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Abstract 

Synthesis planning of new pharmaceutical compounds is a well-known bottleneck in modern 

drug design. Template-free methods, such as transformers, have recently been proposed as 

an alternative to template-based methods for single-step retrosynthetic predictions. Here, we 

trained and evaluated a transformer model, called Chemformer, for retrosynthesis 

predictions within drug discovery. The proprietary dataset used for training comprised ~18M 

reactions from literature, patents, and electronic lab notebooks. Chemformer was evaluated 

for the purpose of both single-step and multi-step retrosynthesis. We found that the single-

step performance of Chemformer was especially good on reaction classes common in drug 

discovery, with most reaction classes showing a top-10 round-trip accuracy above 0.97. 

Moreover, Chemformer reached a higher round-trip accuracy compared to a template-based 

model. By analyzing multi-step retrosynthesis experiments, we observed that Chemformer 

found synthetic routes leading to commercial starting materials for 95% of the target 

compounds, an increase by more than 20% compared to the template-based model. In 

addition to this, we discovered that Chemformer suggested novel disconnections 

corresponding to reaction templates which are not included in the template-based model. 

The conclusions drawn from this work allow for designing a synthesis planning tool where 
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template-based and template-free models work in harmony to optimize retrosynthetic 

recommendations. 

 

Introduction 

Synthesis planning of new pharmaceutical compounds is a well-known bottleneck in modern 

drug design [1]. The retrosynthesis approach was developed already in 1969 [2] and is now 

considered standard practice. The goal of retrosynthesis is to find disconnections that break 

down a target molecule into smaller building blocks, referred to as precursors or reactants.  

This step is repeated until all precursors are readily available for purchase. Typically, 

retrosynthesis is divided into single-step retrosynthesis which only deals with predicting 

precursors and multi-step retrosynthesis which describes the iterative application. Recent 

developments have resulted in numerous open-source software tools which help chemists 

with the various aspects of synthesis planning, including retrosynthesis [3]. We recently 

developed AiZynthFinder [4], an open-source software which is used daily by chemists. It 

performs multi-step retrosynthesis by coupling a single-step neural network with a Monte 

Carlo Tree Search (MCTS) [5]. The single-step neural network model used in the 

AiZynthFinder platform is trained to recommend reaction templates given a molecular 

fingerprint of the target molecule (a product molecule) as input. Such a model is called a 

template-based model.  

Template-based models are dependent on the data processing needed to extract and curate 

reaction templates, including atom-mapping, reaction center identification, and subsequent 

filtering based on e.g., template abundance [6]. Moreover, because the model uses pre-

specified templates as classes, it is not able to recommend novel disconnections [3], [7], [8]. 

In contrast, template-free models, such as Chemformer [9], do not require templates and can 

be trained directly on the Simplified-Molecular-Input-Line-Entry-System (SMILES) [10] 
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representation of the reactions. These models are therefore not restricted by specific 

reaction templates and can in theory extrapolate beyond the training set [8].  

Chemformer is a sequence-to-sequence transformer model based on the BART language 

model [11]. It was pre-trained using SMILES to represent the “language” of chemical 

structures [9]. Research investigating the use of similar transformer models for single-step 

retrosynthesis prediction [6], [9], [12]–[21], as well as forward prediction [8], [9], [12], [17], 

[20], [22]–[24], and reagent prediction [25] have demonstrated a superior performance of 

these models compared to more classic approaches such as template-based models or 

graph neural networks [19]. Since the first implementations of a retrosynthesis transformer 

model [6], [19], several enhancements and developments have been presented, including 

diversity-enhanced transformer [13], triple-transformer validation loop [12], and 

disconnection-prompted transformer [15]. Although earlier studies show great promise for 

retrosynthesis transformer models, there are still questions to address before introducing a 

transformer model like Chemformer into the AiZynthFinder production platform. First, most 

studies consider models trained on United States Patent and Trademark Office (USPTO) 

data. While USPTO is a good initial benchmarking dataset, it does not span the chemical 

space relevant for drug discovery [26]. Second, a recent study showed that the top-N 

accuracy of single-step predictions does not necessarily correlate with how well a model 

performs in a multi-step setting [21]. Third, although the overall performance of template-

based and template-free models has been examined, a study which thoroughly investigates 

the generated chemistry and individual reaction classes is still missing. All these issues hint 

that a complete evaluation of Chemformer for both single-step and multi-step retrosynthesis 

in the scope of drug discovery is needed before integrating Chemformer in the AiZynthFinder 

platform. 

Here, we fine-tune the pre-trained Chemformer [9] on a large set of proprietary data from 

AstraZeneca [26] for the task of retrosynthesis prediction. By carrying out thorough data 

analysis, we dissect the predictive performance and behavior of the model. To investigate 
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performance relating to different reaction classes common in drug discovery, we first 

evaluate the model on the test set split of the proprietary dataset. We then compare its 

single-step performance with the AiZynthFinder template-based model on a shared test set 

from PaRoutes-USPTO [27]. Finally, we apply multi-step retrosynthesis to 5,000 

AstraZeneca target compounds and analyze the proposed routes and reactions from the two 

models. The full set of analyses yields a deeper understanding of the strengths and flaws of 

Chemformer and the more commonly used template-based model. The conclusions drawn 

from this work allow for designing a synthesis planning tool where template-based and 

template-free models work in harmony to optimize retrosynthetic recommendations.  

Methods 

Reaction and compound datasets 

The Chemformer was trained on a proprietary dataset from AstraZeneca consisting of 18.7 

million public and proprietary reactions. This is the same dataset used for training the 

template-based model in AiZynthFinder [28]. The dataset was randomly divided into training, 

validation, and test sets (percentages - 98:1:1). To compare Chemformer to the 

AiZynthFinder template-based model on the single-step retrosynthesis task, we used an 

external test set from PaRoutes [27]. The test set is a subset (1,025 reactions) which shares 

no overlap with the proprietary training set. Because the PaRoutes dataset is on the same 

format as the proprietary dataset, there was no additional processing step needed. To 

evaluate the models on multi-step retrosynthesis, we carried out experiments on 5,000 

AstraZeneca target compounds, referred to collectively as the AZ design dataset. This 

dataset represents modern drug design goals and typical target molecules for the 

AiZynthFinder application.  

Model fine-tuning 

We fine-tuned the pre-trained Chemformer model [9] for backward (retrosynthesis) 

prediction, and forward (product) prediction. The forward Chemformer model was trained 
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with reactants as input and was used for the evaluation of retrosynthesis predictions. A 

forward model usually takes both reagents and reactants as input since it yields a more 

accurate model [20]. We therefore validated our forward model with one trained using both 

reactants and reagents as input, Figure S1. The reactants-only model achieved almost as 

high top-N accuracy as the forward model trained with reactants as well as reagents. We 

therefore trust the model trained without reagents for round-trip prediction, which aims to 

check the agreement between a backwards prediction on a target molecule, and a forward 

prediction on the precursors to the target molecule. Hereafter, the backward Chemformer will 

be referred to as Chemformer, while the forward model trained without reagents will be 

referred to as forward Chemformer. 

The fine-tuning was done for 20 epochs with the Adam optimizer [29], using a learning rate 

of 0.001, batch size of 32, and augmentation probability of 0.5. We refer to the original 

Chemformer paper for more information about model architecture and training procedure [9]. 

Model inference was done with a GPU-optimized beam search, using a beam size of 10 and 

batch size of 128. To obtain statistics, we evaluated each batch individually and aggregated 

evaluation metrics by taking the average across each batch. PyTorch 1.8.0 [30] and PyTorch 

lightning 1.2.3 [31] were used for model setup and training, while RDKit 2020.09.1 [32] was 

used for manipulating SMILES strings. 

Single-step model evaluation 

We evaluated the Chemformer model using exact matching accuracy and round-trip 

accuracy [6]. In exact matching, the backward model-predicted reactants were directly 

compared to the ground-truth reactants in the dataset. Such a comparison naturally does not 

consider the one-to-many nature of retrosynthesis prediction; one product can be broken 

down in many ways. Round-trip accuracy, on the other hand, takes this into account. Round-

trip accuracy was computed by first carrying out forward Chemformer inference using beam 

search [33] with beam size 1 (corresponding to greedy search) and using the predicted 

reactants as input. If the forward-predicted product was the same as the backward model’s 
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input product, the prediction was marked as correct. For the multi-step retrosynthesis 

analysis, we used a beam size of 10 in the round-trip forward Chemformer inference. Recent 

work has shown that round-trip accuracy may agree more with chemists’ judgements of 

correct reaction suggestions than exact matching accuracy [20]. However, because the 

round-trip accuracy depends on the accuracy of the forward model, and does not entail 

exact accuracy, these two metrics can be considered complementary. We therefore used 

both metrics to evaluate the Chemformer performance, in particular accuracy and precision 

on individual reaction classes. For the precision analysis, the reaction classes of the top-1 

predictions were determined using NextMove’s NameRxn software [34] and the obtained 

classes were used to group the data. We specifically evaluated reaction classes typically 

used in drug design [35]. These include N-acylation to amide, reductive amination, Suzuki 

coupling, protections, deprotections, N-acylation to urea, N-substitution with alkyl-X, N-

sulfonylation, Buchwald-Hartwig and Ullman couplings, N-arylation with Ar-X, and 

Sonogashira reaction. In addition to this, we also analyzed rearrangements, ring-forming 

reactions, and Ugi reactions, which are reaction classes known to be challenging for 

retrosynthesis models. The top-1 predictions were furthermore evaluated by computing the 

Tanimoto similarity to the ground truth using Morgan fingerprints with radius 2.  

Multi-step retrosynthesis experiments 

We performed multi-step retrosynthesis experiments with the AiZynthFinder software [4]. To 

allow a more efficient utilization of the computationally expensive Chemformer, we extended 

the MCTS algorithm with three features. First, we implemented immediate instantiation of 

child nodes in the tree search upon expansion of the parent node. For template-based 

models it is advantageous to delay this process due to the expensive operation of template 

application, but for a template-free model, such as Chemformer, there is no efficiency to be 

gained by delaying child node instantiation. Second, whenever a child node is expanded, 

i.e., when the product SMILES is given as input to the Chemformer model, we also supply 

the SMILES of sibling nodes. This exploits the efficient batch prediction of Chemformer and 
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yields a pre-cursor prediction for more than one product at a time. Third, to ensure that each 

product is given to the Chemformer only once, we cache the Chemformer predictions during 

the search.  

The multi-step retrosynthesis was performed using 100 iterations and a maximum depth of 

7. The maximum search time was set to 120 s and 300 s for the template-based and 

Chemformer models, respectively. For the Chemformer predictions, we used a beam size of 

10, whereas for the template-based model we added the top-50 predictions to the search 

tree. We used an internal AstraZeneca stock collection as stop-criteria in the search. 

Moreover, a quick filter policy was used to remove unfeasible reactions from the search tree.  

 

Figure 1 Illustration of the analysis workflow used for multi-step model evaluation. Green boxes 
represent analysis carried out the obtained synthesis routes, violet boxes represent analyses carried 
out on extracted reactions, and red boxes correspond to analyses on the new Chemformer templates 
identified here. The steps carried out with the AiZynthTrain pipeline are highlighted by a yellow box. 
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Multi-step model evaluation 

Figure 1 illustrates the analysis workflow used to carry out multi-step model evaluation. 

Following the multi-step retrosynthesis experiments with AiZynthFinder, we first extracted 

basic route-complexity metrics, including for example number of solved routes and average 

depth. To evaluate similarity of generated routes from Chemformer and the template-based 

model, respectively, we computed 1) the fraction of routes in common across the top-5 

ranked routes, and 2) cluster homogeneity. Cluster homogeneity was calculated by first 

combining all routes for one target molecule from the template-based and Chemformer 

models, and  computing the approximate distance between all pairs of routes using the 

efficient LSTM proxy for tree-edit distance calculator [36], [37]. The distances obtained were 

then used to cluster the routes with HDBSCAN using 5 nearest neighbors [38]. Next, we 

labeled each route according to which the model it was obtained with and computed the 

cluster homogeneity as the average largest-model-fraction across all clusters. The cluster 

homogeneity is a score between 0.5 and 1, where 0.5 corresponds to an equal number of 

routes from both models in every cluster (routes were similar) and 1 corresponds to the 

routes of the two models being completely separated in different clusters (routes were 

different).  

The ability of Chemformer to extrapolate beyond the training data during multi-step 

retrosynthesis was evaluated by performing atom-mapping with RxnMapper [39], reaction 

classification with NameRxn, and reaction template extraction on the predicted reactions. 

These steps were done using the AiZynthTrain pipeline tool [28]. To identify novel templates 

among the extracted Chemformer templates, we first quantified the overlap between the 

Chemformer templates and three sets of templates: 1) the set of templates which had been 

suggested by the template-based model, 2) the set of templates available in the template-

based model (modeling templates), and 3) the full set of templates extracted from the 

training data prior to filtering (library templates). Reaction similarities of the extracted 

reactions compared to the Reaxys database were then computed. For each query reaction, 
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the database was first filtered based on the reactive functions: only reactions with the same 

reactive functions as the query reaction were kept. The reaction similarities of the query 

reaction and the selected database subset were calculated using Tanimoto similarity of 

reaction fingerprints. Each reaction fingerprint was calculated by subtracting reactant 

molecular fingerprints from the product molecular fingerprint [40]. Here, each molecular 

fingerprint was constructed by concatenating the Morgan fingerprint (radius 3 and length 

512) together with the RDKit Daylight fingerprint (length 512).  

Results and discussion 

Evaluating single-step retrosynthesis performance 

Accuracy and precision of common reaction classes in drug discovery. The 

performance of a model for the purpose of multi-step retrosynthesis is in part dependent on 

its performance on single-step predictions. To get a full picture of the Chemformer 

performance relating to different reaction classes important in drug discovery, we computed 

top-N exact matching and round-trip accuracy for specific subsets of the test set, Figure 2. 

As can be seen, the exact matching accuracy of the overall test set was modest (Top-1: 

0.34, Top-10: 0.61 - Table S1). However, the round-trip accuracy was higher (Top-1: 0.72, 

Top-10: 0.92 - Table S2), indicating that the overall predictions were valid from a “chemical” 

point-of-view.  
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Figure 2 Top-N a) exact matching and b) round-trip matching accuracies of selected reaction classes, 
evaluated on the test set split of the proprietary data. The distributions were obtained over inference 

batches. 

 

Surprisingly, we observed an especially high exact matching accuracy for Ugi reactions 

(Figure 2a; Table S1 – Top-1: 0.80, Top-10: 0.98). This four-component reaction has 

relatively few data points (4,508 data points: ~0.024% of the entire dataset) but nevertheless 

the Chemformer model performs well. A contributing factor to this is that the reaction space 

of Ugi reactions is rather limited. In contrast to the situation with Ugi reactions, Suzuki cross-

couplings displayed quite low exact matching accuracy (Top-1: 0.38, Top-10: 0.79 - Table 

S1). However, the Suzuki cross-couplings instead had among the highest round-trip 

accuracies, Figure 2b (Top-1: 0.91, Top-10: 0.99 - Table S2), highlighting the weaknesses of 

only using exact matching accuracy. For Suzuki reactions there are several possible 
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reactants with different boron groups. Although the different possible reactants would be 

equally interesting from a retrosynthesis perspective, they are not the “ground truth” and are 

therefore penalized by the exact matching protocol.  We further noticed a large spread in 

accuracy within the reductive amination class for both exact and round-trip matching. In 

general, however, the round-trip accuracy showed that Chemformer indeed performed well 

on the most common reaction classes in drug discovery [35], Figure 2b and Table S2. Apart 

from the ring-forming and reductive amination reaction classes, the top-10 round-trip 

accuracy of the various reaction classes was higher than 0.9; if we also disregard 

rearrangements, the round-trip accuracy is higher than 0.97, Table S2.  

A model can in theory have a high accuracy but low precision of a specific reaction class. 

Such a model would consistently make specific predictions, even when those predictions are 

not applicable. Therefore, we determined reaction classes with NextMove’s NameRxn tool 

using the input product and predicted reactants, and thereafter calculated the precision (top-

N exact matching and round-trip accuracy) of subsets defined by the identified reaction 

classes, Figure S2. The results agreed well with the accuracies reported in Figure 2. 

Specifically, the high exact matching accuracy of Ugi reactions was reflected in a high 

precision of predicted Ugi reactions (Top-1: 0.76), indicating that once an Ugi reaction was 

predicted, it was usually correct. As expected, predicted Suzuki reactions had a low exact 

matching precision but a high round-trip precision, Figure S2. Reductive amination had a 

similar average precision in both exact and round-trip matching precision (Figure S2), as 

was the case for accuracy, Figure 2. 

To characterize the predictions further, we calculated the top-1 Tanimoto similarity, the 

fraction of valid sampled SMILES, and the fraction of uniquely top-N sampled SMILES, 

Figure S3. The Tanimoto similarity demonstrated that even if the top-1 predictions were not 

always an exact match, they were often similar to the ground truth. The top-1 exact matching 

accuracy of Suzuki cross-couplings, for example, was low, while the Tanimoto similarity was 

on average 0.76 (Figure 2a and Figure S3a). Apart from a few outlier batches, the fraction of 
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valid sampled SMILES was close to 1 (median 0.99; Figure S3a). Moreover, the fraction of 

uniquely sampled SMILES was 0.77 for the overall test set. An exception was found among 

Ugi reactions where the fraction of uniquely sampled SMILES was 0.43. Recalling the high 

exact matching accuracy of Ugi (Figure 2a), the high precision (Figure S2a) and the high 

Tanimoto similarity (0.93; Figure S3a), we hypothesized that the model was certain about 

when to apply Ugi reactions and therefore did not generate a diverse set of suggestions in 

those cases. Finally, we noticed that the fraction of uniquely sampled SMILES was lower for 

the forward model than the backward model, Figure S3 (0.38 vs. 0.77), which supported the 

rather high observed round-trip accuracies. 

Comparing Chemformer single-step performance with the template-based model. The 

results on the test set split of the proprietary data showed promise for applying Chemformer 

to retrosynthesis prediction but do not address how the model generally performs compared 

to the template-based model. Figure 3 compares the performance of Chemformer and the 

template-based model on the shared PaRoutes-USPTO [27] test set. Chemformer 

consistently reached a higher top-N accuracy compared to the template-based model (mean 

7.19 and 2.85 percentage difference in top-N exact and round-trip accuracy, respectively), 

which further validated the single-step prediction ability of Chemformer.  

Taken together, the results from the single-step retrosynthesis analysis demonstrated that 

although the exact matching accuracy was modest on the proprietary test set, the 

predictions could be validated with the forward Chemformer model via round-trip matching. 

Moreover, the performance of Chemformer was especially good on reaction classes 

common in drug discovery, with most reaction classes showing a top-10 round-trip accuracy 

above 0.97. The Chemformer model also outperformed the template-based model on the 

PaRoutes-USPTO test set. Confident that Chemformer performed well on single-step 

predictions, we moved on to evaluate its performance in a multi-step setting. 
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Figure 3 Top-N a) exact matching and b) round-trip matching overall accuracies of Chemformer 
(orange) and the AiZynthFinder template-based model (blue) evaluated on the PaRoutes-USPTO test 

set. The distributions were obtained over inference batches. 

 

Evaluating multi-step retrosynthesis performance 

General multi-step metrics and route similarity. To study the two models for the purpose 

of multi-step retrosynthesis, we employed AiZynthFinder with each single-step model as the 

expansion policy together with Monte Carlo tree search (MCTS). For the Chemformer 

experiments, we used our modified MCTS algorithm with immediate child node instantiation 

and cached batch predictions. AiZynthFinder experiments were then applied to the AZ 

design target dataset. Table 1 and Table 2 list the resulting performance metrics and the 

percentage of solved routes depending on solvability case, respectively. Chemformer 

obtained at least one solved route for 95% of the targets, while the template-based model 

solved routes for only 72% of the targets. The template-based model, on the other hand, 

was one order of magnitude faster than Chemformer to find solutions (15.8 vs. 158.0 

seconds median search time), Table 1. Table 2 shows that 23% of the targets were solved 

by Chemformer but not the template-based model, while a mere 0.7% of the targets were 

solved only by the template-based model. Roughly 4% of the targets remained unsolved by 

either models.  

Model Median search time (s) Percentage solved (%) 

Chemformer 158.04 95.06 

Template-based 15.82 72.38 
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Table 1 General multi-step retrosynthesis metrics for Chemformer and the template-based model 
coupled with MCTS applied to the AZ design dataset. 

 

Solvability case Percentage (%) 

Solved by both 71.64 

Only solved by Chemformer 23.42 

Only solved by template-based 0.74 

Solved by none 4.20 

Solved by any 95.80 

Table 2 Percentage of solved targets in the AZ design dataset given different solvability cases. 

 

Because most of the targets solved by the template-based model were also solved by 

Chemformer, it is of interest to examine the routes for targets solved by both and see 

whether those were identical, or at least similar. Noteworthy, a recent multi-step analysis 

including the Chemformer and the template-based model showed that while the Chemformer 

had a higher route success rate (i.e., a greater percentage of compounds where at least one 

solved synthesis route was produced), the template-based model achieved the highest top-N 

route accuracy and building block accuracy [21]. These results, which were obtained on the 

PaRoutes benchmark set [27], indicate that the two models indeed generated different 

routes. To investigate this on the AZ design dataset, we compared the top-5 ranked routes 

and calculated the fraction of identical routes, Figure 4a. Moreover, we clustered all the 

extracted routes and computed cluster homogeneity as a metric for route similarity, Figure 

4b. In short, a cluster homogeneity closer to 0.5 means that an equal amount of Chemformer 

and template-based routes had been grouped together, implying that the routes were very 

similar. A cluster homogeneity closer to 1 instead means that the routes generated by the 

two models were not grouped together, implying that the routes were very different. The top-

5 overlap- and similarity-analyses showed that for targets which were not solved by both 

models, the routes were typically not identical in top-5, and not very similar according to 
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cluster homogeneity, Figure 4. In contrast, routes solved by both were more similar and had 

a higher fraction of identical top-5 routes. Still, the results suggest that the proposed routes 

were different between the two models. 

 

Figure 4 Route identity and similarity as functions of solvability case: a) fraction of top-5 route overlap 
of each target, and b) cluster homogeneity of clusters generated for each target in the AZ design 
dataset. The data distribution is represented by boxen-plots. The centerline corresponds to the 

median, each box following the centerline encapsulates half of the residual data (50%, 25%, etc.). 

 

An initial quantification of the difference between routes was done by extracting route 

complexity metrics, Table 3. Chemformer on average produced more reactants and fewer 

single-reactant solutions (linear transforms) than the template-based model. The 

Chemformer routes were also typically shorter than the routes suggested by the template-

based model. Moreover, Chemformer appeared to generate more trees than the template-

based model, agreeing with recent findings [21]. Altogether, the initial route analyses 

showed that the solutions produced by Chemformer and the template-based model were 

different. Specifically, Chemformer solved routes for more target compounds than the 

template-based model, but with an order of magnitude higher median search time. 

Moreover, the suggested routes of targets solved by both models were typically not identical 

https://doi.org/10.26434/chemrxiv-2023-685jv ORCID: https://orcid.org/0000-0003-2288-5711 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-685jv
https://orcid.org/0000-0003-2288-5711
https://creativecommons.org/licenses/by-nc/4.0/


between the two models, and the route complexity differed depending on which model had 

been used in the tree search. This naturally raised the question of how the solutions were 

different in terms of the chemistry suggested by each model.   

Model 
# Reactants 

/ reaction 

# 

Building 

blocks 

Linear 

transforms 

(%) 

Ave. 

depth 
# Routes 

# Solved 

routes 

Chemformer 1.83 4.48 21 3.43 2625.51 368.74 

Template-

based 
1.73 4.96 28 4.49 141.12 37.70 

Table 3 Complexity metrics of routes extracted with Chemformer and the template-based model as 
expansion policies, averaged over AZ design targets.  

 

Differences in Chemformer and template-based predicted reactions. To investigate how 

the routes generated by Chemformer and the template-based model were chemically 

different, we extracted the unique reactions from all routes and performed a number of 

analyses of those reactions. Figure 5 shows the round-trip accuracy (top-10 of forward 

predictions) of each extracted reaction related to targets solved by a) no model and b) both 

models. The round-trip accuracies of targets solved by no model were comparable between 

the two models, although the accuracies are slightly lower than the round-trip accuracy from 

the single-step model analysis (Figure 2). For targets solved by both, we noticed a slightly 

higher round-trip accuracy of the template-based model, although the difference is likely not 

significant. Notably, the round-trip accuracy was similar regardless of the solvability case. 

The inability to find solved routes for certain target compounds was therefore likely not due 

to the models suggesting invalid reactions. Based on these results, we conclude that both 

methods suggested feasible reactions as assessed by the forward model.  
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Figure 5 Round-trip accuracy of (unique) extracted reactions from routes generated using 
Chemformer (orange) and template-based model (blue) as expansion policy. The subplots show the 
results of reactions extracted from routes of AZ design targets which were a) solved by none and b) 

solved by both models. Each data point represents one inference batch. 

 

An advantage with the template-based model is that we can directly map back the 

predictions to experiments. In contrast, Chemformer operates more like a black box. To 

further investigate whether the Chemformer predictions represented reasonably feasible 

chemistry, we analyzed if the predictions represented known experimental reaction data by 

computing the reaction similarity to the Reaxys reaction database, Figure 6. The results 

showed that while the Chemformer and template-based model predictions had comparable 

reaction similarity distributions across all solvability cases, the reaction similarity of 

Chemformer reactions was slightly lower. In line with this, we observed that Chemformer in 

general produced more reactions which the NextMove reaction classifier was unable to 

recognize, compared to the template-based model, Figure S4. However, the distribution of 

the reaction similarity was rather wide, hinting that both models predicted reactions which 

cannot be found in Reaxys, Figure 6. 
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Figure 6 Reaction similarity to reactions in Reaxys database. Comparing Chemformer (orange) and 
the template-based model (blue) across different solvability cases. Each data point represents a 

reaction from routes generated on AZ design targets. The data distribution is represented by boxen-
plots. The centerline corresponds to the median, each box following the centerline encapsulates half 

of the residual data (50%, 25%, etc.). 

 

Next, we extracted reaction templates for all reactions predicted by the Chemformer model 

using the same approach as was used to extract templates for the template-based model. 

The aim was to investigate to what extent Chemformer suggested reactions corresponding 

to previously unseen templates, and how the relative amount of such novel templates 

differed between the four solvability cases. For targets solved by both models, it was clear 

that the models did not use the same set of templates, Figure 7a. This again reflected the 

route differences observed by the cluster analysis and Figure 3 and the complexity metrics in 

Table 3. Of the ~21.9k Chemformer templates, only ~3.5k were the same as those used by 

the Template-based model. The other ~18.4k Chemformer templates to some extent 

belonged to the set of templates making up the template-based model (modeling template 

library: 7.6k) and the full set of templates (full template library: 4228), Figure 7b. However, a 

large portion of the templates extracted from the Chemformer predictions was neither in the 

modeling template library nor in the full template library (Figure 7b: 10k). These results 

applied regardless of solvability case, Figures S5-S7. In other words, Chemformer invented 
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novel templates, unseen in the training data. These findings demonstrate that the 

Chemformer model is capable of extrapolating outside the known template space. 

Nonetheless, it is unclear what fraction of extrapolated reactions may simply be Chemformer 

hallucinations; a well-known characteristic of language-models. The identified novel 

templates require further validation and experimental characterization. 

 

Figure 7 Venn diagrams showing the overlap of exploited templates used in multi-step retrosynthesis 
on AZ design targets solved by both models. a) Comparing templates used by Chemformer and the 

template-based model, b) comparing templates used by Chemformer to the full template library of the 
proprietary dataset as well as the modeling template library used to train the template-based model. 

 

Characterizing Chemformer novel templates. As a first evaluation of the new templates, 

we computed the reaction similarity to the Reaxys database, Figure S8. As expected, the 

new templates also displayed lower reaction similarity to the reaction database compared to 

the library templates. When investigating where these new templates were generated, we 

found that they were more often generated at lower top-N rankings compared to library 

templates, Figure S9a,d. Moreover, for unsolved routes, the new templates appeared later in 

the synthesis sequence than library templates, while the opposite was true for solved routes, 

Figure S9b,e. The distributions of number of reacting atoms were similar between the two 

sets of reactions, Figure S9c,f. Interestingly, we found that new templates were involved in 

solved routes for roughly 82% of the targets. 
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To see if we could quantitatively validate the new templates, we computed the round-trip 

accuracy of the corresponding predicted reactions, Figure 8. The round-trip accuracy was 

significantly higher for library templates than new templates, which can explain the slight 

discrepancy observed in round-trip accuracy when comparing the extracted reactions of 

Chemformer and template-based models (Figure 5). Furthermore, we noticed that the round-

trip accuracy of the Chemformer library templates were slightly higher than that of the 

template-based predictions, especially in the case of targets for which none of the models 

could find a solved route. These results, however, cannot validate the new chemistry of the 

Chemformer. However, a lower round-trip accuracy does not directly imply invalid reactions: 

the reason for the lower accuracy could simply be because the forward model was not 

trained on such reactions. Although outside the scope of this work, future efforts will be 

aimed at realizing some of the identified novel reactions in the wet-lab. 

 

Figure 8 Round-trip accuracy of (unique) extracted reactions from routes generated using 
Chemformer as expansion policy where library templates (light orange) or new templates generated 
by Chemformer (dark orange) were used. The subplots correspond to AZ design targets a) solved by 

none and b) solved by both. Each data point represents one inference batch. 

 

Because we could not quantitatively validate the new template reactions, we turned to visual 

inspection of a randomly selected subset of reactions. Figure S10-S14 show a short list of 

such reactions where the product was found in the public PubChem [41] database. One 

trend was particularly interesting: we noticed that although the suggested reactions 

appeared to correspond to reasonable chemistry, they oftentimes included multiple steps. 

Among the templates extracted from the routes in which both models found a synthetic 

route, 24% have two distinct, non-overlapping reaction sites. Figure 9 shows an example 
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reaction where Chemformer suggested multiple reaction steps in one retrosynthesis step. 

Predictions such as this one are likely the reason for the surplus of Chemformer reactions 

being classified as “Unrecognized”, Figure S4. Moreover, these multi-step predictions 

naturally yield and can explain the previously observed shorter retrosynthesis routes 

compared to the longer routes obtained with the template-based model, Table 3. To validate 

the two separate reactions, we modified our template-extraction routine to extract two 

templates for these reactions. This is a non-trivial problem, but we could nevertheless 

confirm that for 64% of the two-step reactions we could find at least one of the separate 

templates in the “full template library”-set (55% if we compare to the smaller “modelling 

template library"-set), at least partially validating the predictions made by the Chemformer. 

These results show that many of the novel Chemformer templates in fact do not correspond 

to novel chemistry, but the combination of existing transformations. Two-set transformations 

are in fact common tools used in organic synthesis. Even so, they tend to be problematic as 

single reaction templates since they constitute two reaction centers, which would typically be 

difficult to apply to a novel target compound. Consequently, the relative abundance of such 

templates is low, and therefore most of these templates would not be included in a template-

based model. As a result, one of the shortcomings of using the template-based model is that 

the tree search may find routes with consecutive template-applications which could have 

been combined in a single retrosynthetic step. Predicted two-set transformations could yield 

a more efficient tree search, and the ability of Chemformer to suggest such transformations 
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may thus be an advantage compared to a template-based model.

 

Figure 9 Example of a Chemformer-generated reaction including multiple steps. The specific reaction 
was selected for display because the product molecule is present in the public PubChem [41] 

database. 

 

In summary, Chemformer generated potentially new chemistry in the form of previously 

unseen templates and these templates could not be fully validated by the forward 

Chemformer. However, through visual inspection of specific examples, we could qualitatively 

validate some of the new template reactions.  

Conclusions 

In this paper, we evaluated a transformer model, Chemformer, for the task of single-step and 

multi-step retrosynthesis in drug discovery. The model was obtained by fine-tuning a pre-

trained transformer model [9] on a proprietary dataset from AstraZeneca for the task of 

retrosynthesis predictions. The main results and findings are summarized in Table 4 to 

enable a quick overview of the study. Although a lower single-step prediction accuracy was 

observed for rearrangements and ring-forming reactions, Chemformer achieved high 

accuracy for reaction classes especially relevant for drug discovery. Moreover, the fact that 

Chemformer reached higher accuracy than the template-based model on the shared test set 

showed promise for multi-step retrosynthesis. 
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Single-step retrosynthesis Multi-step retrosynthesis 

Modest overall exact matching accuracy 
(Top-1: 0.34, Top-10: 0.61), but high 
round-trip accuracy (Top-1: 0.72, Top-
10: 0.92).  

Chemformer solved routes for more target 
compounds than the template-based model, 
but with an order of magnitude higher 
median search time. 

Ugi reactions obtained a high exact 
matching accuracy (0.80, Top-10: 0.98). 

The suggested routes of targets solved by 
both models were typically not identical 
between the two single-step models. 

Suzuki couplings had low exact 
matching accuracy (Top-1: 0.38, Top-
10: 0.79), but among the highest round-
trip accuracies (Top-1: 0.91, Top-10: 
0.99). 

Chemformer generated more and shorter 
routes compared to the template-based 
model. 

Especially high round-trip accuracy for 
reaction classes common in drug 
discovery (top-10 > 0.97 for most 
classes). 

The round-trip accuracy of reactions from 
targets solved by both models or no model 
was similar between the two models. 

Chemformer outperformed the 
template-based model on the 
PaRoutes-USPTO test set (percentage 
difference 7.19 and 2.85 for exact and 
round-trip accuracy, respectively). 

Reaction similarity to Reaxys database was 
comparable between Chemformer and the 
template-based model. 

 
Chemformer predicted reactions 
corresponding to reaction templates not 
present in the template library. 

 Multi-step reactions were identified in 24% 
of the novel templates. 

 
Multi-step reaction predictions yield shorter 
routes and are in line with how chemists 
carry out experiments. 

 

The novel Chemformer templates could not 
be validated with round-trip accuracy, but 
some of the new templates were validated 
through visual inspection. 

Table 4 Summary of the main results from the work presented here. 

 

In multi-step retrosynthesis, Chemformer solved routes for more targets than the template-

based model but took much longer time to generate those. The generated Chemformer 

routes were shorter than the template-based routes and included “new chemistry” in the form 

of previously unseen templates. Although the reactions behind the new templates had lower 

round-trip accuracy than those of library templates, we were able to qualitatively validate 

them. We found that Chemformer often proposed multi-step reactions which yielded shorter 
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routes compared to the template-based model. The shorter routes may be considered a 

feature but could potentially introduce additional work for the chemist’s postprocessing in 

some cases. Given the results obtained here, we suggest a mixed-policy strategy for the 

industrial production platform. Specifically, we suggest applying MCTS with the template-

based model to each target to get solved routes for most targets fast. After this, MCTS with 

Chemformer could be applied to the unsolved targets to generate solved routes for almost all 

targets. This way, the two models work together to optimize synthesis planning output in a 

resource-efficient manner. 
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Supplementary figures 
 

 

Figure S1 Forward Chemformer model top-N accuracy, comparing a model trained without reagents 

(light green) to a model trained with reagents (dark green). 

 

https://doi.org/10.26434/chemrxiv-2023-685jv ORCID: https://orcid.org/0000-0003-2288-5711 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-685jv
https://orcid.org/0000-0003-2288-5711
https://creativecommons.org/licenses/by-nc/4.0/


Figure S2 Top-N a) exact matching and b) round-trip matching precisions of selected reaction 

classes, evaluated on the test set split of the proprietary data. The distributions were obtained over 

inference batches. 

 

 

 

Figure S3 Metrics characterizing predictions made by Chemformer a) backward and b) forward 

models. The distributions were obtained over inference batches. 
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Figure S4 Difference in reaction class distributions of Chemformer and template-based generated 
reactions on the AZ design targets. A positive 𝛥-Percent denotes a positive surplus for Chemformer. 

 

Figure S5 Venn diagrams showing the overlap of exploited templates used in multi-step 

retrosynthesis on AZ design targets solved only by Chemformer. a) Comparing templates used by 

Chemformer and the template-based model, b) comparing templates used by Chemformer to the full 

template library of the proprietary dataset as well as the modeling template library used to train the 

template-based model. 
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Figure S6 Venn diagrams showing the overlap of exploited templates used in multi-step 

retrosynthesis on AZ design targets solved only by the template-based model. a) Comparing 

templates used by Chemformer and the template-based model, b) comparing templates used by 

Chemformer to the full template library of the proprietary dataset as well as the modeling template 

library used to train the template-based model. 

.

 

Figure S7 Venn diagrams showing the overlap of exploited templates used in multi-step 

retrosynthesis on AZ design targets solved by none of the two models. a) Comparing templates used 

by Chemformer and the template-based model, b) comparing templates used by Chemformer to the 

full template library of the proprietary dataset as well as the modeling template library used to train the 

template-based model. 
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Figure S8 Reaction similarity to a database of Chemformer generated library templates (light orange) 

and new templates (dark orange) as a function of solvability case. AZ design targets. Solved by both 

models, solved by no model. 

 

Figure S9 Histograms over inference rank (a,d), tree depth (b, e) and number of reacting atoms (c, f) 

on AZ design targets. Chemformer-generated library templates are shown as light orange and new 

templates as dark orange. Subplots a-c) visualize statistics for solved routes, while d-f) visualize 

statistics for unsolved routes.  
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Figure S10 Example reactions generated by Chemformer where the product molecule was found in 

the public Pubchem database. 
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Figure S11 Example reactions generated by Chemformer where the product molecule was found in 

the public Pubchem database. 
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Figure S12 Example reactions generated by Chemformer where the product molecule was found in 

the public Pubchem database. 
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Figure S13 Example reactions generated by Chemformer where the product molecule was found in 

the public Pubchem database. 
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Figure S14 Example reactions generated by Chemformer where the product molecule was found in 

the public Pubchem database. 
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Supplementary tables 

  Top-1 Top-3 Top-5 Top-10 

Overall 0.3357                  0.4917         0.5499 0.6065 

N acylation to amide 0.5673         0.7932        0.8436          0.8805 

Reductive amination 0.6637         0.8134        0.8548          0.8888 

Suzuki coupling 0.3761         0.6210        0.7100          0.7926 

Protections 0.4782         0.7017        0.7861          0.8513 

Deprotections 0.3729         0.6028         0.6879          0.7702 

N acylation to urea 0.6261         0.7904         0.8413         0.8878 

N substitution with alkyl-X 0.3066         0.5080         0.6023          0.6777 

N sulfonylation 0.7263         0.8736        0.9151         0.9457 

N arylation with Ar-X 0.6051         0.8042         0.8589          0.9002 

Ugi reactions 0.8043         0.8478         0.8913          0.8913 

Sonogashira reaction 0.5510         0.8409         0.9092          0.9366 

Buchwald-Hartwig and Ullman 0.4716         0.7012 0.7739     0.8447 

Rearrangements 0.2481         0.3829        0.4429         0.4997 

Ring-forming 0.3170         0.4597         0.5191          0.5771 

Table S1 Top-N exact matching accuracies of selected reaction classes, evaluated on the test set 

split of the proprietary data. The presented data are averages over inference batches. 

 

  Top-1 Top-3 Top-5 Top-10 

Overall 0.7187 0.8542 0.8925 0.9248 

N acylation to amide 0.9343 0.9775 0.9840 0.9891 

Reductive amination 0.7307 0.8333 0.8593 0.8812 

Suzuki coupling 0.9114 0.9749 0.9857 0.9910 

Protections 0.8616 0.9614 0.9796 0.9850 

Deprotections 0.7506 0.9082 0.9485 0.9744 

N acylation to urea 0.9314 0.9721 0.9826 0.9874 

N substitution with alkyl-X 0.8251 0.9253 0.9551 0.9722 

N sulfonylation 0.9556 0.9880 0.9934 0.9971 

N arylation with Ar-X 0.9204 0.9762 0.9834 0.9878 

Ugi reactions 0.8913                     0.9130                     0.9130                      0.9783 

Sonogashira reaction 0.9166 0.9752 0.9836 0.9911 

Buchwald-Hartwig and Ullman 0.9303 0.9802 0.9901 0.9924 

Rearrangements 0.6210 0.8103 0.8626 0.9242 

Ring-forming 0.6702 0.8133 0.8568 0.8949 

Table S2 Top-N round-trip matching accuracies of selected reaction classes, evaluated on the test 

set split of the proprietary data. The presented data are averages over inference batches. 
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