phen (1.2 mg,

0.005 mmol, 12.5 % mol), and THF (1 mL, 0.04 M) were combined in a 4 mL vial equipped

with a stir bar. The vial was heated at 80 °C for 1 h, and the catalyst mixture became dark

red. To a separate vial, was added substrate (0.203 mmol, 5 equiv). The catalyst mixture

was added to the substrate, and the vial was sealed with a Teflon-lined cap. The reaction

mixture was stirred at room temperature for 18 h. Volatile materials were evaporated with

a rotary evaporator to obtain the crude products, which were directly analyzed by 1H-NMR

spectroscopy.

The olefination of aldehydes with a Wittig reagent was accomplished by the following

procedure: To a solution of methyl (triphenylphosphoranylidene)acetate (100 mg, 0.30 mmol,

0.8 equiv) in water (5 mL, 0.08 M) was added benzaldehyde (40 mg, 0.38 mmol). The reaction

mixture was heated at 80 °C for 1h. The reaction was quenched by addition of brine and

extracted with EtOAc. The organic and aqueous layers were separated, the organic layer

was dried with Na2SO4, and the solvent was evaporated with a rotary evaporator to obtain

the crude products, which were directly analyzed by 1H-NMR spectroscopy.
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The starting materials and reagents used to assemble the reactions are known compounds,

and their NMR spectra are either reported or can be immediately acquired. In such cases,

we used reported or experimental spectra to refine the predicted spectra for these reaction

components. To adjust the NMR parameters (isotropic shifts, J -couplings, and Gaussian

FWHM broadenings), the simulated spectrum was fit to the experimental spectrum using

the python package Mrsimulator .54 Mrsimulator increases the accuracy of NMR parameters

calculated by DFT, and this approach resulted in better fitting with the HMCMC procedure.

Using simulation objects allows the fitting of molecular properties (shifts), rather than direct

line shapes (spectra). This approach introduces flexibility in the source of NMR spectra,

enabling the use of different spectrometer field strengths or spectral widths.

Spectral Information Content

To simplify and accelerate the spectral fitting procedure, we considered the spectrum as

smaller spectral intervals and fit these intervals, rather than the whole spectrum. Dividing a

spectrum into smaller regions of interest is similar to how an expert manually analyzes a spec-

trum and affords the workflow multiple benefits. The major benefit is that better resolved

regions are analyzed first, allowing candidate compounds to be removed from consideration

before assessing more congested regions of the spectrum.

To quantify the information content of spectral intervals, we use a concept from informa-

tion theory in which the information content is quantified as information entropy, H, defined

as

H(x) = −
∑
x∈X

p(x) log p(x). (12)

Here, our spectral space, X, is composed of possible compounds present within an interval,

which is readily available from the DFT-generated candidate library. The probabilities, p(x),

of identifying a candidate compound in a region of an NMR spectrum is defined as the ratio

of compounds predicted to appear in that interval to the total number of compounds in the
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candidate library. Intervals are then ranked by their entropy to determine the order in which

these intervals are fit, with high information entropy intervals fit first. In situations in which

multiple intervals have the same entropy, the coincident intervals are ordered from furthest

downfield to upfield, as is a common strategy when analyzing spectra manually.

Results and Discussion

Performance Benchmarking

...
C1
C2

Cn

...

Candidate Generation
True Predicted Candidate

True Spectrum

mol 1:

mol 2:
.
.
.
.

mol n:

{{ δ(1)
i }, { 2J(1)

ij }}

{{ δ(2)
i }, { 2J(2)

ij }}

{{ δ(n)
i }, { 2J(n)

ij }}

mol 1:

mol 2:
.
.
.
.

mol n:

{{ δ(1)
i + Δ }, { 2J(1)

ij }}

{{ δ(2)
i + Δ }, { 2J(2)

ij }}

{{ δ(n)
i + Δ }, { 2J(n)

ij }}

Figure 3: General procedure for creating the set of true and estimated candidate compounds
in the benchmark testing. To generate a ”True” library of spectra, each simulated compound
is given a set of shifts and couplings which can be used to generate a spectrum. The simulated
predictions for each compound are generated by adding noise, ∆, to the shifts. The noise
is sampled from a normal distribution with the variance determined by the level of theory
used: ∆ ∼ N(0, σ2

Thoery). The observed spectrum is generated by multiplying each library
spectrum by a randomly sampled weighting parameters Ci, and adding the spectra together.

To evaluate the performance of the HMCMC fitting portion of the workflow, we conducted

a series of benchmark tests. These benchmarks are designed to evaluate the ability of the

HMCMC procedure to analyze NMR spectra of reaction mixtures and autonomously identify

the constituents. The value of our method is that it is tolerant of errors in the chemical shifts

of the resonances in a spectrum of a crude reaction mixture, allowing us to use calculated

spectra in place of those derived from experimental data. To test the impact of errors in

the predicted chemical shifts of the reaction components, we considered three levels of NMR

predictions with varying accuracy. The first, a rule-based NMR prediction implemented in

14

https://doi.org/10.26434/chemrxiv-2023-g82z3 ORCID: https://orcid.org/0000-0003-3468-2006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g82z3
https://orcid.org/0000-0003-3468-2006
https://creativecommons.org/licenses/by/4.0/


ChemDraw®, is characterized by a standard deviation of roughly 0.4 ppm in the predicted

chemical shifts.55 The standard deviation of chemical shifts calculated by DFT using the

functional and basis set described above was found to be roughly 0.1 ppm. Finally, these

approaches to chemical shift estimation are compared against the use of known spectra from

a chemical library repository, which represents the best-case scenario of having known NMR

spectra. Because our method requires a standard deviation parameter, we assign a chemical

shift standard deviation of 0.01 ppm for molecules with a known spectrum. These three

methods (ChemDraw®, DFT, and library sources of NMR spectra) were compared in three

benchmark tests: 1) fitting a complex spectrum containing n number of compounds using

a candidate list of n molecular structures (in which n = 5 or 10); 2) the same procedure as

(1) with the addition of random noise to the baseline of the true spectrum; and 3) fitting a

complex spectrum containing 5 compounds using a candidate list of 10 molecular structures,

with and without the addition of baseline noise.

To generate candidate compounds for these benchmark tests, a set of artificial NMR

spectra was created, as illustrated in Fig. 3. Each artificial spectrum was created by summing

a series of component spectra, each of which was created by the following procedure: Each

component spectrum contained 10 resonances with isotropic shifts selected from a spectral

range of 0 to 10 ppm. In each component spectrum, each of the resonances was assigned

a random integer intensity between 0 and 3. Of the ten resonances in each component

spectrum, 5 were randomly selected to be coupled, with a J -coupling value of either 5

or 10 Hz. Each component spectrum was then assigned a weight, which represents the

concentration of the compound in the mixture, by sampling from a Dirchlet distribution with

a length parameter equal to the number of compounds in the spectrum. The spectra were

then multiplied by their respective weights and stacked into a single composite spectrum,

which mimics an experimental spectrum of a reaction mixture.

The test set for each simulation method (ChemDraw®, DFT, and library) assessed the

influence of error in the predicted isotropic shifts of the resonances in the component spectra
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on the ability to fit the component spectra to the composite spectrum. To simulate a case

in which the candidate compounds are known, but the predicted shifts have some error,

each component spectrum from the artificial data set was copied, and the isotropic chemical

shifts of each resonance were jittered. A point was sampled from a Gaussian distribution

centered at 0 with a standard deviation dependent on the method of testing (σ ≈ 0.4 ppm

for ChemDraw, 0.1 ppm for the DFT method herein, and 0.01 ppm for spectra reported in

chemical libraries), and this point was added to the base isotropic shift value to introduce

artificial error. The jittered component spectra were then fit to the composite spectrum to

identify the weights of each component spectrum, despite the errors in chemical shift. Each

test was repeated 15 times, each time generating a new, random set of spectra, and the

results were averaged. The results for the Benchmarks 1 and 2 are summarized in Table 1

and Benchmark 3 is summarized in Table 2.

Table 1: Summary of results for benchmark experiments 1 and 2. In each benchmark, either
5 or 10 compounds are used to construct the spectrum and the same 5 or 10 compounds are
present in the candidate library. Benchmark 1 involves fitting the spectrum ”as is” while
the spectrum in Benchmark 2 includes baseline Gaussian noise. The mean absolute error
(MAE) of the concentrations of the compounds is given for each test.

Benchmark N Compounds
ChemDraw DFT Library
MAE / % MAE / % MAE / %

1
5 9 6 2
10 6 5 2

2
5 7 5 2
10 6 5 2

Benchmark 1: Variable Ratios

With a sample size of 15 runs, the HMCMC procedure accurately predicted the relative con-

centrations of compounds in a composite spectrum. The accuracy of the HMCMC assignment

was proportional to the accuracy of the method used to simulate the NMR spectra, as evi-

denced by a monotonic decrease in MAE as the level of simulated average error in chemical

shifts decreased. Fitting the NMR spectra of 5 or 10 compounds to a simulated composite
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spectrum with average errors in chemical shifts consistent with predictions by ChemDraw®

(ca. 0.4 ppm) was accomplished with an MAE in the predicted weights of each component

spectrum of 9% and 6%, respectively. The errors in chemical shifts representative of predic-

tions by DFT (ca. 0.1 ppm) resulted in HMCMC fitting with an MAE of 6% and 5% for

5 and 10 components, respectively. Finally, the errors in chemical shifts representative of

referencing known chemical shifts (ca. 0.01 ppm) led to an MAE of 2% for both tests. All

methods are insensitive to the number of components in the composite spectrum, indicating

that the HMCMC procedure can deconvolute even complex spectra with multiple overlap-

ping peaks. In addition, the results suggest that NMR predictions that are computationally

cheaper, but less precise, can be used in this context if the associated error in the predicted

concentrations is acceptable. Therefore, deconvolution of spectra with significant overlap or

spectra with similar line shapes should be conducted with high-precision prediction methods,

whereas deconvolution of spectra with peaks that are well-spaced and easily identified can

be conducted with less precise prediction methods.

Benchmark 2: Baseline Noise

In contrast to the artificial spectra used in our first test case, spectra obtained experimentally

contain baseline noise, due to both electronic noise and minor impurities arising from the

solvent, reagents, substrates, or byproducts present in low concentrations. To test the ability

of our approach to analyze NMR spectra in the presence of baseline noise, we conducted a

benchmark test with noise purposefully included. To do so, a vector of random points was

created, such that the standard deviation of the vector was 0.01 (approximately 1% of the

highest intensity peak in the spectrum), and this vector was added to the artificial spectrum

used in Benchmark 1.

No significant difference was observed between Benchmark 1, which was conducted with-

out baseline noise, and Benchmark 2, which included artificial baseline noise (Table 1). When

the level of random error in the chemical shifts is consistent with NMR spectra generated
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from ChemDraw®, the MAE in concentration of each component in the spectrum was 7%

and 6% for spectra corresponding to 5 or 10 components, respectively. Using a level of ran-

dom chemical shift error that is consistent with the errors in NMR spectra generated from

DFT resulted in an MAE of 5% for both 5 and 10 components, and using a level of error

consistent with chemical shifts obtained from known compounds resulted in an MAE of 2%

for both 5 and 10 components. These results indicate that the accuracy of our approach

does not suffer from the presence of baseline noise when predicting the weights of component

spectra, demonstrating the ability of our workflow to deconvolute and analyze experimental

spectra.

Table 2: Summary of benchmark testing for Benchmark 3. In each test, 10 candidates are
given in the library of which only 5 candidates are truly in the spectrum. One test is per-
formed in which the spectrum is given as is, and a second test is performed by adding baseline
Gaussian noise to the spectrum. The mean absolute error (MAE) in the concentrations of
each candidate and the selection accuracy is given for each test.

Conditions
ChemDraw DFT Library

MAE / % Accuracy MAE / % Accuracy MAE / % Accuracy
No noise 9 64 5 79 1 97
Noise 10 61 5 77 1 97

Benchmark 3: Missing Components

While it is important for an analytical approach to identify the relative concentrations of

components in a reaction mixture correctly, it must also determine the identity of the com-

ponents from a set of potential species in the mixture. Thus, a final benchmark test was

designed to assess the ability of the HMCMC procedure to determine the identity and rela-

tive concentrations of compounds in the mixture corresponding to the composite spectrum.

For this benchmark, components predicted to constitute less than 5% of the mixture were

considered to be absent. This test was performed both with and without baseline noise

added, as described in Benchmark 2.

For a sample size of 15 trials, following the procedure described above for HMCMC
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fitting, increasing errors in chemical shift once again led to a monotonic increase in MAE in

the predicted component concentrations, as seen in Benchmark 1 (Table 2). The addition

of baseline noise did not result in a larger MAE, as seen in Benchmark 2. For the tests

with and without noise, chemical shift errors representative of predictions by ChemDraw®

(ca. 0.4 ppm) resulted in classifying each compound as present or absent in the reaction

mixture with accuracies of 64% and 61%, and MAEs of 9% and 10%, respectively. Chemical

shift errors representative of predictions by DFT resulted in accuracies of 79% and 77%,

and MAEs of 5% for both tests. Chemical shift errors representative of referencing known

compounds found in a library of chemical shifts led to accuracies of 97% and MAEs of 1% for

both tests. These results indicate that our approach can identify the individual component

spectra in a composite spectrum, even when more candidate structures are provided than

exist in the composite spectrum.

Inspection of the HMCMC analysis reveals that higher accuracies can be reached by

varying the cutoff value. In cases in which the chemical shift error corresponds to that of

literature-reported spectra, wherein the predicted chemical shifts are within ca. 0.01 ppm of

the experimental chemical shifts, the HMCMC method falsely classified reaction components

as absent when the true concentration was close to the cutoff value. For example, when the

cutoff value was set to 5%, a compound with a true weight of 6% but a predicted weight

of 4% was incorrectly classified as absent, despite the low absolute error in the predicted

concentration. In practice, one may prevent this systematic error by adjusting the cutoff

criteria to be more appropriate for the level of chemical shift error in the predicted component

spectra. An alternative approach would be to subtract the spectra of the compounds that

were initially confirmed to be present in the mixture, and fit the remaining candidates to

the residual.
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Experimental Testing

Having validated our HMCMC workflow, we tested the automated analysis of experimental

data by analyzing several NMR spectra of crude reaction mixtures. During benchmarking, a

tacit assumption was made that the position, intensity, and splitting pattern of the peaks in

each component spectrum were not correlated. In this case, the probability of peak overlap

is lower and errors in predicted chemical shift are well tolerated, as indicated by the similar

MAEs for simulated chemical shift errors between 0.01 and 0.4 ppm. However, the spectra of

unique but structurally similar compounds can have similar NMR parameters and splitting

patterns. To determine the applicability of our workflow to experimental data, we tested it

on crude experimental spectra derived from real reaction mixtures. We considered the most

difficult test and most useful application of this technology to be the analysis of reaction

selectivity. The reactions presented herein were chosen because they form a mixture of

products with similar structures and, thus, pose a difficult challenge for analysis. These

examples evaluate the performance of the model in its intended applications, such as the

analysis of selectivity of reactions that can form one or more constitutional isomers.

Wittig Olefination

The first example we consider is a reaction that forms a mixture of olefin isomers, as shown

in Fig. 4. The Wittig olefination of benzaldehyde (1a) forms a mixture of E (1b) and Z

(1c) olefin isomers, resulting in a simple candidate library of three compounds (two pos-

sible products and one starting material). NMR parameters for all candidate compounds

were calculated and calibrated as described above, to yield a set of predicted NMR spectra

(Fig. 4b).

From a first iteration of the deconvolution procedure, all compounds in the candidate

library were predicted to be present in the NMR spectrum in greater proportion than the

threshold value of 5%. The HMCMC fitting of these spectra resulted in predicted relative

concentrations that closely match the true values (Fig. 4c). The model predicted the compo-
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Figure 4: Results of HMCMC deconvolution of the Wittig olefination reaction spectrum
where panel (a) is candidate library for the Wittig olefination reaction, (b) are the initial
DFT-generated spectra, (c) is the final HMCMC fit report showing the predicted composi-
tion, and (d) is the final deconvoluted spectrum.

sition of the Wittig mixture with 100% classification accuracy (i.e. classifying each potential

product as present or absent) and identified the concentrations of the present compounds

with an 8% MAE, demonstrating an excellent ability to determine relative concentrations of

reaction components. The deconvoluted spectra are shown in Fig. 4d.

This example further highlights a key aspect of fitting spectra via HMCMC: in regions

where spectral peaks heavily overlap, the chemical shift predictions become less precise.

This imprecision in chemical shift fitting primarily results from the broadening step. As

described above, broadening the spectrum increases the gradient information used by the

fitting algorithm. The broadening, however, widens the line shapes and results in a loss

of resolution in the sharp peaks and splitting patterns, which reduces sensitivity to precise

chemical shift positions. It’s worth noting, however, that even with this broadening step,

the fitting process can provide accurate predictions of relative concentrations, as long as the

chemical shifts are approximately in the correct positions.
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Figure 5: Results of HMCMC deconvolution of the picoline borylation reaction spectrum
where panel (a) is candidate library for the arene borylation reaction, (b) are the initial DFT-
generated spectra, (c) is the final HMCMC fit report showing the predicted composition, and
(d) is the final deconvoluted spectrum.

In the next example, we analyzed NMR spectra of the crude reaction mixture resulting

from the borylation of C–H bonds of aromatic compounds (Fig. 5). The borylation of picoline

(2a) could occur at any of the arene C–H bonds (2b-e) or at the benzylic C–H bond (2f).

Therefore, we presented the model with the 6 potential borylation products, as shown in

Fig. 5a. NMR parameters for all candidate compounds were calculated and calibrated as

described above to yield a set of predicted NMR spectra (Fig. 5b). Because the starting

material is a known compound, an NMR spectrum of the starting material was obtained

and fit using MRsimulator, as described above, to obtain a better initial trial spectrum.

Following the first iteration of the deconvolution procedure, compounds 2b, 2e, and 2f

were removed because their predicted concentrations were all below the 5% concentration

cutoff. A final iteration of the deconvolution procedure was performed with the remaining

compounds 2a, 2c, and 2d to improve the resulting fit. As shown in Fig. 5c, the procedure,

once again, predicted the presence or absence of candidate compounds with 100% accuracy
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and predicted the concentrations of each compound present with an MAE of 1%, demonstrat-

ing the ability of our method to determine which components are present in the spectrum

of a crude reaction and the relative concentrations of the components. The deconvoluted

spectra are shown in Fig. 5d.

Borylation of Polyaromatic Compounds
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Figure 6: Results of HMCMC deconvolution of the 2-phenylethylpyridine borylation reaction
spectrum where panel (a) is candidate library for the multi-arene borylation reaction, (b) are
the initial DFT-generated spectra, (c) is the final HMCMC fit report showing the predicted
composition, and (d) is the final deconvoluted spectrum.

We next considered a significantly more difficult example: the borylation of

2-phenylethylpyridine (3a, Fig. 6). The number of potential products from this reaction

is larger, and many of the resonances of the protons in these products overlap. In addition,

the experimental spectrum contains unassigned, low-intensity signals that correspond to im-

purities present in the reactant. The borylation can occur at any aromatic C–H bond of

2-phenyethylpyridine. Borylation of secondary benzylic C—H bonds is unlikely, so products

from reaction at those positions were not considered. In total, the candidate library con-

sisted of the 8 compounds shown in Fig. 6a. To compensate for the impurity peaks, a cutoff
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of 10% was used during HMCMC fitting. NMR parameters for all candidate compounds

were calculated and calibrated as described above to yield a set of predicted NMR spectra

(Fig. 6b). Because the starting material was available, the NMR spectrum of the starting

material was acquired, and the chemical shifts and splitting patterns of the peaks in the

experimental spectrum were fit using MRsimulator, as described above, to obtain a better

initial trial spectrum.

The HMCMC procedure is a sampling method, and one of the sampled variables is chem-

ical shift. Therefore, the distribution of HMCMC-predicted chemical shifts is indicative of

how well the individual spectra are fit to the experimental spectra. For example, a successful

fitting procedure will result in a narrow distribution of chemical shifts, and an unsuccessful

procedure will result in a wide distribution of chemical shifts with large standard deviations.

Since the HMCMC procedure fits a DFT-predicted spectrum to an experimentally obtained

spectrum, a large standard deviation is indicative of innacurate predictions of chemical shifts

by DFT.

After the first iteration of the deconvolution procedure, compounds 3b, 3c, 3f, and 3h

were removed from the set of potential products because their predicted concentrations were

below the 10% cutoff. For each of the remaining compounds (3a, 3d, 3e, 3g), the majority

of the predicted chemical shifts deviated little from the true value (approx < 0.1 ppm).

However, some resonances were characterized by large standard deviations in the HMCMC-

predicted chemical shift. A large standard deviation in the predicted chemical shifts occurs

when peaks in the trial spectrum could not be fit to the experimental spectrum, either

because the compound does not exist in the reaction mixture, or because the initial trial

shifts were very poorly predicted by DFT. To address this issue, in the second HMCMC

iteration, the standard deviation of the Gaussian distributions used for the chemical shifts

was set to three standard deviations of the DFT error (0.3 ppm), and the HMCMC procedure

was repeated. After this iteration, compound 3g was determined to be absent, and only 3a,

3d, and 3e remained. The standard deviations in the chemical shift predictions for 3a, 3d,
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and 3e were small, and a final application of the deconvolution procedure was performed to

improve the fit. As shown in Fig. 6c, the procedure yielded a prediction accuracy of 100%

and an MAE of 9% in the concentrations of components, demonstrating that our approach

can deconvolute NMR spectra that contain extensive overlapping of the resonances.

Oxidation of Heptane
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Figure 7: Results of HMCMC deconvolution of the heptane oxidation simulation spectrum
where panel (a) is the candidate library containing compounds 4a-4j, (b) are the initial DFT-
generated spectra, (c) is the final HMCMC fit report showing the predicted composition, and
(d) is the final deconvoluted spectrum. The false positive prediction is denoted as (FP).

Finally, we considered a complex mixture simulating the nonselective oxidation of the

C–H bonds in heptane to form alcohol, ketone, aldehyde, and carboxylic acid products. This

example simulates an experimentally-obtained spectrum by mixing commercially available

compounds. This example poses a stringent test of the procedure because the spectra of

many of the compounds are similar to each other. Thus, most of the peaks in the spectrum

of the mixture overlap.

To generate a list of candidate compounds for this simulated reaction, we considered

all probable products of the oxidation of heptane (4a): compounds with a hydroxyl group
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at each nondegenerate carbon atom, ketones at each nondegenerate carbon, and aldehyde

and carboxylic acid groups at the terminal carbons (4b-j). In total, the candidate library

comprised 10 compounds. Three unique regions of the spectrum were identified by consider-

ing their spectral information as described in the Methods above. These regions were used

sequentially to deconvolute the experimental spectrum.

The first region of interest identified by the spectral information content procedure was

the downfield region with chemical shift greater than 8 ppm. Analysis of this region revealed

whether heptanal or heptanoic acid (4c and 4j) was present in the spectrum. From a first

iteration of the HMCMC procedure, both compounds 4c and 4j were excluded. Next, the

information-dense region of the spectrum between 3-4 ppm was analyzed. In the library of

candidate spectra, all peaks in this region corresponded to a methine proton α to a hydroxyl

group. Thus, the presence or absence of peaks in this region revealed the presence or absence

of 1-heptanol (4b), 2-heptanol (4d), 3-heptanol (4f), and 4-heptanol (4h). From an iteration

of the HMCMC procedure, compounds 4f and 4h were removed from the list of components.

Analysis of the upfield region of the spectrum from 0-3 ppm left 4a, 4b, 4d, 4e, 4g, and 4i in

the candidate library. After an iteration of the HMCMC procedure, none of the compounds

were removed, and the relative concentrations were determined to be [0.28, 0.11, 0.03, 0.15,

0.29, 0.14]. These concentrations can be compared to the true concentrations of [0.18, 0.04,

0.25, 0.10, 0.43, 0.00], for an MAE of 16%. Despite compound 4b falling below the 5% cutoff

criteria, its presence was established from analysis of the mid-field region (3-4 ppm), and it

was retained in the library.

Analysis of the modest performance of the HMCMC procedure when analyzing this spec-

trum shows that it was difficult to fit accurately, and some peaks and concentrations were

assigned incorrectly. The likely reason for the imprecision is the large extent of overlap be-

tween spectra and the lack of functional groups that allow for unambiguous assignment. The

chemical shifts and splitting patterns of the methyl and methylene protons of 4a-j are sim-

ilar, making deconvolution difficult. Indeed, the deconvolution of this spectrum by experts

26

https://doi.org/10.26434/chemrxiv-2023-g82z3 ORCID: https://orcid.org/0000-0003-3468-2006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-g82z3
https://orcid.org/0000-0003-3468-2006
https://creativecommons.org/licenses/by/4.0/


is also challenging. To address this difficulty, future efforts can introduce 13C NMR spectra

to complement deconvolution of 1H NMR spectra, because the additional information from

the carbon spectrum will aid in excluding compounds, and the signals in 13C NMR spectra

overlap less than those in 1H NMR spectra, due to the greater dispersion of chemical shifts.

This approach can be coupled with expanding the standard deviation for the initial distri-

bution of chemical shifts used for analysis of 1H NMR spectra. This expansion could lead

to better deconvolution. Importantly, the workflow described herein can be applied to 13C

NMR prediction with minor modifications, enabling further methods development.

Conclusions

In conclusion, we have developed an automated workflow for the identification and quan-

tification of novel chemical compounds in a reaction mixture. We demonstrate that this

approach can be used to deconvolute and analyze experimentally obtained, crude NMR

spectra that contain multiple isomeric products. We present this workflow as a series of

modules, so that practitioners can adapt it further to their needs. The method can enable

researchers to automate analysis of high-throughput experimentation campaigns that gener-

ate large numbers of previously undescribed compounds. This contribution may transform

our ability to generate training data for machine learning models and assist drug discovery

campaigns during diversity-oriented synthesis.
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