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Abstract 

 The time effect on the nanozyme-mediated oxidation of 3, 3’-diaminobenzidine by 

hydrogen peroxide was investigated.  Silver-based nanomaterials were synthesized and 

then used as peroxidase mimics. The time-dependent activity of the 3, 3’-

diaminobenzidine oxidation catalyzed by silver-based nanomaterials was calculated by 

probing the color intensity of the produced brown-colored indamine polymer during the 

reaction at different time intervals. The time-dependent activity curve was used as an 

index for evaluating the time effect on the process, showed that the concentration of the 

brown-colored indamine polymer was increased by increasing the oxidation time and 

then leveled off, revealing saturation of active nodes of nanoparticles with nanozyme-

substrate.  
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1. Introduction 

To date, several different nanomaterials with unique properties than the bulk materials 

have been designed and synthesized by different protocols. The above-mentioned 

nanomaterials have been applied for different applications in modern life due to their 

unique optical characteristics [1-3], catalytic activity  [4, 5], anti-cancer, and medical 

properties [6, 7], as well as anti-bacterial characteristics[8, 9]. Some of the well-known 

nanoscale materials with a wide application range in science and technology are 

carbon/metal-based nanoparticles [10, 11], carbon dots and quantum dots [12, 13], metal 

oxides [14], and magnetic Fe3O4 nanoparticles [15], as well as some nanoscale metal-

organic frameworks [16, 17]. Some of these nanomaterials exhibit characteristic enzyme-

like activity and features that make them suitable as memetic materials for native 

enzymes. Due to the nanoscale size distribution and intrinsic enzyme-like properties of 

these nanomaterials, they are called “nanozymes” and have been widely applied for 

different practical uses in industrial, clinical, and environmental catalysis [18-21]. These 

nanozymes reveal some significant advantages over the native enzymes including lower 

cost efficiency and higher cycling stability [19, 22, 48, 49]. Due to their applicability for 

catalyzing enzyme-mediated reactions in harsh conditions, up to now, different 

nanoparticles with intrinsic peroxidase-like activity for example, Mn3 O4 nanozymes [23], 

Cu/CuFe2O4 nanozymes [24], and BSA-modified manganese dioxide nanoparticles [25],   

as well as BSA-stabilized manganese phosphate nanoflower [26] had been designed 
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synthesized. Besides, the carbon-based nanozymes [27], silica-coated- Fe3O4 magnetic 

nanoparticles [28], manganese dioxide (MnO2) and Fe3O4 nanozymes s [29, 30], pyrite-

based, metal-organic frameworks-based, gold/silver-based, S/N co-doped carbon dot-

based nanozymes [31, 32, 33, 34, 35]. Among the different nanomaterials with excellent 

peroxidase-like activity, gold/silver-based nanozymes have been widely for developing 

nanozyme-based sensors [36, 37], nanozyme-based cancer treatment [38], and nanozyme-

mediated dye degradation [39]. Moreover, since the first report of patients infected with 

the new infection disease, COVID-19 in 2019 [40, 41], nanozyme-based methods have 

been developed for fast clinical diagnosis of this pandemic infection [42]. Hence, due to 

the importance of nanozymes, their biochemical characterization is an interesting topic. 

In this regard, the biochemical behavior of enzyme-like nanosilver was also investigated 

by our research group [43]. Besides, recently, Hormozi Jangi et al. reported some research 

articles on the investigation of biochemical behaviors of BSA-stabilized gold 

nanoparticles, silver nanoparticles, and MnO2 nanoparticles [44-47]. Herein, the time 

effect on the nanozyme-mediated oxidation of 3, 3’-diaminobenzidine by hydrogen 

peroxide was investigated.  Silver-based nanomaterials were synthesized and then used 

as peroxidase mimics. The time-dependent activity of the 3, 3’-diaminobenzidine 

oxidation catalyzed by silver-based nanomaterials was calculated by probing the color 

intensity of the produced brown-colored indamine polymer during the reaction at 

different time intervals. The time-dependent activity curve was used as an index for 
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evaluating the time effect on the process, showed that the concentration of the brown-

colored indamine polymer was increased by increasing the oxidation time and then 

leveled off, revealing saturation of active nodes of nanoparticles with nanozyme-

substrate.  

2. Experimental section 

2.1. Synthesis of AgNPs 

The synthesis was performed based on the process reported [27]. To do this, silver ions 

were reduced by NaBH4 in the presence of sodium citrate as a stabilizer within 3 hours. 

After this time, the AgNPs were collected and stored at 4 ℃.   

2.2. Oxidation reactions 

To do the oxidation reactions, a suitable amount of DAB was introduced into the buffer 

solutions containing silver nanoparticles and hydrogen peroxide with a fixed pH of 7.0. 

The reaction proceeded for about 0.0000-25.0 min for DAB oxidation. Thereafter the 

colored products were analyzed by UV-Vis spectrophotometer at 460.0 nm for detecting 

the DAB-ox. 

3. Results and discussion 

3.1. Characterization of silver nanozymes 

The silver-based nanoparticles were synthesized using citrate as the capping and 

stabilizer. The as-synthesized silver nanoparticles were then characterized via the TEM 

imaging method for calculation of their mean size as well as for the morphological 
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properties. The TEM image of these nanoparticles shown in Figure 1 exhibited that the 

as-prepared nanozymes have a spherical morphology and uniform particles. Besides, the 

mean size of these nanoparticles was estimated at about 11.0 nm for the TEM image.  

 

Figure 1. TEM image of as-prepared silver nanoparticles. 

3.2. Time-course studies toward DAB oxidation  

the peroxidase-like activity of silver nanoparticles toward DAB oxidation was also 

evaluated.  To evaluate the peroxidase-like activity of the as-prepared AgNPs against 

DAB, the oxidation of DAB was performed by hydrogen peroxide in the presence of 

AgNPs as peroxidase mimics. In this regard, the time course studies were performed by 

probing the brown-colored product via spectrophotometric detection at 460.0 nm. 

Afterward, the plot of oxidation of DAB in the presence of AgNPs as a function of time 

was constructed by plotting the absorbance at 460.0 nm as a function of reaction time.  

The results are shown in Figure 2. As can be seen from this figure, the AgNPs can catalyze 
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the oxidation of DAB to form a brown-colored product with a maximum absorbance at 

460.0 nm.  

 

Figure 2. Time course radar plot of oxidation of DAB in the presence of silver nanozymes 

as a function of time 

To explore more precise on the nanozymatic activity of the as-prepared silver nanozymes 

toward oxidation of DAB at different incubation times, the relative activity of nanozymes 

was also calculated and used as an index for investigating the time effect on the oxidation 

process of DAB for producing the corresponding poly(DAB). The results are shown in 

Figure 3. The results showed that after a long oxidation time as long as five minutes, the 

nanozyme activity reached about 32% of its maximal activity toward DAB oxidation. The 

oxidation process slowly proceeded and the nanozyme activity reached about 54% after 

12.0 min. The maximal activity of silver nanozymes was obtained after 20 min toward 

DAB oxidation. After this time, the incubation time could not affect the production of the 
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poly(DAB), and therefore the relative activity of the nanozymes was leveled off.  The 

results reveal that an incubation time over 25.0 min was enough for active nodes 

presented on the surface of the silver nanoparticles, to be blocked by the substrate (DAB) 

molecules. In fact, the active nodes on the surface of the silver nanoparticles were 

completely saturated in 25.0 min by the DAB molecules. Considering this fact that the 

active nodes (the binding sites) on the surface of the nanozymes are limited, the 

saturation of the DAB molecules leads to leveling off of the relative activity of silver 

nanzymes.  

 

 

 

 

Figure 3. Relative activity of silver nanozymes for oxidation of DAB as a function of time  

4. Conclusions 
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Time effect on the nanozyme-mediated oxidation of 3, 3’-diaminobenzidine by hydrogen 

peroxide was investigated.  Silver-based nanomaterials were synthesized and then used 

as peroxidase mimics. The time-dependent activity of the 3, 3’-diaminobenzidine 

oxidation catalyzed by silver-based nanomaterials was calculated by probing the color 

intensity of the produced brown-colored indamine polymer during the reaction at 

different time intervals. The time-dependent activity curve was used as an index for 

evaluating the time effect on the process, showed that the concentration of the brown-

colored indamine polymer was increased by increasing the oxidation time and then 

leveled off, revealing saturation of active nodes of nanoparticles with nanozyme-

substrate.  
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