
Nonlinear potentiodynamic battery charging protocols for fun, education, and application 

Helge Sören Stein1,* 

1: Technical University Munich, TUM School of Natural Sciences, Department of Chemistry, Munich Data Science 

Institute 

*correspondence should be addressed to: helge.stein@tum.de 

 

Abstract 

Most secondary batteries in academia are (dis)charged by applying a constant current (CC) followed by a constant 

voltage (CV) i.e. a CCCV procedure. The usual concept is then to condense data for interpretation into 

representations such as differential capacity, or dQ/dV, graphs. This is done to extract information related to 

phenomena such as the growth of the solid electrolyte interphase (SEI) or, more broadly, degradation. Typically, 

these measurements take several months because measurements for differential capacity analysis need to be 

performed at relatively low C-rates. An alternate charging schedule to CCCV is pulsed charging, where CC 

sections are interrupted by an open-circuit measurement on the second time scale. These and similar partially 

constant current strategies primarily target diffusive effects during charging and broadly fall into a linear charging 

category, where the time derivative for the actuated property is mostly zero. Herein, I explore nonlinear charging 

i.e., the process of actively applying a potential with a nontrivial time derivate and a resulting non-trivial current 

time derivative to engineer (dis)charge cycles with enhanced information density. This method of non-linear 

charging is then used to charge a cell such that some potential ranges in the differential capacity diagram are 

omitted. This study is purely a simulative endeavor and not backed by experimentation, owing mainly to the lack 

of facile implementation of arbitrary function inputs for battery cyclers and might point to limitations of the 

underlying theory. If found to be confirmed through an experiment, this technique would, however motivate a new 

roadmap to better understand secondary battery degradation inspired by electrocatalyst degradation. 

 

Introduction 

 

Secondary batteries are a fascinating research topic, as findings on the lab scale have a realistic potential to impact 

the electrification of everything1. Therefore, great efforts are being undertaken across different domains, i.e., 

everything from ab initio calculations2,3 on the atomic level4 to manufacturing improvements through defect 

detection5. A European effort to bring together this multimodal and multidisciplinary research is the Battery2030+1 

initiative, namely the battery interphase genome – materials acceleration platform3. The idea is to discover and 
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optimize batteries by jointly bringing together theory and experiment in workflows6 that allow to seamless 

translation between the scales7 through the utilization of machine learning2, artificial intelligence and lab 

automation8 into a true materials acceleration platform6. The established workflow to optimize9–11 systems such as 

batteries is, however, to look at isolated parts of the complex system i.e. to optimize electrolyte conductivity8, 

reduce defect concentration5 on coated electrodes or to test whether or not an additive prolongs the cycle life of a 

battery12. Sometimes, these methods rely on machine learning methods13–16 as the underlying physics are either 

not understood or very complex to model, or experiments are too costly. If there are, however, in principle, physical 

laws that connect complex data like UV-Vis absorption spectra17 and RGB images, then machine learning models 

work great as errors and uncertainties are low and manageable. More importantly are also benchmarks that enable 

scientists to both gamify research and break models in creative ways18. In the battery research field one of the 

prime examples is the optimization19 of fast charging schedules20 that try to mitigate cell degradation21 despite 

high-charging currents. There is of course, an immediate use of these fast-charging methods e.g. for electrified 

(cargo) bicycles for delivery services. Other examples for machine learning in the battery domain include the 

prediction of remaining cell life with uncertainty quantification, as demonstrated by Rieger et al.22 or optimization 

of electrolyte conductivity8. 

As discussed in Rohr et al.19 and Stein & Gregoire23  there are essentially four research modes for opmizitation 

and discovery with active learning in materials science and engineering i.e.  

I. Finding a good parameter set/material 

II. Finding all good parameter sets/materials 

III. Predict parameters/materials well 

IV. Understand the underlying physics/chemistry 

The optimization studies cited above broadly fall into research modes I-III and only hint at “the ultimate” research 

mode IV. One notable example for directly performing research mode IV is shown in Flores et al.24 that try to 

derive the laws governing electrolyte conductivity in complex solvation structures25 from data. In this manuscript, 

we seek to explore if we can engineer electrochemical experiments for generating maximally information-dense 

data or if there is the possibility to engineer a charging procedure that is more amendable to both machine learning 

studies and human interpretation than CCCV.  

The motivation behind this is that my research group is in fact capable of producing several orders of magnitude 

more batteries26 in our laboratory7 than we can test, necessitating either truly chemistry-neutral machine learning 

models1 for early lifetime prediction21 to shorten tests, or engineer new electrochemical processes that tell us our 

desired information faster. Herein I explore the latter. 
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One of the most informative, or insight-dense, graphs one can obtain from “off-the-shelf” CCCV-cycling of a cell 

is the differential capacity27,28 or dQ/dV plot. Linear and non-linear charge procedures can sometimes yield hard-

to-interpret or even hard to generate dQ/dV plots, which, given the herein demonstrated methods, might become 

easier to interpret and extract from data.  

The phenomenological investigations herein are motivated by an educational background in electrochemistry for 

electrocatalysts, that corrosion is, on a first-order approximation, defined by the time spent at a potential. Yet, 

studies that aim to investigate or mitigate corrosion (or degradation) in batteries20 actuate on current and not 

potential to mitigate corrosion. This manuscript concludes with what I believe to be a prototype building block for 

a Pourbaix diagram for batteries.  

 

Methods 

Simulation 

All data in this manuscript stems from simulations using the pybamm29 python package with a non-thermally 

lumped Doyle-Fuller-Newman model on the parameter set provided by O’Kane et al.30 The simulated cell is a “LG 

M50T cylindrical cell” with graphite ande that has 10% SiOx by mass. The cathode consists of NMC 8:1:1. All 

simulations were carried out on a MacBook Pro with a M2 Max Processor. 

Data analysis 

All data analysis is performed using python with standard off-the-shelf numpy and scipy. Differential capacity 

plots are obtained by integrating the current over time using the scipy function cumtrapz and the dQ/dV data is 

obtained from numpy gradient with a second-order polynomial. Wherever necessary, data has been interpolated 

using the interp1d function from scipy.  

Data and Code availability 

The jupyter lab notebook to simulate all cells and generate all figures is going to be available upon publication at 

www.github.com/helgestein/nonlinearcharging. Comments and improvements through git requests are highly 

welcome. 

Results and Discussion 

This manuscript discusses three kinds of charge schedules: linear, quasi-non-linear, and non-linear. For a linear 

charge schedule, the derivative by time of the actuated property, e.g., the current, is zero. This is the case for a 

conventional constant current (CC) - constant voltage (CV) or CCCV protocol, as shown in Figure 1a). A quasi-

non-linear charging schedule is when the time derivative of the actuated property is non-zero, but that of the 

resulting property is. This is the case for the toy example shown in Figure 1b). There, the actuated property is a 

https://doi.org/10.26434/chemrxiv-2023-vj5n0 ORCID: https://orcid.org/0000-0002-3461-0232 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-vj5n0
https://orcid.org/0000-0002-3461-0232
https://creativecommons.org/licenses/by/4.0/


non-linear voltage curve (in fact, the same originating from the simulation in Figure 1a) and the measured property 

is the current. As the reader might tell, there are some minor errors in the simulation with the non-linear voltage 

signal due to imperfect interpolations. The resulting differential capacity plots are shown in Figure 1c) and are 

virtually indistinguishable. Unsurprising this edge case of non-linear charging produces a conventionally 

interpretable dQ/dV diagram. Not discussed herein are pulsed protocols, as demonstrated by Garcia et al.31 and 

Cicvaric et al., however, these protocols fall into the linear charging category (intermittently stopped). A defining 

difference is also the fact that these, again, actuate current and not potential. 

 

Figure 1: Current, voltage, and differential capacity plots from charging a simulated cell. On the left in a) a cell is charged using a conventional constant 
current after a rest of 30 min at a current equivalent of C/4 i.e. a current is applied and a potential is measured. The measured voltage from a) is taken 
as input for a simulation in b) where the potential is applied and the current is measured. Both simulations yield roughly the same result minding some 
initial current overshoot due to interpolation errors in b). Both resulting differential capacity plots are also virtually indistinguishable except for having 
different point densities. This is to demonstrate that even a highly non-linear charging procedure can easily be interpreted. If this charging schedule was 
to be repeated and certain intercalation reactions were exhibiting changes they would become visible as non-linear current responses. Overall dQ/dV 
values only deviate by +/- 0.02 Ah within a 80% absolute error band – mostly resulting from interpolation and numerical differentiation errors. The 
same effect can be obtained for discharging a cell; performing this kind of charge procedure would, however require an arbitrary function generator or 
the adaption of a drive cycle. 

The next step for quasi-linear battery charging is to perform a conventional linear sweep voltammetry experiment. Here the 

potential is linearly driven from the OCV to some desired end potential at a constant rate. The resulting dQ/dV plot for this 

“classic” electrochemical experiment is shown in Figure 2 a)-d) for both a charge and discharge experiment at different sweep 

rates. Since the time derivate of the potential is constant, the resulting dQ/dV plot also directly entails the shape of the current 

as dV is constant and essentially dt times a prefactor such that the resulting dQ/dV plot is congruent with the current A(t). The 

shape is qualitatively similar in that peak positions occur at the same potentials, but the underlying shape is different. A 

secondary benefit for data analysis is that since the potential is equally spaced the dQ/dV plot is equally spaced along the x-

axis as well, making it easier to cross-correlate data as interpolation errors can be mitigated.  

To make the standard linear sweep voltammogram a little bit more complex, it can be superimposed with an ultra-low frequency 

sinusoidal – here on the order of fractions of a mHz with the resulting dQ/dV plot shown in Figure 3. The result is that there 

are potential areas in the dQ/dV plot that are more whilst others are or less “dense” – however, here by design and not by choice 

as is the case for CCCV charging. It remains to be tested if the interesting simulatively observed shape, as shown in Figure 3, 

is really going to be observed in an experiment, but programming battery cyclers with these highly non-linear voltage profiles 

has proven to be challenging and remains a task for future research in non-linear battery cycling. By increasing the amplitude 

of the superimposed sinusoidal division by 0 in the dQ/dV (as dV approaches near 0) can be triggered that remains to be 
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elucidated experimentally as it could trigger dendrite growth or by the very least exciting morphology changes. If the resulting 

shape of the dQ/dV plot is not observed this could also mark an interesting edge case for some uncaptured physics in the DFN 

model.  

 

Figure 2: Differential capacity plots of simulated cells (dis)charged using a linear potential sweep. The resulting dQ/dV plot appears qualitatively 
different; however, peak positions remain largely the same when charged at an equivalent C/10 rate. The benefit of a linear voltage sweep is that the 
density of points in the differential capacity plot is constant, and one can omit plotting the current as a function of time as it follows from the shape of 
the dQ/dV plot as dV=r*dt and dQ/dt=A. If given just the total charging time and rate the dQ/dV plot from a linear sweep voltammetry example is, 
therefore more information-dense than from a CC experiment. 
 

Though it may be of interest to increase the area at specific potentials in the dQ/dV diagram but the physical mechanism and 

interpretation thereof would be interesting to investigate. An even greater interest lies, however in reducing the area under the 

curve at some potentials. This is due to some intercalation sites or phase transitions associated with increased corrosion, particle 

cracking, or low reversibility29,32,33. Reducing the area under the curve at some potentials can be obtained by superimposing an 

arctangent (arctan) instead of a sinusoidal onto the linear sweep, as shown in Figure 3. The issue with this method is, however, 

that if one chooses a fixed total time to charge or effective C-rate (since it is highly variable in this case) the charge needs to be 

“shoved” into the following higher phase/site at the next higher potential. This leads again to spikes, as observed for the 

superimposed sinusoidal. One could, of course, try to optimize the ramp slope, potential difference etc. to mitigate this 

overshoot in differential capacity. If the amplitude of the arctan for the linear sweep voltammetry experiment is lowered to only 

0.1V there are still significant overshoots in the dQ/dV plot. A more elegant way is, however to use the quasi-non-linear 

charging schedule as shown in Figure 1b) and superimpose the previously discussed arctan. The resulting dQ/dV plot is shown 

in Figure 5. The interesting property here is that the resulting current is non-linear in time (tough essentially linear), not 

a) b)

d)c)
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pulsating as for the superimposed sinusoidal and that there are no dQ/dV overshoots for the herein relatively arbitrarily chosen 

step height of only 0.1V. This minor alteration has a strong effect of more than nearly halving the differential capacity near the 

transition potential.  

 

Figure 3: Differential capacity plots of simulated cells (dis)charged using a linear potential sweep with an overlayed sinusoidal signal. Contrary to 
figure 2 the time spend at every potential increment i.e. dV/dt is not constant. As there are sections where dV/dt is close to zero one can generate spikes 
in the differential capacity diagram. Whether or not the extent of these spikes is physical remains to be tested experimentally. The spikes can be exactly 
placed by adjusting the phase of the superimposed sinusoidal. In between the artificially generated spikes less charge is being intercalated motivating 
a search for non-linear charging strategies that can omit certain unwanted intercalation sites or phase transitions. 

 

Figure 4: Differential capacity plot from a linear potential sweep with a superimposed arctan function. Varied are the times at which the arctan was 
superimposed. The arctan superimposition leads to less time spent at certain potentials i.e. the dime derivate of the potential sweep can be decreased. 
This leads to the omission of some potentials in the dQ/dV plot. Since this is a full cell simulation the omitted potential ranges can relate to the chemical 
potentials of phases in the anode and cathode.  
 

Amplitude

Phase

!"
!# ≈ 0
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Figure 5: Differential capacity plots for a non-linear charge schedule that is derived from the same idea as in Figure 1 i.e. applying a non-linear voltage 
to obtain a perfectly constant current, however, superimposed onto that voltage signal is an arctan function at different times. This leads to a partially 
non-linear response in the current but most importantly a selective diminishing of the differential capacity at some potentials. The inset shows a section 
of the applied voltage. Contrary to the other simulations this model models EC reaction limited SEI growth with distributed film resistance, porosity 
changes and irreversible Li-plating with porosity change. 
 

Interestingly there are no overshoots either, as the slope of the voltage after the arctan step corresponds to the (non-linear) 

voltage signal necessary to yield a similar C-rate. As a toy example, one can now look at the Li-loss to the SEI for different 

positions of the superimposed arctan in time as shown in Figure 6, after a CV step to C/50. This CC step is to ensure that despite 

the different charge schedules all data shown corresponds to the same SOC (though not charge time). The data suggests that 

Li-Loss to the SEI can be reduced if the arctan onto the non-linear voltage signal is superimposed at the right potential (roughly 

3.75-3.8V). This potential is the chosen example associated with a phase transition/reduction in the NMC81132. With this plot 

at different C-rates one could start to construct a diagram showing potential ranges to be avoided during charging and, if shifting 

in potential by C-rate, help to construct a map of C-rate dependent “instability” ranges. 

 

Figure 6: Li-loss to the SEI after the non-linear charging procedure with a superimposed arctan. The x-axis shows the inflection point V0 of the arctan 
and the Li-loss is reported after holding the simulated cell at the maximum voltage until a C/50 equivalent current is reached (herein reported as 100% 
SOC ). This plot suggests that reducing the integral capacity in the voltage range of 3.7-3.8V leads to less Li-loss to the SEI. These numbers are to be 
viewed with caution as they are highly dependent on the implementation, discretization etc., and should solely demonstrate a general trend. 

 
Conclusion 

This manuscript explored linear, quasi-non-linear, and on linear charging of batteries. The motivation is first and 

foremost an interesting toy example where a battery is potentiodynamically charged in such a way that the current 
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remains constant - yielding virtually the same dQ/dV plots. This example is further explored using classic linear 

sweep voltammetry to yield information-dense dQ/dV plots that contain the congruent shape of the non-linear 

current response. Superimposing a sinusoidal onto a linear sweep voltammogram of a battery is then shown to be 

able to yield spikes in the differential capacity plot whose physical manifestation in an experiment remains to be 

validated. Superimposing an arctan onto a linear sweep voltammogram enables to reduce the area at selected 

potentials in the dQ/dV plot but yields overshoots in the dQ/dV diagram at higher potentials. Superimposing an 

arctan onto a non-linear potentiodynamic schedule that would have produced a constant current response mitigates 

these overshoots and enables the selective omission of potential ranges in the differential capacity plot. After fully 

charging the simulated cell there is a minimum in Li-loss to the SEI that can be correlated with phase transitions 

occurring in the cathode, in the chosen example NMC811, that are mitigated. The presented study is an entirely 

simulative endeavor and remains to be experimentally validated in future research. 

Engineering highly non-linear charging schedules has implications in formation and cell aging. If it is possible to 

selectively omit (or emphasize) the intercalation or phase transition at select potentials, this markes a new 

“engineering lever” to pull, allowing to alter the growth of the SEI only electrochemically and not diffusive as for 

instance done in Cicvaric et al.34 and Garcia et al.31 for metal electrodes. Expressed differently: Applying a non-

trivial non-linear voltage or current signal onto a battery creates the opportunity to intentionally activate or 

mitigate some corrosion mechanisms. Since the resulting graphs as Figure 6 allow the correlation to mechanisms 

in the anode/cathode at different c-rates it becomes possible to construct Pourbaix-like diagrams of potential ranges 

to avoid. This diagram could then directly contribute to the engineering of both electrochemical processes and 

engineering of the SEI composition during formation and use. 
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