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Abstract1

The chemical space is comprised of a vast number of possible structures, of which2

an unknown portion comprises the human and environmental exposome. Such sam-3

ples are frequently analyzed using non-targeted analysis via liquid chromatography4

(LC) coupled to high-resolution mass spectrometry often employing a reversed phase5

(RP) column. However, prior to analysis, the contents of these samples are unknown6

and could be comprised of thousands of known and unknown chemical constituents.7

Moreover, it is unknown which part of the chemical space is sufficiently retained and8

eluted using RPLC. Therefore, we present a generic framework that uses a data driven9

approach to predict whether molecules fall ‘inside’, ‘maybe’ inside, or ‘outside’ of the10
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RPLC subspace. Firstly, three retention index random forest (RF) regression models11

were constructed that showed that molecular fingerprints are able to predict RPLC12

retention behavior. Secondly, these models were used to setup the dataset for building13

a RPLC RF classification model. The RPLC classification model was able to cor-14

rectly predict whether a chemical belonged to the RPLC subspace with an accuracy15

of 92% for the testing set. Finally, applying this model to the 91737 small molecules16

(i.e., ≤1000 Da) in NORMAN SusDat showed that 19.1% fall outside of the RPLC17

subspace. Knowing which chemicals are outside of the RPLC subspace can assist in18

reducing potential candidates for library searching and avoid screening for chemicals19

that will not be present in RPLC data.20

Introduction21

The chemical space refers to a collection of all possible organic structures - for example,22

the GBD-17 database includes 116 billion possible organic molecules with a maximum of 1723

atoms, which is only a fraction of the chemical space.1–8 Increasing the number of atoms24

only drastically increases these numbers and shows how vast the chemical space actually is.25

Even though these are possible structures, not all of them are likely to be present in the26

human and environmental exposome.8 When evaluating the exposome, the main difficulty is27

that the contents of the samples taken are unknown prior to analysis and may comprise of28

thousands of both known and unknown constituents, particularly for small molecules (i.e.,29

molecular weight ≤ 1000 Da).9–16 A frequently used approach for analyzing such samples30

is non-targeted analysis (NTA) via liquid chromatography (LC) coupled to high-resolution31

mass spectrometry (HRMS), for which a reversed phase (RP) LC selectivity is often used.832

However, it is not yet known what part of the chemical space is covered by RPLC. The33

knowledge of the covered subspace also contains crucial information on chemicals that might34

not be visible in the final data even though they were present in the sample.335

36
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Knowing what is separable with RPLC can have an improved outcome for both NTA37

and suspect screening. For NTA, the aim is to identify as much as possible of the potentially38

thousands of chemicals present in samples coming from, for example, biological or environ-39

mental backgrounds. Eliminating the potential candidates that fall outside of the chemical40

subspace of the selectivity (e.g., RPLC), reduces the number of false positive identifications.41

On the other hand, suspect screening is also a frequently used approach, where samples are42

screened for lists or even databases of compounds. Defining the subspace of a selectivity can43

reduce the number of potential candidates in these compound lists, reducing the computa-44

tional time required and the false positive matches with chemicals that cannot possibly be45

measured with this technique.46

47

Separation data is usually limited to the mere assessment of whether the analyte retention48

time could fit in the range of the candidate’s chemical class.17–20 To take better advantage49

of the LC data, retention times are required to be initially converted to retention indices50

(ri), since the former are significantly influenced by the chromatography conditions, such as51

temperature, mobile phase composition, and gradients.20,21 On the other hand, ri values pro-52

vide a robust and highly reproducible way to express retention in liquid chromatography.2053

High reproducibility makes inter-laboratory results comparable, enabling both m/z and ri54

comparison with a reference and resulting in more confident suspect shortlisting.55

56

As for any ri system, different chromatography conditions should have negligible influence57

on the ri value of the analytes, suggesting that there is a correlation between the ri values58

and structural properties, expressed as molecular descriptors. This is the main principle59

used by the quantitative structure-retention relationship (QSRR) based models,22 enabling60

the construction of QSRR models that either use all or a selection of descriptors to predict ri61

values.23–26 However, difficulties arise when calculating descriptors due to convergence issues62

related to calculation time-out or local minima.25–27 Moreover, descriptors can often be diffi-63
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cult to interpret, since they contain mathematical representations of the molecular structure.64

Alternatively, molecular fingerprints directly encode the molecular structure, making them65

more descriptive/understandable to interpret in relation to the chemical and do not require66

structural optimization (i.e., only uses 2D structural information), making them a potential67

alternative to descriptors.68

69

In this paper, we present a data driven approach for a generic framework that enables70

quick screening of the RPLC chemical space, assuming that the molecules are in solution and71

can be injected into a system. A set of regression and classification models were built to assess72

whether a structure can theoretically be analyzed via RPLC. To build the RPLC classifica-73

tion model, firstly, we show the potential of using fingerprints for the prediction of ri values74

for three retention index series, confirming that molecular fingerprints contain information on75

RPLC retention behavior. Three commonly used scales, namely: the n-alkylamide system,76

containing the n-alkylamide homologous series from n-propanamide to n-tetradecanamide77

(C3-C14)28, the ri system developed by Aalizadeh et al. from the University of Athens re-78

ferred to as UoA, comprising of 18 reference compounds that were computationally selected in79

order to achieve a broad and reliable ri reference system
29, and the cocamide diethanolamine80

homologous series that is comprised of C(n = 0-23)-DEA chemicals30 were employed for our81

model building. Secondly, we show the performance of the RPLC classification model and82

apply the model on a set of 91737 small molecules (i.e., molecular weight ≤ 1000 Da) from83

the NORMAN substance database (SusDat).84

Experimental Section85

Overall Workflow86

The overall workflow for this work can be found in figure 1 and the details are explained87

in the following sections. In brief, a total of four random forest (RF) models were built, of88
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which three were ri RF regression models (Figure 1A) and the fourth a RPLC RF classifi-89

cation model (Figure 1B). For building these models, a type of molecular fingerprint needed90

to be selected and the dataset obtained before model optimization and performance testing91

(Figure 1C). These models were used for evaluating the potential of using molecular finger-92

prints for prediction of retention behavior in RPLC and for setting up two of the classes93

for the fourth RF classification model. The latter refers to the ‘inside’ and ‘maybe’ inside94

class. Here, the ‘maybe’ class represents the chemicals that are poorly retained (i.e., close95

to t0) or require relatively high amounts of organic modifier to elute. All chemicals in be-96

tween the ‘maybe’ regions are classified as ‘inside’. For the RPLC classification model, a97

dataset with chemicals that were ‘inside’, ‘maybe’ inside, and ‘outside’ of the RPLC sub-98

space was constructed (Figure 1B). Finally, the application of the RPLC classification model99

was showcased by applying it on the NORMAN SusDat database, which is a collection of100

expert curated environmentally relevant chemicals that have been actively used for screening101

of complex samples. All datasets for constructing the models and the NORMAN SusDat102

database can be found on Figshare.31103

104
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Figure 1: Workflow for construction of the RPLC classification model, comprising of the
construction of three ri RF regression models (A) and the construction the RPLC dataset
for the RPLC RF classification model, which was applied to NORMAN SusDat(B). Finally
C shows the model setup and D contains an overview of the abbreviations.

Fingerprint Calculations105

The RF models were built using a combination of two different fingerprint series as inputs,106

which included the AtomPairs2DFingerprintCount (2DAPC) and PubChem fingerprints,32107

obtained through PaDEL.33 The 2DAPC fingerprints counted the number of times two atoms108

were present with a certain distance between themselves. For example, the molecule with109

the SMILES ‘NC(CC)CN’ contains two times a distance of 3 between a C and N atom (i.e.,110

C-x-x-N in the 2D molecular structure). The distances included ranges from 1 to 10 and111

the elements considered were C, N, O, Cl, I, Br, F, P, S, Si, B, and X, where X represents112

all halogens, yielding a total of 780 2DAPC fingerprints. As for the PubChem fingerprints,113

only the portion of fingerprints containing ring information was used (i.e., PubChem finger-114

print 115 - 262). These fingerprints were converted and reduced to a total of 10 additional115
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variables, which were the number of rings with a size of 3, 4, 5, 6, 7, 8, 9, 10, the number of116

aromatic rings, and the number of hetero-aromatic rings. Since the PubChem fingerprints117

are binary, there were multiple columns describing the same information but only differing118

in the number of a ring of a certain size. For example, for a ring size of 3, there were 2119

fingerprints, namely PubChem fingerprint 115 and 122, which were described as more than120

1 ring with a size of 3 or more than 2 rings with a size of 3, respectively. In case a molecule121

contained 2 rings with a size of 3, the PubChem fingerprints 115 would be 0 and 122 would122

be 1, which was converted to a single variable for our model containing the number of rings123

with a size of 3, meaning that this variable would be equal to 2 for this example case. An124

overview of which PubChem fingerprints were used for each of the 10 reduced PubChem125

variables can be found in table S2.126

127

Retention Index Random Forest Regression Models128

To show that fingerprints can be used to describe retention behavior in RPLC and for set-129

ting up the dataset for the RPLC classification model, random forest (RF) regression models130

were built using three different retention index series (Figure 1A). The three series used for131

this, were the amide28, University of Athens (UoA)29, and cocamide series.30 For each of132

the series, the measured ri were obtained from their respective articles, yielding 1485, 1818,133

and 3008 unique chemicals with measured ri values for the amide, UoA, and cocamide series,134

respectively. For all chemicals, the 2DAPC and PubChem fingerprints were calculated ac-135

cording to Section ‘Fingerprint Calculations’. For each ri series, data was split into a training136

and test set, at random, with a ratio of 0.85:0.15, ensuring similar coverage of the ri range137

in both sets. The test set was only used for testing and thus never used for training. For138

optimization of the RF regression models, the training set was used with a 0.8:0.2 split for139

training and cross-validation, respectively. This ratio of split has been shown to be effective140

in such data sets.25,26,34,35 The RF regression models used a third of the features (i.e., 264)141
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for training each tree. The parameters that were optimized were the minimum number of142

samples per leaf and the number of trees. The minimum number of samples per leaf tested143

were 4, 6, 8, 10, 15, and 20. The tested number of trees were 50, 100, 150, 200, 250, 300,144

350, 400, 500, 600, 700, 800, 900, and 1000. In addition, the random state for splitting the145

cross-validation set and selection of the features in the RF models for each tree was also146

varied with values of 1, 2, and 3. The accuracy of the cross-validation set for each possible147

combination of the minimum number of samples per leaf, number of trees, and random state148

was used for the optimization of the RF models. After obtaining the optimized models for149

the amide, UoA, and cocamide series, the applicability domains were assessed according to150

Section ‘Applicability Domain Calculations’. Finally, for each ri series, the optimized model151

and applicability domain assessment were applied on the test set to evaluate the performance152

of the model on unseen data.153

154

RPLC Random Forest Classifier155

The dataset for building the RPLC classifier model was comprised of three classes: ‘inside’,156

‘maybe’, and ‘outside’ the RPLC subspace (Figure 1B). The ‘outside’ chemicals were ob-157

tained from the NORMAN SusDat database based on their extreme XLogP values. Here,158

the XLogP was chosen rather than the logD due to the fact that it is easier to predict, more159

stable, and more accurate.36 For the ‘outside’ case, a total of 3999 compounds with a XLogP160

value above 10 or below -10 and with a molecular weight below 1000 Da were obtained. As161

for the ‘inside’ and ‘maybe’ chemicals, these were obtained from the experimentally defined162

ri values by the three ri series. For each of the series, the absolute difference between the163

predicted and measured ri (i.e., the residuals) versus the measured ri values were plotted164

and the regions of extrapolation were identified. These regions were obtained based on the165

increasing residuals that were caused by the inherent over estimation and under estimation166

of a RF regression model, which are associated with either extremely low or extremely high167
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ri values, respectively. These regions correspond to chemicals that elute close to t0 or are168

very difficult to elute from the column (i.e., require a relatively high percentage of organic169

modifier). The chemicals with a measured ri in these extrapolation regions were labeled170

as ‘maybe’ and the remaining chemicals were labeled as ‘inside’ the RPLC subspace. This171

yielded a total of 620 ‘maybe’ and 5167 ‘inside’ compounds. Whenever a chemical was found172

in multiple classes (i.e., it was present in mulitple datasets of the ri models), it was removed173

from the lower ranking RPLC classes and kept in the highest ranking RPLC class (i.e., ‘in-174

side’ > ‘maybe’ > ‘outside’ RPLC class rank). For example, if a chemical was found in the175

‘maybe’ region for UoA and in the ‘inside’ for Cocamide, it would be classified as ‘inside’.176

More details on the division between the ‘inside’ and ‘maybe’ classification can be found177

in Section ‘RPLC Classification Model’ as these are based on the results of the three RF178

regression models.179

180

The dataset described above was used for building the RPLC classifier model with a181

training set/test set split of 0.85:0.15, ensuring equal distribution of each class in both sets.182

The optimized RF classifier model was obtained using the same approach as for the RF re-183

gression models (see Section ‘Retention Index Random Forest Regression Models’). For this184

model, the applicability domain was also obtained as described below. Finally, the optimized185

RPLC classification model and applicability domain assessment was applied to the test set186

and the performance was evaluated.187

188

RPLC Space Prediction for NORMAN SusDat189

To showcase the model’s potential, it was applied to the NORMAN SusDat database.5 For190

this, the 2DAPC and reduced PubChem fingerprints for a total of 91737 chemicals with a191

molecular weight below 1000 Da from SusDat were calculated. These fingerprints were then192

used to calculate the leverage of each chemical with the RPLC classifier training set, as193
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explained in the next section ‘Applicability Domain Calculations’, and to apply the RPLC194

classifier model to each of the SusDat chemicals. To visualize the coverage of each class195

(i.e., ‘inside’, ‘maybe’, and ‘outside’ the RPLC subspace), the molecular weight was plotted196

against the XLogP, which were obtained from the descriptor calculations of PaDEL.197

198

Applicability Domain Calculations199

Applicability domain calculations were used to assess whether the training data, used in the200

random forest models, sufficiently covered the variable space for new chemicals on which the201

models need to be applied.25,37 This was done through leverage calculations of a chemical202

with the entire training set, yielding a distance of that chemical to the training set. Equation203

1 shows how the leverage is calculated, where X is the training data matrix and xi is the204

sample vector, both containing the 2DAPC and reduced PubChem fingerprints for our mod-205

els. To set a threshold for this, the leverage was calculated for all training samples with the206

entire training set of a model, yielding values between 0 and 1. Then, a leverage threshold207

was obtained that covered 95% of the training data. If a chemical, compared to the training208

set of the model in question, had a value lower than the leverage threshold, the compound209

was within the applicability domain, and, if the value was above the leverage threshold, the210

results should be taken with care as the training data might not be sufficiently describing211

the variable space for the new compound.212

213

lii = xi(X
TX)−1xi (1)

Calculations and Code Availability214

The calculations and development of the models were executed on a personal computer with215

12 CPUs and 32 GB of RAM, using Windows 10. The ri regression and RPLC classifi-216
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cation models were developed and evaluated with the Julia programming language (v1.6).217

The code for using the ri regression models and RPLC space prediction model is available218

at: https://bitbucket.org/Denice_van_Herwerden/riprediction/src/main/. This Ju-219

lia package contains functions for obtaining the required 2DAPC and reduced PubChem220

fingerprints and for using the ri regression models and RPLC sub space classification model.221

222

Results and discussion223

Retention Index Random Forest Regression Models224

All three ri regression models obtained an accuracy of 81% for the training set and, for the225

test set. The amide, UoA, and cocamide models had an accuracy of 68%, 70%, and 67%,226

respectively. The ri regression models were built and optimized for the amide, UoA and227

cocamide series. Grid optimization of each of these models showed that the number of trees228

did not influence the performance of the model (Figures S1, S2, and S3). Therefore, to229

keep the model light, 200 trees were selected. As for the minimum number of samples per230

leaf, 8 was found to be the optimum, based on the training and cross-validation accuracy.231

When evaluating the predicted versus the measured ri values for these models a trend of over232

prediction for lower ri values and under prediction of higher ri values was found(Figures S4,233

S6, and S8), corresponding to the regions where the RF regression models were extrapolat-234

ing. These regions were used for establishing the ‘maybe’ areas for the RPLC classification235

dataset.236

237

Most compounds (i.e., 88.5%) in our test set appeared to be within the applicability238

domain of each model. To obtain the applicability domains of these models, a 95% leverage239

threshold of 0.189 for amide, 0.652 for UoA, and 0.424 for cocamide was found for the train-240

ing sets. For the training set the leverage values range between 0 and 1, meaning that the241
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lower threshold for the amide model showed how similar most of the amide compounds were242

to each other, while for the UoA and cocamide models, the higher thresholds corresponded243

with the larger variety of chemical structures found in the dataset. When the leverage cal-244

culations were applied on the test sets for these models, a total of 22, 34, and 54 compounds245

were found to be outside of the applicability domain for the amide, UoA, and cocamide ri246

models, respectively. This does not necessarily mean that the predicted outcome for these247

cases was wrong, as can be seen in figures S4, S6, and S8. Here, most chemicals outside the248

applicability domain still follow the trend of the other data points. However, the outcome249

should be taken with care as the model might insufficiently cover the chemical space for a250

new compound in question, especially for leverage values > 1. It should be noted that the251

largest training set leverage value obtained from our applicability domain calculations was 1.252

253

The cocamide RF regression model used the most fingerprints for the prediction of the254

ri indices (i.e., 215 fingerprints), while the UoA and amide ri models used 165 and 61, re-255

spectively. The low number of fingerprints used for amide was not surprising due to the256

fact that the compounds in this ri series are only comprised of C, H, N, and O. Hence, the257

amide ri model only used the 2DAPC fingerprint counts with a certain distance between C,258

N, and O atoms. At first sight, this was also noticeable when comparing the top 20 most259

important fingerprints for the three ri models (S3). The most contributing fingerprints for260

the amide ri model were the distances 1 till 7 between two C atoms with importance ranging261

between 27% and 4%. As for the UoA ri model, C-Cl and C-X distance begin to contribute262

more to the model and the most important fingerprint (i.e., distance 7 between C-C) only263

contributes 9.6%, having an overall more divided importance between a larger group of con-264

tributing features than the amide model. Finally, a similar trend was also observed for the265

cocamide model, except that the C-X distances start to play a more important role than the266

C-Cl distances, which could be explained by the higher number of halogens present in the267

compounds from the cocamide dataset. This variability in important features used in each268

12

https://doi.org/10.26434/chemrxiv-2023-bdwh0 ORCID: https://orcid.org/0000-0003-1940-9415 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-bdwh0
https://orcid.org/0000-0003-1940-9415
https://creativecommons.org/licenses/by/4.0/


ri regression model shows that different structures may be better captured by one ri model269

vs another, due to the diversity of training set in terms of chemical structures. This, also,270

further indicates the need for a more generic model incorporating the information from all271

three ri models.272

273

Overall, these models show that a combination of the 2DAPC fingerprints and the re-274

duced PubChem fingerprints can be used to predict ri values. All three models performed275

almost equally well with negligible deviations for the training set accuracy. However, de-276

pending on the chemicals for which ri would be predicted, it is advised to evaluate which277

model would be most suitable based on the leverage applicability domain calculations.278

279

RPLC Classification Model280

To build the RPLC classification model, it was assumed that the chemicals are in solution281

and that the chemicals can be injected into a system. Additionally, the model focuses on282

whether an analyte could be analyzed with RPLC regardless of experimental parameters or283

sample pretreatment. The dataset for this was comprised of 5167 ‘inside’, 620 ‘maybe’ in-284

side, and 3999 ‘outside’ chemicals for the RPLC subspaces. The ‘outside’ cases were obtained285

from NORMAN SusDat with extreme XLogP values, while the ‘inside’ and ‘maybe’ cases286

came from the three ri regression models. In figures S10, S11, and S12 the extrapolation287

limits for each of the models are defined. For ri range for the ‘inside’ RPLC subspace for288

the amide, UoA, and cocamide series were 350-900, 100-900, and 250-1300, respectively. All289

compounds that had a higher or lower ri value for the corresponding range of the model it290

was coming from, were classified as ‘maybe’ inside the RPLC subspace, due to the fact that291

these chemicals either elute close to t0 or require high percentages of organic eluent to be292

eluted.293

294
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The final optimized classification model resulted in an accuracy of 94% and 92% for the295

training and test set, respectively (Figures 2, and S15). In this case 200 trees and 8 minimum296

samples per leaf was found to be the optimum for the model (Figure S13). For the training297

and test set, 90.8% and 87.7% of the ‘inside’ and ‘maybe’ cases were correctly classified, 7.4%298

and 9.3% of the ‘inside’ and ‘maybe’ cases were wrongly classified as a ‘maybe’ or ‘inside’299

case, respectively, and 1.7% and 3.0% of the ‘inside’ and ‘maybe’ cases were wrongly classi-300

fied as ‘outside’. For the ‘outside’ cases, 0.7% and 1.5% of the cases were wrongly classified301

as an ‘inside’ or ‘maybe’ case and 99.3% and 98.5% of the cases was correctly classified as302

an ‘outside’ case for the training and test set, respectively. Overall, considering that the303

wrongly classified ‘inside’ and ‘maybe’ cases as ‘maybe’ and ‘inside’, respectively, still are304

considered part of the RPLC subspace, the performance of the model was very good with305

only 2.4% of all cases being wrongly classified as ‘inside’ or ‘maybe’ while being an ‘outside’306

or vise versa for the test set.307

308

As for the applicability domain of the RPLC classification model, the 95% leverage309

threshold of the training set was 0.209 (Figure S14). In total, 102 compounds from the test310

set (i.e., 6.9%) had a leverage with the training set that was higher than 0.209, of which 31311

cases had leverage values above 1. Out of these 102 cases only 10 were wrongly classified312

and had leverage values ranging between 0.209 to the most extreme (i.e., 809.255), showing313

that in this case higher leverage values did not necessarily mean that the model would have314

a higher error. However, it should be noted that cases with a very large leverage should be315

considered with extra care, as they may have a higher level of uncertainty.316

317
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Figure 2: XLogP values versus the molecular weight for the RPLC classification test set. In
blue are the correctly classified ‘outside’ cases, in green are the correctly classified ‘inside’
and ‘maybe’ cases, in orange are the wrongly classified ‘inside’ cases as ‘maybe’ and vice
versa, in red the wrongly classified ‘inside’ and ‘maybe’ cases as ‘outside’ and the wrongly
classified ‘outside’ cases as ‘inside’. The star markers show the compounds that were outside
the 95% applicability domain of the RPLC classification training set

A total of 280 features were contributing to the RPLC classification model. This is more318

than for each of the three ri regression models, which was expected due to the higher variety319

in chemical structures used in the RPLC classification model. The 20 most contributing fea-320

tures are mainly described by ring related features and distances between combinations C,321

N, and O atoms. A previous version of the model that was tested, using only the 2DAPC fin-322

gerprints, frequently wrongly classified ‘inside’ as ‘outside’ due to the high degree of cyclicity323

in the chemical structures (e.g., InChIKey: IUKLSMSEHKDIIP-BZMYINFQSA-N). Hence,324

the addition of the reduced PubChem fingerprints better captures these chemical properties.325

As a result, the number or rings with a size of 6, the minimum number of aromatic rings, and326

the number of rings with a size of 5 were also part of the top 20 most contributing features.327

328

In total, considering the extreme misclassifications, 9 out of 599 ‘outside’ chemicals were329
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wrongly classified as ‘inside’ or ‘maybe’ inside the RPLC subspace and 14 out of the 767330

‘inside’ and 12 out of the 102 ‘maybe’ cases were classified as ‘outside’ the RPLC subspace.331

Two of the nine wrongly classified ‘outside’ cases were organic complexes that, in the mobile332

phase, would be analyzed as multiple smaller molecules (e.g., Gadopentetic acid dimeglu-333

mine salt). Also, another case was a surfactant containing a positive and negative charge334

(i.e., 4-Dodecyl-2-[(2-nitrophenyl)azo]phenol). This case was a chemical that falls ‘outside’335

of the RPLC space due to its predicted XLogP value of 10.452. However, the charges on336

this molecule would make it difficult to calculate this value accurately. Lexidronam was one337

of the ‘maybe’ cases that was classified as ‘outside’, due to a large leverage value of 26.0338

and the fact that it elutes at t0 (i.e., amide scale ri of 206 versus urea ri = 200), indicating339

the need for special gradients to be able to retain such a chemical. As for the ‘inside’ cases340

that were wrongly classified as ‘outside’, generally larger, branched (e.g., SCHEMBL312614),341

or hydrolyzing (e.g., Bis[2-(perfluorohexyl)ethyl] Phosphate, respectively) chemicals showed342

higher likelihood of such misclassifications. Again these are structures that may require very343

specific adjustment of experimental condition (e.g., pH of mobile phase) to fit them within344

the RPLC analyzable chemical subspace.345

346

Overall, our RPLC classification model was highly successful in identifying the chemical347

structures that are easily analyzable via RPLC (i.e., ‘inside’ cases) as well as the ‘maybe’ and348

‘outside’ cases. The classification model used a combination of similar molecular fingerprints349

as those used by the three ri models, taking advantage of all the structural information.350

NORMAN SusDat Chemical Space Prediction351

Finally, the RPLC classification model was applied to a set of small molecules (i.e., molecular352

weight < 1000) from the NORMAN SusDat database. In total, 80503 chemicals were within353

the applicability domain with leverage values ≤ 0.209, 6570 compounds had leverage values354

between 0.209 and 1, and 4664 compounds had even larger leverages. This showed that the355
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RPLC classification model was suitable for a large variety, 87.8%, of compounds present in356

SusDat. The model predicted that 79.0% of the compounds would fit ‘inside’ the RPLC357

subspace, 2.0% was ‘maybe’ in this space, and 19.1% was ‘outside’ of the RPLC subspace.358

Examples of molecules classified as ‘inside’, ‘maybe’, and ‘outside’ were carbamazepine, su-359

dan I, and coronene, respectively. When comparing the relationship between XlogP and360

ri, it is clearly observable that these parameters, even though relatively linear, are insuffi-361

cient to determine if a chemical fits the RPLC subspace, figure 3. In figures S16,S17, and362

S18, the XlogP values of the chemicals with the same ri range vary between -10 to +10 units.363

364

Using the developed classification models implies that for screening RPLC samples against365

databases such as SusDat, 1/5 of the overall time can be saved, which becomes even more366

significant when applying it to larger sample sets. Additionally, this will result in higher367

confidence identifications when performing database matching for an RPLC NTA method368

with SusDat, by reducing the overall number of potential candidates and thus false positive369

identifications.370

371

The amide ri model is the least suited scale based on its applicability domain coverage372

since only 44500 (i.e., 48.5%) chemicals fell within the applicability domain. For the chem-373

icals that were outside the applicability domain, 18988 had a leverage value between 0.189374

and 1 (i.e., similar to the full training set) and 28249 had an even higher leverage value. As375

for the UoA and cocamide ri models, 71022 (i.e., 77.4%) and 74252 (i.e., 80.9%) compounds376

were within the applicability domain. For the UoA model, 3421 and 17294 chemicals had a377

leverage value below and above 1, respectively, and the cocamide model had 5947 chemicals378

with a leverage value below 1 and 11538 chemicals with higher leverage values. Figures S16,379

S17, and S18 show the coverage of the ‘inside’, ‘maybe’, and ‘outside’ RPLC classes in terms380

of the XLogP values versus the predicted ri values for the amide, UoA, and cocamide series.381

As expected the chemicals classified as ‘maybe’ inside RPLC are mainly clustering around382
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the lower and higher ri values. While the chemicals classified as ‘outside’ the RPLC space383

span the entire ri range for each of the three ri series, suggesting that ri prediction would384

also be insufficient to define the boundaries of the RPLC subspace.385

386

Figure 3: XLogP values versus the molecular weight for the NORMAN SusDat database
compounds with a molecular weight below 1000 Da. In red, orange, and green are the
compounds that were classified as ‘outside’, ‘maybe’, and ‘inside’ the RPLC chemical space,
respectively. The subplots on the left show the coverage of the individual classes.

Potentials and Limitations387

Overall, we developed four models for exploration of the RPLC subspace. The ri regression388

models showed that fingerprints can be used for describing RPLC retention indices. Con-389

sequently, these fingerprints were used for RPLC classification model building. This model390

was able to predict whether chemicals were ‘inside’, ‘maybe’ inside, or ‘outside’ of RPLC391

chemical subspace with an accuracy of 92% on the test set. Applying the RPLC classification392

model on NORMAN SusDat showed that 19.1% of the compounds were classified as ‘out-393

side’ the RPLC subspace. This means that, when performing identification on NTA RPLC394
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samples, candidates classified as ‘outside’ compounds are unlikely to be the true structure of395

the chemical and can be removed to reduce the number of false positive identifications. In396

terms of suspect screening, it can save computational time since the ‘outside’ chemicals fall397

‘outside’ of the RPLC subspace and thus should not be screened for. Additionally, 87.8%398

of NORMAN SusDat was within the applicability domain of the RPLC classifier, showing399

good coverage of a variety of compounds. The RPLC classification model also showed that400

the XLogP or ri values alone are not sufficient to define the RPLC subspace.401

402

The RPLC classification model overall did have more difficulties with regard to more403

bulky and branched or surfactant-like chemicals. Additionally, the model was not able to404

properly predict the RPLC subspace class of chemicals that are organic complexes, due to405

the fact that in solution those are dissociated into multiple individual structures. The latter406

is not a major limitation for the model itself, since, using expert knowledge, they can be407

easily identified. Generally, as knowledge on analyzable chemicals with RPLC grows, the408

model could easily be rebuilt and expanded for the range of analytes. Ideally, when sufficient409

data becomes available, selectivity classification models could be constructed for other se-410

lectivities (e.g., HILIC). This allows for further understanding of what part of the chemical411

space is actually covered by the selectivities used in NTA and what we are missing.412

413

Moreover, the RPLC classification model uses a data driven approach and is intended414

for quick screening of the RPLC chemical space. The model assumes that compounds are415

analyzable with RPLC regardless of the chemicals solubility, experimental parameters, or416

pretreatment steps taken. This means that it cannot be assumed that chemicals ‘inside‘ the417

RPLC space will be analyzable with every RPLC method. Here, the method subspace plays418

a major role when looking at what individual NTA methods can cover, becoming an even419

more complex issue due to the fact that sample pretreatment, gradient program’s, and RP420

column selectivities play a large influence on this. Defining the method chemical space would421
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be the next step in understanding what part of the vast chemical space we are covering and,422

more importantly, excluding with our current NTA methods.423
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