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Abstract

Our current treatments for bacterial infections are under threat by the growth of antibiotic

resistance in many different pathogens. Of these pathogens, Salmonella is a particularly

widespread microbe, infecting over a million people annually as the leading source of food-borne

diseases. One potential solution for antibiotic-resistant Salmonella is virulence inhibition of the

bacteria’s T3SS injection system, which has been shown to destroy Salmonella’s proliferative

abilities. Here, we identify fourteen compounds, primarily novel ligands, that exhibit high

in-vitro potential as Salmonella inhibitors by attacking the ATPase InvC protein vital for T3SS

injection–an enzyme that has not been previously evaluated for small-molecule inhibition. We

also present a statistical analysis of AutoGrow4, a virtual structure-based molecular design tool

that evolves ligands to better suit a target protein using Autodock Vina binding affinity

calculations. Together, these create an entirely open-source workflow towards computational

identification and evaluation of novel chemical treatments.

I. Introduction

Antibiotic resistance has become one of the leading threats to human health worldwide in

the face of widespread antibiotic abuse and lack of new pharmaceutical treatments1, with the

Global Antimicrobial Resistance and Use Surveillance System (GLASS) report finding that over

50% of bacteria in bloodstream infections are resistant to antibiotics2. Salmonella, a foodborne

pathogen associated with 1.2 million illnesses annually3, is particularly dangerous because it has

developed resistance to several common antibiotics, including ampicillin, chloramphenicol,

streptomycin, antimicrobial sulfonamides, and tetracycline3. The CDC estimates that

drug-resistant salmonellosis (Salmonella enterica & Salmonella Typhimurium) accounts for

approximately 212,500 infections yearly, and drug-resistant typhoid fever (Salmonella Typhi and
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Salmonella Paratyphi A., two serovars of Salmonella enterica) leads to an additional 77,000

infections4. Conservative estimates reveal that drug-resistant Salmonella causes nearly 300,000

infections annually. The severe threat that Salmonella poses urgently calls for the discovery of

new drugs or treatment methods effective against drug-resistant Salmonella.

One solution to this developing resistance problem is utilizing virulence inhibitors, which

convert pathogenic organisms to benign ones by disarming them of their virulence. Many

virulence inhibitors target external molecules or effectors, which can evade the development of

antibacterial resistance caused by diminished permeability (where antibiotics become

impermeable to the bacterial membrane as bacteria close protein channels)5. In addition, it has

been theorized that even when bacteria develop resistance to anti-virulents, it often results in

nonfunctional virulent systems5. Another benefit to virulence inhibitors is the relative lack of

impact on the patient’s microbiome: while traditional antibiotics often target both pathogenic and

helpful bacteria, disarming the secretion system virtually exclusive to harmful gram-negative

bacteria keeps intestinal flora intact and likely reduces gastrointestinal side effects6.

Salmonella, like many other gram-negative bacteria (Bordetella spp., Burkholderia spp.,

Chlamydia spp., Escherichia coli, Pseudomonas aeruginosa, Shigella spp., Vibrio cholerae, and

Yersinia spp), utilizes the Type 3 Secretion System (T3SS) to secrete its bacterial effectors into

the eukaryotic cell7. The T3SS is a protein complex comprising over 20 different conserved

proteins, creating a channel from the bacterial cell to the host cell8, allowing it to “inject”

bacteria effectors using a needle-like apparatus known as an injectosome9. The T3SS contains 3

types of proteins: structural proteins, which form the body of the apparatus; translocators, which

translocate the virulence factors into the host cells; and the effectors, which promote bacterial

invasion and survival in the host cell10. Its two continuous rings pass through the bacterial inner

membrane, outer membrane, and peptidoglycan layer, anchoring the needle to the cell

membrane. The structural apparatus contains the cytoplasmic complex, the export apparatus, the

basal body, and the 2.5 nm needle10(Figure 1). To secrete the effectors, chaperone proteins form

complexes with substrates, which are loaded onto free cytoplasmic complexes. SctK, SctQ, and

SctL, specifically, are known as the “sorting platform” because of their involvement in recruiting

chaperone-substrate complexes11. The sorting platform then “unfolds” the effectors to

“de-chaperone” them, and the ATPase in the cytoplasmic complex works with the export
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apparatus to guide and power the secretion of effector proteins through the needle8. Effectors are

passed through the translocon, which forms pores on the host cell membrane through the needle

tip10. This signals increased bacterial invasion and promotes bacterial survival, thus killing the

host cell8.

Figure 1: T3SS general structure with color-coded and labeled sections11

In Salmonella, the Salmonella Pathogenicity (SPI-1) virulence factor codes for the T3SS

that enables bacterial invasion into host cells, where SPI-1 delivered effectors restructure the

cytoskeleton of the host cell to force phagocytosis of the Salmonella pathogen12, 13. This process

is critically dependent on the hexameric ATPase in the cytoplasmic complex, which is known as

InvC in Salmonella. InvC is composed primarily of three folded domains: the N-terminal

involved in the oligomerization of InvC14; the conserved ATPase catalytic domain; and the

C-terminal, which is potentially involved in recognizing chaperone-effector complexes15. InvC

plays a role in recognizing and binding the chaperone-effector complex, catalyzing ATP-fueled

effector removal, and unfolding effectors in preparation for secretion15. It is vital for Salmonella

proliferation, for strains with loss-of-function mutant InvC were unable to successfully invade
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intestinal epithelial cells after the catalytic phosphate-binding loop motif (P-loop) was

modified14.

The necessity of InvC for virulence and its conserved structure across several pathogen

species makes it an attractive target for T3SS inhibition. InvC is also highly related to several

other T3SS ATPases, like Shigella Spa47, Yersinia YscN, E. coli EscN, and Pseudomonas HrcN,

sharing 38-75% of its sequence with these orthologs16 –giving it potential as a target for

broad-spectrum activity. The dysfunctionality of ATPase-knockout mutants is not restricted to

Salmonella; in E. coli, deletion of the EscN gene (an ortholog to InvC) renders the pathogen

unable to develop or secrete virulence factors17. Similarly, in Y. enterocolitica, deletion of the

YscN gene (another ortholog to InvC) abolishes the secretion of bacterial effectors18. In

Salmonella, when InvC is heavily destabilized, mutant strains are defective for translocation of

effectors, bacterial egress, cytosolic colonization, and vacuolar replication19. In addition,

inhibition of T3SS ATPase avoids the risk of cross-reaction between T3SS ATPase inhibitors and

human ATPase enzymes because bacterial ATPase and human ATPase share less than 25% of

their sequences and their active sites are structurally different5. Though there are many existing

inhibitors of Salmonella T3SS, none have been shown to target the InvC protein vital for

combating antibacterial resistance20, 21, 22, 23, 24.

In this work, we identify potential inhibitors of the Salmonella ATPase InvC protein using

in-silico molecular docking and structure-based virtual screening–a promising tool for drug

discovery enabled by newly available protein crystallography structures25 and ligand libraries26.

Computationally predicting the binding conformations of ligands to a receptor allows for the

rapid screening of thousands of potential ligands to find the most viable lead compounds, an

efficient precursor to traditional synthesis and biological assays27. The compounds with the most

negative binding energies (in kcal/mol) represent the most stable conformations; the lower the

binding energy, the better a ligand can bind to the active site and is therefore predicted to be a

more potent inhibitor. Here, we use these binding scores to identify lead compounds with the

most potential. Additionally, catalogs of commercially available drug structures enable the

targeted screening of compounds with known properties and metabolic activity. Especially with

the availability of the Zinc database28, we were able to preliminarily filter out small molecules

with nonoptimal drug-likeness (an estimation of a compound’s in-vivo potential based on its
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physiochemical properties) by selecting ligands with favorable molecular weight and

lipophilicity–factors that have been demonstrated to impact molecular absorption, metabolism,

and other factors (more details in methods/results)29.

In this study, we screened thousands of potential ligands from the Zinc database and

utilized AutoGrow4, an open-source structure-based drug design tool, to evolve potent inhibitors

into novel drug-like compounds with optimized properties30. We present over a dozen lead

compounds derived from ten generations of ligand evolution with the highest binding affinities,

as well as an evaluation of an entirely open-source route to novel inhibitor identification through

the examination of the software’s efficacy across generations.

II. Results

We computationally screened selected molecules from the Zinc database against the

active site of the InvC protein through AutoGrow4 for a total of 10 generations against the 6sdx

model of InvC from the Protein Data Bank31. Out of the Salmonella InvC models in the Protein

Data Bank, we chose 6sdx because it contains ATP-gamma-s, the ligand used for investigation in

the reference literature32. For the binding site, we targeted the P-loop (amino acid residues

162-166) located in the ATPase catalytic core32, as well as surrounding residues shown to interact

with ligands in the binding site. When ATP-gamma S is bound to the enzyme, the phosphate

groups form hydrogen bonds with G164 and T166, and a salt bridge with K165; the adenine

group is stabilized by a pi-stacking bond with Y338 and forms a hydrogen bond with V411. As

shown, this loop is highly relevant for ATP recognition and synthesis.

Since AutoGrow tends to create population homogeneity, convergence, and undesirable

moieties after longer runs30, we executed AutoGrow for 10 generations until improvement began

to stall. We noticed compound fitness improving quickly in the first few generations and progress

slowing in later generations, so compound suitability was unlikely to improve upon further

experimentation. One limitation of this study is the slight drop-off in ligand fitness in the latter

half of the generations, which reduced the versatility of our screened ligands. Additionally, we

found that AutoGrow works best with well-researched proteins such as PARP-130, so the relative

novelty of 6sdx may also inhibit experimental efficacy.
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Shown below in Figure 2 is the binding pocket we used on 6SDX, including the main

P-loop (G162 - M167) and other amino acids that ATP has been shown to interact with while

binding. Using these amino acids, we determined the size of the binding pocket shown in red.

Also shown is the structure of the amino acids in the binding site and their polar interactions with

surrounding residues. The critical interactions between the binding site and the ligand in this

pocket combined with the pocket’s remodeling upon binding imply that inhibitors here would

significantly impact InvC function31.

Figure 2: Binding pocket on 6SDX 3-D structure
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Figure 3a depicts the evolution of the ligands from generation 0, generation 3, generation

7, and generation 10. Generation 0 depicts the spread of binding affinities of ligands from the

Zinc database, while generations 3, 7, and 10 depict data from novel ligands developed by

Autogrow through mutations and crossovers. Between generation 0 and generation 10, there is a

visible increase in the proportion of ligands with binding affinities between -5 to -7.

Figure 3a: Autodock Vina Binding affinities from generations 0, 3, 7, and 10
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A shift from generation 0 to generation 3 is also present, though less obvious.

Proportionally, there is a higher amount of ligands with binding affinities from -4.5 to -6.5 in

generation 3 compared to generation 0. The peak in the generation 3 graph occurs at –5.5 to -6.0

kcal/mol, while the peak in the generation 0 graph occurs at -4.5 to -5.0 kcal/mol. From

generation 3 to generation 7, the spread of the graph decreases, and the graph shows an increased

proportion of compounds with binding affinities from -6.0 to -7.0. The peak of the graph remains

at the same binding affinity. From generation 7 to generation 10, the proportion of compounds

with binding affinities better than -5.0kcal/mol appears to decrease slightly, indicative of the

previously discussed stagnation in later generations.

Figure 3b: Average binding affinity across generations

In evaluating AutoGrow, we conducted 2-sample T-tests comparing the mean binding

affinity of each generation to the mean binding affinity of generation 0. Since each generation

represents a small sample of an infinite population of compounds, we can use a t-test to estimate

the true mean binding affinity of ligands in each generation and test for significant improvement

across generations. All three conditions required for a T-test are met by each sample: the

samples are random, chosen independently, and display relatively normal distributions.
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The mean binding affinity of each generation was compared to the mean binding affinity

of generation 0. We hypothesized that the mean binding affinity of generations 1-10 would be

significantly smaller than the mean binding affinity of generation 0, setting a standard

alpha-value of 0.05. The results of the significance test are shown below.

Table 1: Mean binding affinity score of each generation vs. generation 0

Generatio
n

Sample Size Mean Binding
Affinity (kcal/mol)

Std. Dev
(kcal/mol)

P-value

0 12787 -4.665 0.661 N/A

1 478 -4.906 0.928 1.505 * 10^-8

2 153 -4.852 0.904 0.0171

3 156 -5.023 0.879 5.56 * 10^-8

4 152 -5.050 0.942 6.98*10^-7

5 148 -4.889 0.919 0.00185

6 152 -4.9625 0.859 1.803 * 10^-5

7 167 -4.954 0.879 1.834 * 10^-5

8 163 -5.044 0.950 5.455 * 10^-7

9 165 -4.912 0.976 7.19 * 10^-4

10 158 -4.905 0.962 0.001

Every generation expresses significantly better binding affinities than generation 0, as all

p-values shown are less than 0.05. In comparison to the original compounds of the ZINC

database, Autogrow’s algorithms were able to generate novel small-molecule inhibitors that are

significantly better. However, this table does not reflect significant improvement over successive

generations; the small p-values could reflect an improvement in mean binding affinity in one

generation but relative stagnation over the rest.

In order to study AutoGrow’s efficiency over each generation, we also did 2-sample

t-tests between each generation and the generation prior. We hypothesized a significant
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improvement in mean binding affinity from generation n to generation n + 1, with a standard

alpha-value set to 0.05. Results are shown in the table below.

Table 2: Mean binding affinity score of each generation vs. the previous generation

Generation Number P-value

0 & 1 1.49 * 10^-8

1 & 2 0.74

2 & 3 0.046

3 &4 0.602

4 & 5 0.934

5 & 6 0.236

6 & 7 0.533

7 & 8 0.189

8 & 9 0.891

9 & 10 0.526

Looking at this table, only two p-values are below the critical value (<0.05): there is

significant improvement in mean binding affinity from generation 0 to generation 1, and from

generation 2 to generation 3. Although there is overall progress after generation 1 (see Table 1),

AutoGrow seems to stagnate without consistent improvement between generations, with the

exception of generation 3. This may be due to the relatively unexplored structure of 6sdx

compared to other proteins, especially the PARP-1 receptor that AutoGrow 4 was tested on.

Without enough information on protein structure, AutoDock Vina may not be able to accurately

predict interactions during ligand binding.

Finally, we present the lead compounds identified among 14690 evaluated ligands. Across

generations, our adaptive screening produced 14 compounds with binding affinities at or above

-7.0 kcal/mol, five of which are original Zinc Database compounds, and the others novel
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mutations produced by AutoGrow4. The structure, highest binding affinity, and the first six digits

of the compound code are provided in Figure 4.

Figure 4: Best-performing compounds across all generations by binding affinity

III. Discussion

While these compounds must be evaluated in vitro to reach definite conclusions, our

novel ligands exhibit promising binding properties against Salmonella ATPase. Because heavy

displacement of the P-loop is associated with ATP-analog binding, the disruption of those critical

domains is likely to halt ATP hydrolysis32. Without a functional ATPase enzyme, almost all

pathogens are unable to properly inject effectors. This sabotages their ability to subvert host cell

function, alter cytoskeleton structure, and evade immune system responses6. Although the exact
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mechanisms linking ATP hydrolysis to the formation of the injectosome and secretion of protein

effectors are not fully understood, several experiments have found a direct causal relationship

between loss-of-function InvC mutations and loss of virulence33, 34.

In addition, the small molecules exhibit optimal molecular size and lipophilicity

conditions that maximize clinical potential, making them promising agents against

antibiotic-resistant Salmonella. Because many T3SS-dependent bacteria have similar secretion

systems, the compounds identified here for Salmonella ATPase inhibition are favorable for

broad-spectrum therapeutic development. The central T3SS ATPase among gram-negative

bacteria is highly conserved, generating potential for T3SS inhibitors to treat a variety of

infections.

The work presented also evaluates AutoGrow4’s efficacy as a novel drug-design tool, for

it is one of few open-source ligand evolution programs. AutoGrow4 enables discovery at a speed

much faster than ex silico experimentation, with the capability to screen thousands of compounds

and evolve them into a smaller group of energetically favorable ligands, introducing many

possibilities for drug discovery and lead optimization. Although AutoGrow4 works less

optimally without extensive knowledge of the target binding pocket and known inhibitors, there

is still clear improvement in mean binding affinity across ten generations in our experiment. In

addition, most compounds generated by AutoGrow are chemically feasible, and several filters

(such as the Lipinski Strict Filter, the Ghose filter, or the VandeWaterbeemd Filter) can

customize compound results30.

Our study is limited by computational capabilities, available research on the ATPase InvC

protein, and laboratory access. Thus, directions for future research include expanding the scope

of generation 0 ligands and synthesizing the best-performing lead compounds for subsequent

in-vitro evaluation. It is impossible to confirm a compound’s inhibitory ability in pathogens only

by knowing its computational binding efficacy. However, with protein structure modeling

algorithms growing fast using Deep Learning and AI, AutoGrow4 should soon have even broader

applications and provide more accurate results30.

In combination with open-source chemical databases like ZINC, our work presents a

viable and entirely open-source workflow for the discovery of chemical inhibitors and lead

optimization toward the treatment of new biological targets. We demonstrate the plausibility of
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this workflow by presenting fourteen promising compounds for T3SS inhibition that surpass the

binding efficacy of many FDA-approved therapeutics40. In an era of widespread antibiotic

resistance and skyrocketing demand for improved therapeutics, exploring new pathways for

efficient drug discovery is vital.

IV. Methods

Receptor Preparation

The 6sdx protein was obtained as a .pdb file from RCSB31. The protein was prepared for

docking in PyMol, with all ligands removed (labeled residues 501-506 in the protein sequence).

All water was removed. The protein was properly protonated using the PDB2PQR webserver

tool from UCSF36, and the resulting .pqr file was converted back to .pdb using Open Babel37.

In order to obtain the center of the binding pocket and the size of the binding pocket, the

open-source Python algorithm Scoria was used38. Amino acid residues 162-167, 338, and 409-

411 were used as the binding pocket, justified in the results section. This gave us a binding

pocket center of (34.681, -13.6825, 10.3986) for x, y, and z respectively, and a binding pocket

size with dimensions (12.0, 20.0, 12.0), for length, width, and height.

Ligand Sourcing

The initial pool of compounds is sourced from the ZINC-15 database, which has over

120,000,000 commercially available compounds for virtual screening. Selected compounds had a

molecular weight between 150 to 250Da and a LogP value less than 5, with any level of

reactivity. Compounds were then filtered with the Lipinski strict filter and converted into SMILE

strings. The compounds were sorted into functional groups, and 100 compounds were randomly

selected from each functional group. In total, this created an initial pool of 16,603 compounds

(though generation 0 is slightly smaller due to AutoGrow’s inability to dock certain compounds

in time).

AutoGrow4

To produce novel compounds with improved binding affinities, we used AutoGrow430.

AutoGrow can draw from an initial pool of molecules to synthesize new generations of ligands,
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and ranks this new generation by docking each compound, taking the top molecules, or seeds, of

each generation for the next. AutoGrow generates this new population through three different

methods: an elitism operator, a mutation operator, and a crossover operator, which ideally creates

a pool of compounds with better binding affinity than the previous. The 6sdx protein was

processed and submitted as a .pdb, and the binding coordinates were obtained using Scoria, as

explained previously. We ran AutoGrow for 10 generations, using MGLTools for conversion

from .pdb to .pdbqt, and the default RDKit chemoinformatics reactions as the reaction library.

AutoGrow 4 uses QuickVina 2 as its default docking platform39, which we did not modify. For

molecular filters, we used the Lipinski Leniency Filter, as well as the Rank Selector for

subsequent generations to prevent duplicates. In the first generation, we seeded 70 molecules

from mutations and crossovers to the next generation alongside 100 elite molecules; for each

subsequent generation, we seeded 50 molecules from mutations and crossovers, alongside 100

elite molecules for the next generation. The molecules from the Zinc database were first docked

and scored to create a generation 0 before the selection process began for generation 1. This gave

us a compiled folder of the molecules created each generation, their binding affinity, and the

SMILE string for the molecule. The data was then compiled into graphs and tables for

processing.
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