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Abstract

In this proof-of-concept study, we combine Rob5’s digital drug discovery plat-
forms Spectra View and HydraScreen with Strateos’ robotic cloud labs capabilities
to augment and accelerate target and hit identification. Using SpectraView to
select IRAK1 as the target, we prospectively validate HydraScreen, a structure-
based deep learning model. We demonstrate that HydraScreen could identify up
to 23.8% of all hit compounds by screening only 1% of the compound library,
simultaneously identifying the three of the most potent (nanomolar) scaffolds
present in the library. All three nanomolar scaffolds identified in our project are
novel for IRAK1 and lend themselves for future development. HydraScreen out-
performs traditional methods in an unbiased prospective evaluation and offers
advanced features such as ligand pose confidence scoring. Thus, SpectraView and
HydraScreen are innovative tools which can aid and expedite the stages of early
drug discovery.

Keywords: Artificial intelligence, machine learning, deep learning, drug discovery,
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1 Introduction

Drug discovery is a notoriously lengthy, expensive and inefficient process [10]. In recent
years many of drug discovery’s major challenges and bottlenecks were tackled by the
digital transformation of pharma’s legacy workflows [42]. Some of the most well known
forms of digital transformation are the application of artificial intelligence (AI) [40, 6],
lab automation [39, 38] and implementation of Big Data management systems [54].
These approaches hold the promise of reinventing drug discovery to usher in the new,
digital era in pharma [42].

Artificial intelligence encompasses machine learning (ML) deep learning (DL) tech-
niques, which have made a substantial impact across a range of applications in drug
discovery including, protein-ligand activity prediction [24, 47], ADMET prediction
[13, 52] and other areas. Traditional computation chemistry techniques such as dock-
ing [27], molecular dynamics [19, 2], and QSAR models [13] are either being augmented
(e.g. DL-based docking [32], DL force fields [45]) or replaced by promising new Al
techniques (e.g. Diffdock [9]). Al methods can offer previously unavailable solutions
and perform better than traditional techniques [46, 6].

AT models require large volumes of high-quality data for their training [54]. The
optimal setting for their application is therefore provided by automated robotic labs
which can generate highly-reproducible and consistent data [1, 18, 38]. Such labo-
ratories enable the full automation of the design-make-test-analyze (DMTA) cycle
[35]. Some examples of automated DMTA have shown promise in protein engineering
[36], synthetic biology [15], and chemical synthesis [14]. The coupling of automated
data generation and Al-driven experimentation may introduce new paradigms of
automated experimentation with no reliance on ”"man-in-the-loop” [36].

The large volume of biomedical data generated by high-throughput automated
labs, as well as its increasing availability in the public domain [30] are creating new
challenges. They are referred to as the “four Vs” of big data for drug discovery: volume
(scale of data), velocity (growth of data), variety (diversity of sources), and veracity
(uncertainty of data) [54]. Increasingly complex and voluminous data streams can no
longer be managed manually, or require specialist knowledge. New data management
and analysis systems have emerged that allow researchers to easily integrate, sum-
marize and search biomedical data sets for hypothesis generation. Examples of such
systems include knowledge graphs [53] and target identification and evaluation plat-
forms [5]. The full potential of recent advances in Al and lab automation, coupled
with the availability of high volumes of data may be fully realized by exploring their
synergy.

Early drug discovery provides a perfect example of the challenges associated with
such digital transformation. Target identification remains a manual process driven by
specialized domain-knowledge [26], while traditional high-throughput screening (HTS)
methods for hit identification rely on slow and costly unguided experimentation [55].
Previously, it was shown that the application of ML techniques could significantly
accelerate HTS [11]. Such studies may be biased due to their retrospective nature and
reliance on publicly available data to perform ML model benchmarking. Moreover,
they tend to fall short in investigating the impact of model predictions on the final
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selection of hits and hit series. In comparison, the prospective studies [55, 56], espe-
cially with AT methods [34], are few and typically do not offer comparison of different
methods due to high experimental hit validation costs. The combination of these two
paradigms is rare. Ultimately, the steps of target evaluation, hit identification and
hit prioritization should be evaluated in the real-world context of a drug discovery
program.

In this study, we demonstrate an augmented early drug discovery workflow, which
integrates Rob’s target evaluation (SpectraView) and Al-driven virtual screening
(HydraScreen) [? | tools alongside Strateos robotic cloud labs. Our goal is to show how
the augmented drug discovery workflow can lead to data-driven decision-making in tar-
get evaluation and optimization of high-throughput screening. We perform data-driven
target evaluation and perform prospective validation of the Ro5’s structure-based deep
learning model HydraScreen in an hit identification study. We evaluate HydraScreen
against traditional techniques, such as molecular docking, QSAR models, and shape-
based methods, to provide more context for its performance and a fair comparative
analysis. Finally, we describe hits in the context of their further optimization.

2 Methods

2.1 Target Evaluation using SpectraView

Target selection and evaluation was performed using Ro5’s proprietary target evalua-
tion tool SpectraView. This tool allows data driven evaluation of prospective protein
targets in drug discovery projects by drawing relevant contextual information from
Ro5’s Knowledge Graph. The evaluation criteria encompass both scientific (e.g. biolog-
ical, chemical) and business (e.g. novelty, competition) considerations. The evaluation
follows criteria commonly encountered in the drug discovery projects that are pre-
sented as questions raised by the researchers. Results from these queries are presented
as interactive visualizations that allow exploration of different criteria for thorough
target evaluation.
Ro5’s Knowledge Graph consists of 4 main components:

* ontologies - databases of entities with unique identifiers (e.g. Ensemble, HGNC),

* unstructured (textual) data - > 34M PubMed abstracts and >90M patents from
which entities and their relationships are extracted

» structured (database) data - relational databases with contextual information for
each entity type (20+ databases, 8 entity types, >2M annotated compounds, >1Bn
compound library, >500k annotated gene/protein targets, >300k 3D structures,
>20k diseases, >15M assay results, >250k clinical trials)

¢ metadata and metrics - data origin metadata and custom metrics for data science
analytics.

As such, theKnowledge Graph presents a comprehensive data resource for target
evaluation.

Ro5 Knowledge Graph encompasses 12 entity types (Disease, Target, Mechanism,
Compound, Species, Anatomical location, Cell line, Biomarker, Publication, Paten-
t/Application, Author, Organization). Entity-to-entity edges are extracted for all of
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these entity pairs. Additionally, full contextual information is preserved when process-
ing textual information by introducing a Publication entity. As a result, conditional
queries can be formulated for all combinations of extracted entities (e.g. Target - Dis-
eases in the context of a Mechanism in a given publication). For all of the textual
information, extensive metadata is preserved, including journal, author and affiliation
information. This information is then used to enrich the Knowledge Graph with the
corresponding entities (e.g. Author, Organization) which can be used business-oriented
analyses. Finally, the Knowledge Graph is populated with metrics that allow quantita-
tive evaluation of the graph structure and entity dynamics (e.g. network connectivity,
edge emergence, point-wise mutual information, etc.). Altogether, such detailed rep-
resentation of entities and their relationships present in the biomedical literature and
patents allow an in-depth and up to date analysis of various scientific queries for the
drug discovery purposes.

2.2 Strateos Cloud Lab

All of the in vitro experiments were performed at the Strateos Cloud Lab. The Stra-
teos Cloud Lab comprises a collection of online software applications that integrate
Strateos’ automated chemistry and biology workstations, inventory management, data
generation and data management. All experiments are coded in autoprotocol, an
open-source standard develop by Strateos (www.autoprotocol.org), which coordinates
instrument actions in specific work cells based on scientific intent. This platform allows
scientists to configure experiments and experimental parameters, remotely initiate and
oversee automated experiments, oversee protocol management and inventory, generate
data, and access real-time outputs of experimental data in a closed loop fashion.

2.3 47k diversity library

A diverse library of 46743 compounds was employed as the primary screening resource.
This compilation, chosen from a broader pool of 500,000 compounds through chem-
informatics evaluation, with properties like scaffold diversity, good chemical quality,
and favorable physicochemical attributes. Compounds prone to interference were
systematically removed, aligning with the exclusion of Pan Assay Interference Com-
pounds (PAINS) from screening libraries. Compounds stocks were stored at 10mM in
DMSO. For screening compounds were arrayed 50 ul/well in Echo-qualified 384 well
polypropylene microplates at room temperature for frequent use.

2.4 Strateos library ligand preparation & stereoisomer
treatment

Strateos library compound SMILES were sanitized by removing salts and convert-
ing them into a canonical form. Stereoisomers of the same compound were treated
as different ligands. For compounds with < 4 unidentified stereocenters, all possible
stereoisomers (up to 16) were generated and stored for further evaluation. For com-
pounds with > 4 unidentified stereocenters, a random subset of 16 stereoisomers was
generated and stored. This was done as a solution to exponential blowup that would
occur for e.g. triterpenoids with > 10 unidentified stereocenters. This enumeration of
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stereoisomers has increased the number of compounds to be considered from 46743 to
65546. The results for all in silico methods were collected for all of the stereoisomers.
A final per-compound score was calculated by computing the mean value of the scores
of the stereoisomers.

2.5 HydraScreen

HydraScreen is machine learning scoring function (MLSF) composed of a CNN-based
deep learning framework designed for accurate prediction of protein-ligand affinity
and pose scoring [? |. For a given target protein, HydraScreen estimates the affinity
of a query ligand in a twofold process. First, a set of protein-ligand conformations are
generated, creating a docked pose ensemble. Second, the affinity and pose estimation
of each conformation is estimated, and a final aggregate affinity value is computed
by means of a Boltzmann-like average of the protein-ligand conformational space. A
schematic of the described procedure can be observed in Figure 1.

Docked poses are generated in a similar fashion to that outlined in [? |. Briefly,
we use the open-source Smina software, a fork of the AutoDock Vina software with
a number of improvements, to generate poses of a query ligand in the pocket of our
target protein. For each protein-ligand pair, the docking process involves: (1) prepara-
tion of the protein structure, (2) preparation of the ligand structure, and (3) docking
with Smina. For the protein, the following steps were taken to prepare it for dock-
ing: (1) solvent and ion deletion, (2) repair of truncated side-chains using Dunbrack
2010 rotamer library, (3) adding hydrogens (histidines were treated like other stan-
dard residues), (4) adding charges. Non-standard residues were changed to the nearest
standard residue. For example, selenomethionine (MSE) — methionine (MET). For
ligands, each ligand is sanitized through RDKit (2021.09.03), with hydrogens added
prior to sanitization if the protonation state was incomplete or corrupt. We gener-
ate up to 20 poses per ligand query, and set the following Smina input parameters:
(num_modes, 20), (min_rmsd, 1A). Furthermore, we define the pocket by using the
autobox option, passing in the reference crystal ligand pose (DL1) from 6BFN, and
including all atoms within 4 Aof any atom in the native conformation.

In this study we primarily use HydraScreen to find potential hits amongst a large
compound library, therefore we rely on its ranking power to discriminate between
candidates that (i) do not successfully bind to the pocket and/or (ii) do not alter the
function of the target (low affinity).

2.6 Benchmarks

We introduce a set of baselines for structure-based and ligand-based methods to better
understand the contribution of HydraScreen with respect to traditional approaches.

Smina

In contrast to ranking our compounds according to our MLSF, Smina exploits a
traditional structure-based approach. Herein, protein-ligand binding can be scored
according to the maximum energy required to remove a ligand pose from the pocket
(free energy). In order to score our compounds, we leverage our already generated
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HydraScreen

Dock Query Candidate

Fig. 1: End-to-end structure-based scoring via HydraScreen. Initially we extract
TRAK1’s pocket from PDB 6BFN, using the co-crystallised ligand (DL1) pose to iden-
tify the relevant residues (top). For each candidate in the compound library we create
a pose ensemble in the identified pocket via docking. This docked ensemble is used as
the input to HydraScreen which returns a score predicting the affinity of the query
candidate.

poses and, for each docked ensemble, extract the largest free energy calculated by
Smina (amongst all the poses).

DeCAF

Density-Encoded Canonically Aligned Fingerprint (DeCAF) [43] is a ligand-based
approach that measures the similarity between two molecules. DeCAF can be used to
rank compounds by rewarding similarity between the query candidate and the refer-
ence molecule (DL1). DeCAF score is computed by: (i) Finding the maximal common
subgraph between the corresponding molecular graphs, represented as a coarse net-
work of pharmacophore descriptors; (ii) Computing the modular product of the two
graphical models and extracting the similarity between the maximal clique identified.
In contrast to other shape-based methods like USRCAT [41], DeCAF does not require
conformer generation.
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Random Forest

We have trained a Random Forest (RF) classifier using publicly available IRAK1 data.
We convert the available pKi and plCsg values for IRAK1 to boolean values based
on whether they are over or under the micromolar range > 6pIC5y threshold. Out
of 689 molecules available on PubChem, 142 were active and 547 were inactive. The
inactive class was further up-sampled by 5K by using DeepCoy [23]. The compounds
generated with DeepCoy were ensured to be structurally dissimilar to the actives while
maintaining similar molecular weight as well as synthetic accessibility. The classified
model was trained using Morgan fingerprints (ECFP4) generated using RDKit.

Pharmit

Pharmit [44] provides an online, interactive environment for the virtual screening of
large compound databases using pharmacophores, molecular shape and energy min-
imization. Queries are specified in terms of a pharmacophore, a spatial arrangement
of the essential features of an interaction, and molecular shape. Search results can
be further ranked and filtered using energy minimization. Pharmit uses state-of-the-
art sub-linear algorithms to provide interactive screening of millions of compounds.
Queries typically take a few seconds to a few minutes depending on their complexity.

The pharmacophore hypothesis can be extracted from a co-crystallized structure;
we used 6BFN for this to extract a 6-point pharmacophore hypothesis, later used
in scoring the HTS compounds. In order to create a continuous score that can be
used to rank the compounds, we extended the functionality of Pharmit to assess how
well a compound matches a hypothesis, rather than a boolean match. This approach
works by computing subsets of the original pharmacophore hypothesis and performing
conformer matching on them, before combining the results of the subset matches to
get a final score. Such a hypothesis-subset screening was made possible by the highly
efficient nature of the Pharmit algorithm.

2.7 IRAK1 assay

Purified recombinant IRAK1-His (cat. # 40202) was purchased from BPS Bioscience
Inc. (San Diego, CA, USA). Kinase tracer 236 (cat. # PR9078A) was purchased from
Thermo Fisher Scientific Inc. (Waltham, MA, USA) Eu-W1024-anti-6xHis antibody
(cat. #AD0400) and 384-well white ProxiPlates™ (cat. # 6008289) were pur-
chased from Perkin Elmer, Inc. (Waltham, MA, USA). Echo-qualified 384 well COC
low dead volume source microplates (cat. #001-16128) and Echo-qualified 384 well
polypropylene microplates (cat. #001-14615) were purchased from Beckman Coulter
Inc.(Indianapolis, IN, USA).

LanthaScreen™ Eu Kinase Binding Assay for IRAK1 The experimental method
was developed based on the Invitrogen™ IRAKI1-GST LanthaScreen™ binding
assay. The assay was carried out in an enclosed workcell with subdued lighting. All
reagents were prepared in the assay buffer (50mM HEPES, 10mM MgCly, 1mM
EGTA, 0.01% Brij-35, ImM DTT) and kept on ice. These included 2 x tracer 236
(0.2 uM), 2 x TRAK1 /antibody solution (20nM IRAK1-His, 4nM Eu-W1024-anti-
6xHis antibody) and 2 x antibody solution (4nM Eu-W1024-anti-6xHis antibody).
Five microliters of 2 x tracer 236 was dispensed into a 384-well white ProxiPlate™,
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followed by either 5ul of 2 x IRAK1/antibody solution or 5ul of 2 x antibody solution
on a Tempest®dispenser (Formulatrix, Inc., Bedford, MA, USA). The plate was sealed
on a Wasp plate sealer (KBiosciences Limited, Basildon, Essex, UK) and centrifuged
at 1000 x g for 15 seconds on a HiG™ automated centrifuge (BioNex Solutions Inc.,
San Jose, CA, USA) and incubated at room temperature for 30 minutes. The plate was
then peeled and read on a PHERAstar®FSX (BMG LABTECH Inc., Cary, NC, USA)
with a LanthaScreen™ module at 340/615, 665 nm. The TR-FRET ratio (acceptor
emission/donor emission x 10000) was used as the readout.

Biowvalidation and pilot screen

Biovalidation was carried out with identical assay settings as for the anticipated
production runs. Assay conditions and the instrument settings were tested for their
performance within the acceptance criteria (Z’ > 0.5 (see eq. 1, where p and n refer to
positive and negative control wells in the plates), no visible patterns on assay plates).
Compounds from 2 library plates were dispensed at 10 nL/well in single point in
columns 3 to 22 on assay plates (final concentration in assay at 10 pM) and 10 nL/well
of DMSO was dispensed in columns 1, 2, 23 and 24 for controls. Ten nanoliter per
well of DMSO was dispensed into all wells on positive and negative control plates.
Compounds and DMSO were dispensed on an Echo 655 liquid handler in an Access
workstation. For the kinase binding assay, the 2 x tracer solution was dispensed into
all wells on all plates. For the assay plates, the 2 x IRAK1/antibody solution was dis-
pensed into columns 1 and 3 to 23. The negative control plates have the same layout
as the assay plates, with DMSO in place of the compounds. For the positive control
plates, the 2 x antibody solution was used in place of the 2 x IRAK1/antibody solu-
tion in columns 3 to 22. Six plates were dispensed in total, including 2 assay plates, 2
negative control plates and 2 positive control plates. The compound dispense run and
the binding assay run were both set up and launched in the Cloud Lab. The auto-
mated runs were carried out in the workcells and with the autoprotocols designated
for production. Z’, signal-to-background ratio and compound hit rate were analyzed
as performance parameters.

3(017 + Un) (1)
ltp — pnl

Biovalidation was followed by a pilot screen with a plate number close to that in a
production run for evaluation of the robustness of the assay, the automation scheduling
and the data transfer. Compounds on 20 library plates were dispensed onto 20 assay
plates. Two positive and two negative control plates were used in the same manner as
in biovalidation. The screen was carried out with the same LOT of reagents, procedure,
instrument settings and autoprotocols as in biovalidation. Z’, signal-to-background
ratio and compound hit rate were analyzed as performance parameters.

7 =1-

2.8 High-throughput screen (HTS)

Primary screen

The primary screen runs were performed with the same reagents and procedures as
the pilot screen. Up to 40 plates were assayed per run. In total 153 plates and 46743
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compounds were screened at 10 pM in single point. Plate QC was performed using
manual inspection and Z’ analysis (equation 1). Plates not passing with Z’ > 0.5 were
run repeatedly.

Primary screen data analysis

With the collected fluorescence data we have performed per-plate fluorescence normal-
ization. Normalization entailed scaling the reported fluorescence in the ratio channel
in between negative control (DMSO) and positive control (Staurosporine) so that 0
normalized fluorescence value would correspond to the mean of the negative control
value and 100 normalized fluorescence ratio channel value would correspond to the
positive control fluorescence, as seen is Equation 2. Mean values from the 32 negative
control (upaso), and 32 positive control (pugs - Staurosporine) wells in each plate
were used in the normalization.

ratioraw — LDMSO )
HSS — HDMSO

Normalized fluorescence ratio reported relative inhibition of IRAK1, where 100
corresponds to the inhibition with staurosporine. The distribution of normalized flu-
orescence ratio values is presented in Figure 2. Only normalized fluorescence ratio
channel values were used in further analysis. The threshold for hit selection was cho-
sen to be 50% inhibition of IRAK1 relative to staurosporine. Using this threshold 353
hit compounds were identified.

rationorm =

Single-dose hit confirmation

For single-dose hit confirmation we have selected 10 plates with most hits and assayed
them at 10 gM in duplication. The experiments showed high consistency with 7’
values above 0.6 in all plates and high correlation between the replicates.

Compound clustering

The 353 hits identified via HT'S were subsequently clustered by their structural similar-
ity using the Louvain algorithm [4]. The algorithm identifies clusters (”communities”)
within a graph of related compounds that is constructed using compound Tanimoto
similarity (TS). The Louvain algorithm was chosen for its compatibility with Tani-
moto similarity and robustness in terms of the number of clusters in the dataset. In
total, 200 unique clusters were identified, 160 of which were singletons. 5 compounds
with the greatest ligand efficiency (LE) values were selected from each cluster to form
a diversified set of 283 hits.

Hit dose-response

A diversified set of 283 hits was selected for dose response assays. Each compound was
assayed in an 8-point curve with an approximately 4-fold (subject to Echo dispense
volume limits) dilution starting at 30 M in triplicates. The exact concentrations are
30, 7.5, 1.875, 0.469, 0.117, 0.029, 0.007, 0.002 pM. On each plate, three replicates
of a staurosporine titration curve starting at 3 uM were assayed in parallel as the
reference.
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Fig. 2: Normalized fluorescence values in the ratio channel from IRAK1 HTS. Values
from the individual compounds from the library, positive and negative control wells
are represented in different colors. Here 0% corresponds to the mean normalized flu-
orescence ratio in negative control wells and 100% to normalized fluorescence ratio
in positive control wells across the whole library. Positive control represents IRAK1
inhibition with staurosporine.

Hit dose-response data analysis

The IC5¢ of each dose-response curve was derived by fitting a four-parameter logistic
(4PL) model, shown in Equation 3. The variables of the model are shown in Equation
3:

e A: Minimum asymptote. It’s the response value when = approaches infinity.

e D: Maximum asymptote. It’s the response value when x is very small or close to
zZero.

B: Slope factor or Hill’s slope. It describes the steepness of the curve.

C: Inflection point. The concentration of the analyte that gives half-maximal
response.

D-A
€T :A —_—
f(x) +1+(%)B (3)

The 4PL model was fitted for each compound with data points for all three
replicates all at once. The resulting in a pICsq distribution as seen in Figure 3. As
an additional quality control, fits for all submicromolar compounds were manually
inspected. In 7 cases the model fits were erroneous and the ICsy values were reduced
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to 30uM, the highest concentration of the assay. Whenever the model produced fits
with IC5q values higher than 30uM, the largest measured concentration in the assay,
the IC5¢ values were made to be equal to 30ulM, or equivalently, ~ 4.52 pICsy.

ut D
[en) o
| |

=~
]
|

Number of hit compounds
[\] w
S S

—_
o
L

(=)
|

4.5 5.0 5.5 6.0 6.5 7.0 7.5
pIC50

Fig. 3: Distribution of log;y-normalized ICsq values (pICsg) for the 283 hit compounds
for which the dose-response data was collected.

3 Results

3.1 Target evaluation using SpectraView

3.2 Target evaluation goals and criteria

Multiple protein targets were considered for the joint Rob-Strateos project. The tar-
gets were proposed by Strateos based on the availability of scalable assays and interest
from their potential customers. In order to perform a thorough assessment of each tar-
get, we employed Rob’s target evaluation tool: SpectraView. Our aim was to identify
a therapeutically relevant and commercially viable target for a drug discovery project,
which could also be used for the prospective validation of Ro5’s HydraScreen model.
SpectraView relies on Ro5’s integrated Knowledge Graph to serve information from
multiple data sources (see methods section 2.1) following these queries:

* Availability of a crystal structure

» Existing biochemical data

* Existing drugs and most potent compounds
* Publication count and trends

* Novelty/Traction balance

» Target-disease associations

e Translation from academia to industry
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¢ Competitive landscape

Table 1: Targets considered for the Ro5-Strateos project and some of the data considered in target
evaluation. Data from RSCB PDB [28], PubChem [25] and DrugBank [51] as of start of the project

on 2022-01.
Target Crystal structures, n  Data points, thousands = Max affinity, nM  FDA approved drugs, n
JAK1 44 6.5 < 0.01 5
JAK2 115 10.0 < 0.01 5
JAK3 38 6.0 < 0.001 5
TYK2 38 3.5 < 0.7 1
IRAK1 1 1.3 < 5.6 0/1inv.?
FGFR1 59 7.0 0.2 5
FGFR2 37 2.1 0.1 7
FGFR3 4 4.5 0.1 9
FGFRA4 28 2.0 0.1 6
RIPK2 24 0.2 1.3 0/ 1 inv.
VGFR2 (KDR) 45 18.0 0.02 2
TAK1 (MAP3KT) 19 0.3 1 -

¢ Early clinical studies of IRAK1 inhibitor R835 [29].

3.3 Target evaluation

One of the main considerations when selecting a target in drug discovery is its novel-
ty/confidence trade-off [26]. Most of the targets considered for the project were very
well-studied, as marked by the volume of PubMed publications mentioning them (e.g.
800 articles mentioning KDR were published each year, see Suppl. Fig. A1), availabil-
ity of crystal structures, biochemical assay data and approved or investigational drugs
(Tab. 1). We have focused on the relatively less established targets with lower vol-
ume of publications, fewer data points and only few known high activity compounds
- IRAK1, FGFR3 and TAKI.

The availability of a crystal structure and biochemical assay data were crucial
criteria when selecting a target for virtual screening and subsequently the prospec-
tive validation of HydraScreen. The crystal structure is necessary to generate poses
between the ligand and binding site for predictions by HydraScreen and docking, while
public assay data would be used in DeCAF pharmacophore-based comparison and
for building ligand-based QSAR models. All of the considered targets had at least 1
crystal structure (Table 1). IRAKI1, one of the least established targets, had a recent
publication with its crystal structure resolved [48] (6BFN) and 1.3k biochemical assay
data points. Moreover, IRAK1 was not present in HydraScreen’s training data set,
allowing the method’s unbiased and fair prospective validation. IRAK1 thus satis-
fied the minimal requirements for selection, while also being the most underexplored
target in the selection.

Additional evidence was needed to substantiate IRAK1’s choice for a drug dis-
covery program in terms of its therapeutic links. In contrast to many other kinases,
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Fig. 4: Diseases, disease areas and symptoms co-mentioned with each of the consid-
ered targets. Colors represent the fraction of PubMed-indexed publications per disease
for each of the targets.

TIRAK1 is primarily associated with inflammation (Fig. 4, e.g. [21]) and not can-
cers. It’s only recently that IRAK1 has been implicated in multiple cancers, including
breast cancer [49], lymphoma [16] and acute myeloid leukemia [20]. The combination
of fewer publications and emerging new therapeutic links provides additional support
for IRAK1’s selection.

Finally, IRAK1 was assessed in terms of the potential competitors in the drug
development effort. We have analyzed the competitive landscape by querying the pub-
lications and patents held by major pharma companies as well as the most potent drugs
and compounds reported in the public domain. We have found only few PubMed-
indexed publications with affiliations linked to major pharma companies: Johnson and
Johnson - 4, Genentech - 2, Roche - 2, GlaxoSmithKline - 2, Pfizer - 2, Novartis - 1,
Rigel - 2 (Fig. A3). This was a promising finding, given much greater academic interest
in TRAK1 with 637 publications (Fig. A5). Similarly, we have looked into patent and
patent applications (Fig. A4). There were two notable entities - Dana Farber Cancer
Institute and Yissum Research and Development Company of the Hebrew University
both holding 14 patents mentioning IRAK1. No major pharma companies were found
to hold patents linked to IRAK1. We have then looked into the most potent com-
pounds active against IRAK1. Only few nanomolar compounds have been reported
for IRAKI (e.g. JH-X-119-01 is 9nM, [16]). IRAK1 has been shown to be an off-target
of an active metabolite R406 of FDA approved drug Fostamatinib developed by Rigel
pharma for the treatment of chronic immune thrombocytopeni [37]. Rigel pharma
has recently started pre-clinical and clinical studies of IRAK1/4 inhibitor R835 which
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has shown potential in murine models of multiple inflammatory diseases, including
arthritis and lupus, however, has not yet received FDA approval [29]. The combina-
tion of largely academic research in IRAK1 with only recently emerging interest by
pharma companies (Fig. A5), especially the supporting pre-clinical and clinical work
[29, 37] provides corroborative evidence for its potential as a prospective drug target.
The lack of any FDA-approved IRAK1 targeting drugs leaves an opportunity for the
development of novel small molecule inhibitors. Altogether, the balance between the
novelty and sufficient support in terms of biochemical and biological rationale as well
as competitive considerations make IRAK1 an attractive target to be pursued in the
Ro5-Strateos study.

3.4 Identification of IRAKI1 hits using HydraScreen
3.4.1 HydraScreen virtual screen

Following the selection of IRAK1 as a target using SpectraView, we performed in
silico virtual screening for IRAK1, subsequently followed by experimental hit iden-
tification via HTS. The goal of this stage of the project was to perform prospective
evaluation of HydraScreen’s performance using in vitro data collected by Strateos HTS
in comparison to traditional, industry-standard methods like Smina [27] (molecular
docking), DeCAF [43] (pharmacophore modeling) and a random forest model trained
on IRAKI assay data that is publically available. Together, these results will provide a
comprehensive and unbiased evaluation of HydraScreen as a virtual screening method.

In order to prospectively evaluate Ro5’s HydraScreen model’s performance in hit
identification, we performed a virtual screen of the entire Strateos 47k compound
diversity library (see Methods 2.5). HydraScreen predictions were then used to rank
the library and select the top 1% (470) compounds to be considered in silico hits.
Strateos subsequently performed an in vitro HT'S with the same library (see Methods
2.8), which returned 353 hit compounds. These compounds were compared to the ones
ranked in the top 1% by HydraScreen. In total, 57 compounds were discovered by
HydraScreen that were also identified in the HTS, constituting a 15.9% hit discovery
rate via virtual screening.

Next we have investigated the impact that different IRAK1 activity thresholds for
hit selection in HTS can have for hit identification in the HydraScreen virtual screen
(Figure 5). This is an important consideration, because both the virtual in silico
and the high-throughput in vitro screens rely on arbitrary thresholds for hit selection
[56, 55]. Here, we consider the comparison of virtual screening predictions against the
HTS results for each individual compound in the ranking generated by HydraScreen.
Virtual screening hit recovery rate for HydraScreen was estimated as a proportion of
hits identified per number of compounds screened or tested. Standard HTS protocols
randomly test compounds from the library (i.e. in the order in which they are stored);
therefore, the hit recovery rate of traditional HTS is roughly proportional to the
percentage of the library screened, as marked by the diagonal black line in Figure 5.
Any method that is able to prioritize active compounds over the inactive ones would
provide a better hit recovery rate than random sampling (i.e. above the diagonal line
in Figure 5).
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Fig. 5: (A) HydraScreen hit discovery rate (% of hits discovered per library screened)
for different IRAK1 inhibition thresholds in HTS (marked by lines of in the shades of
blue). For each IRAK1 inhibition threshold the number of hits identified in HTS is
presented together with the overall HT'S hit rate. Dashed black line represents random
compound ranking. Supporting data is presented in table (B).

We found that ranking the compound library according to HydraScreen predictions
greatly increases hit discovery rates in virtual screening for IRAK1. This result is
consistent for any number of top compounds selected in the ranking and any >0%
threshold of relative IRAK1 inhibition in HTS. Using the 50% IRAKI inhibition
threshold, as was used in the in vitro experiment, HydraScreen identified 35.4% of
the hit compounds within the top 5% and 63.7% with 20% of the ranking (Fig. 5B).
Notably, close to 90% of the hits can be identified with only 50% of the ranking (see
Figure 5B). Generally, HydraScreen exhibits better performance at higher IRAK1
assay inhibition thresholds. For example, HydraScreen identified 23.8% (30 out of 126)

15

https://doi.org/10.26434/chemrxiv-2023-mh22x ORCID: https://orcid.org/0000-0003-4790-9820 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://doi.org/10.26434/chemrxiv-2023-mh22x
https://orcid.org/0000-0003-4790-9820
https://creativecommons.org/licenses/by-nc-nd/4.0/

of hits at the top 1% of the compound ranking when using 80% relative inhibition
threshold of IRAK1 (Fig. 5B).

The number of distinct highly active scaffolds identified in HTS can be more
relevant than the total number of hits. Greater variety of scaffolds provides medicinal
chemists with more opportunities for lead series development, which is crucial at
the later stages of drug discovery [22]. Therefore, in addition to hit discovery rates,
HydraScreen’s performance was also assessed in terms of its ability to prioritize highly
active compounds that are also structurally diverse. This would provide evidence
both for models ability to predict ligand potency, and lack of structural biases in the
prioritization of the compounds.

To select a diverse, representative and unbiased set of compounds to screen in the
secondary assay, the 353 hits from HTS were clustered by their structural similar-
ity using the Louvain algorithm. In total, 200 unique clusters were identified, 160 of
which had single compound member. Scaffolds associated with each cluster were iden-
tified using maximum common substructure (MCS) analysis. Five compounds with
the greatest ligand efficiency (LE) values were selected from each cluster to form a
diversified set of 283 hits from 200 distinct scaffolds. For these 283 diversified hit
compounds, Strateos collected dose-response data (see methods 2.8). Based on their
pICs0 (—logio transformed ICy) activity values, hits and their corresponding scaf-
folds were grouped into micromolar, high nanomolar and nanomolar groups (Table
2). We identified 5 nanomolar and 25 high nanomolar hits, while the rest possessed
micromolar activity. Scaffolds were labeled based on the most active compound in
each cluster. Out of the 200 total scaffolds, 15 were labeled as high nanomolar and 3 as
nanomolar. We will refer to the union of high nanomolar and nanomolar compounds
as sub-micromolar.

Table 2: Dose-response assay results for 283 diversified hits.
Compounds and scaffolds were labeled as micromolar, high
nanomolar and nanomolar based on the their pIC50 values.
For scaffolds, the highest activity found in the correspond
cluster of compounds was used as a label.

pIC50 range Compounds Scaffolds

Micromolar <6 253 182
High nanomolar 6 <x<7 25 15
Nanomolar >7 5 3

The dose-response data was used to evaluate HydraScreen’s performance in terms
of discovery of highly active scaffolds (Fig. 7). We considered a scaffold to be "dis-
covered” by a model if at least one compound from the corresponding cluster was
ranked by the model in top X% of the library. Notably, HydraScreen successfully
recovered compounds belonging to all 3 nanomolar scaffolds within the top 1% of the
library. Within the top-ranked 2%, HydraScreen recovered 8/18 of the submicromo-
lar scaffolds. The remaining 10 scaffolds were present in the top 50% of the ranked
compounds.
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Fig. 6: UMAP embedding of 283 hit compounds from HTS screen. The space in the
plot represents relative similarity of the compounds. Nanomolar compounds from the
three nanomolar scaffolds are highlighted with their pI/C5¢ values indicated under-
neath.

3.4.2 HydraScreen comparison against other virtual screening
techniques

Virtual screening can be performed using a range of different techniques [31]. Tt is
therefore relevant to evaluate HydraScreen’s performance in comparison to different
traditional methods. In parallel to the HydraScreen virtual screen, we also prospec-
tively generated predictions using Smina docking [27], DeCAF 2D pharmacophore
matching [43], Pharmit 3D pharmacophore hypothesis matching [44] and a random
forest model trained on ECFP4 fingerprints. The comparison between methods was
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Fig. 7: HydraScreen distinct scaffold discovery rate (number of distinct scaffolds dis-
covered per library screened). Dashed black line represents random compound ranking.

Filled and empty circles represent nanomolar and high nanomolar scaffolds corre-
spondingly.

made at the 50% IRAK1 inhibition threshold used in in wvitro HTS, with 353 hits
identified in total. HydraScreen considerably outperforms the traditional techniques
and its hit identification rate is consistently higher for any selected percentage of the
top ranked compounds. At the top 1% ranking the model provides 3.5x better per-
formance than Smina, 3.2x better than RF with ECFP4 (Fig. 8B) and ~20 better
performance than pharmacophore-based methods Pharmit and DeCAF. Both Smina
docking and random forest perform similarly, and outperforming the pharmacophore
based methods. However, for low ranked compounds (>70% ranking) DeCAF exhibits
better performance than docking.

Following the same methodology used for evaluating HydraScreen in terms of its
ability to rank distinct active scaffolds, we compared different virtual screening meth-
ods. As before, we considered a scaffold ”discovered” if at least one compound from
that scaffold was ranked in the corresponding library screening range. In compari-
son to other methods, HydraScreen exhibits superior scaffold discovery rates (Fig.
9A). Within the top 1% of the ranked compounds, HydraScreen discovered all three
nanomolar and, in total, 6 out of 18 submicromolar scaffolds (Fig. 9B). In comparison,
docking ranked the three nanomolar scaffolds only at 18% of the ranking, Pharmit at
27% and random forest at 30%. Random forest ranked one of the nanomolar scaffolds
as the top 10 compound (0.02%). This scaffold is has a highly similar analogue in the
public IRAK1 data that the RF model has trained on. This scaffold and the analogue
are discussed in more detail in Section 3.5.1.
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Fig. 8: (A) Hit discovery rates provided by different methods in IRAK1 virtual
screen. Dashed black line corresponds to random compound ranking. Supporting data
is presented in table (B).

3.5 TRAKT1 hits

TRAKT hit identification via HTS experimentally discovered 283 hit compounds, rep-
resenting 200 distinct structural scaffolds. In the last stage of the project, we evaluated
these compounds and scaffolds in terms of their novelty, physio-chemical properties
and IRAK1 binding modes.

3.5.1 Hit novelty and properties

In order to assess the uniqueness of the 283 diversified hits, we compared them against
TRAKI1 actives available in PubChem. Out of the 689 compounds reported to be active
against IRAK1, 141 had sub-micromolar activity (>6 pICsyg). For each of the 283 hits,
we found the nearest neighbor in the set of IRAK1 actives and scaffolds based on
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Fig. 9: (A) Scaffold discovery rates provided by different methods in IRAK1 virtual
screen. Nanomolar and high nanomolar scaffolds are marked by filled and empty
circles correspondingly. Dashed black line corresponds to random compound ranking.
Supporting data is presented in table (B).

their Tanimoto Similarity (TS). The number of neighbors above a certain similarity
threshold is reported in Table 3. We observe that the vast majority of compounds
are distinct from publicly known actives, not having related chemical matter with
a TS <0.4 in the public domain. Only 39 compounds, corresponding to 27 distinct
scaffolds, exhibit >0.4 TS. Focusing on the nanomolar hit compounds, only 1 of the 3
scaffolds had a similar (T'S < 0.4) active compound in the public domain; the closest
structure was the Pan-RAF inhibitor LY3009120 [17] with a TS of 0.82. A whole cell-
based kinase screen revealed that LY3009120 displayed some IRAK1 inhibition (390
nM ICjyp), though it was not the primary target of the compound.

The 30 sub-micromolar hit compounds represented 18 distinct scaffolds, with the
6 most active compounds spanning 3 of these as indicated in figure 6. The 6 most
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TS threshold | Hits Scaffolds Nanomolar scaffolds

Total 283 200 3
> 0.4 21 13 1
> 0.6 5 3 1
> 0.8 1 1 1
> 0.9 0 0 0

Table 3: Numbers of hits and scaffolds that have at least
one neighbor in the IRAK1 public dataset that is more
similar than the specified threshold.

active compounds are synthetically tractable, with synthetic accessibility scores in a
similar range to that of catalogue compounds (2-3) [12]. They border on the upper
end of the Lipinski rule of 5 [8] with regards to molecular weight (466 to 521 g/mol)
and Crippen LogP values of 4.7 to 6 [50]. The high molecular weight and LogP nature
will have to be further assessed during a medicinal chemistry program.

3.5.2 HydraScreen hit compound binding modes

g

Fig. 10: IRAKI1-ligand poses with the highest HydraScreen confidence for selected
nanomolar hits A1, B1, and C2, represented in panels A, B, and C respectively. PLIP
protein-ligand interactions are shown with grey dashes (hydrophobic interactions),
blue lines (H-bonds), and green dashes connecting white spheres (pi-pi stacking).

In addition to ranking compounds according to their predicted affinity against a
target, HydraScreen provides insight into the likely binding modes of the compounds
by predicting pose confidence for the docked poses. To describe the HydaraScreen
predicted binding for the most active compound of each of the nanomolar scaffolds
(compounds Al, B1, and C2, Fig. 6), the IRAK1-ligand interactions of the predicted
highest confidence pose were identified using the protein—ligand interaction profiler,
PLIP [3]. Across the highest confidence poses, the sequential aromatic heterocycles
of the compounds were situated towards the back of the ATP binding pocket, with
hydrophobic interactions with valine (V226), leucine (L347), and isoleucine (1218)
residues (Fig. 10). The central heterocycles of compounds Bl and C2 forms hydrogen
bonds (H-bonds) with the hinge region, whereas the urea in Al forms H-bonds to the
backbone. Both A1l and B1 interacts with the carbonyl of aspartic acid D358 in the

21

https://doi.org/10.26434/chemrxiv-2023-mh22x ORCID: https://orcid.org/0000-0003-4790-9820 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://doi.org/10.26434/chemrxiv-2023-mh22x
https://orcid.org/0000-0003-4790-9820
https://creativecommons.org/licenses/by-nc-nd/4.0/

back of the pocket, respectively through an H-bond and halogen bond. On the other
hand, the highest confidence pose of compound C2 highlights a pi-stacking interaction
with the gatekeeper residue tyrosine Y288, as well as H-bonds to both Y288 and the
catalytic lysine K239. Across the compounds, aliphatic sp3-rich motifs are situated
toward the solvent exposed region of the pocket.

The HydraScreen-provided insight into the compound poses and the different inter-
actions of scaffold motifs aids further compound design by highlighting areas and
interactions to exploit not only around a specific scaffold, but also from one scaffold
to another. The hit compound activity, novelty, and ample positions to tailor, ren-
der them attractive scaffolds for further SAR exploration and subsequent hit-to-lead
development.

4 Discussion

Prospective validation of HydraScreen and hit identification in IRAK1

In this study, we propose an augmented drug discovery workflow that relies on Ro5’s
AT and data science platform while utilizing Stateos’ robotic labs capabilities. We
show how target evaluation driven by Ro5’s SpectraView allowed for the selection of
IRAK1 serine-threonine kinase target with emerging therapeutic links to cancers and
inflammation. We provide evidence for HydraScreen’s virtual screening performance.
Notably, Ro5’s HydraScreen provides high hit discovery rates in virtual screening,
with upwards of 15.9% hits and all of the 3 nanomolar scaffolds ranked in the top
1%. Moreover, the performance increased with stricter thresholds for experimental
hit selection - 23.8% hit rate in top 1% of the ranked compounds with 80% relative
inhibition of IRAK1 threshold. All of the distinct nanomolar and high nanomolar scaf-
folds were ranked in the top 50% of the compounds. HydraScreen is able to prioritize
highly active compounds and does not exhibit biases in terms of treatment of struc-
turally diverse compounds. Importantly, HydraScreen model has not been trained on
TRAK1 data, so these results also reflect on the model’s ability to generalize to an
unseen target.

HydraScreen was shown to be superior to traditional, industry-standard methods
like Smina [27] (molecular docking), DeCAF [43] (pharmacophore modeling) and a
random forest model in terms of hit and scaffold discovery rates. HydraScreen offers
state-of-the-art performance in line with the most recent AI models available for
protein-ligand binding activity prediction [33]. Beyond the high hit rate, HydraScreen
uniquely provides ligand pose confidence scores [? | which can be used when consider-
ing modifications of the most potent hits in the later hit to lead or lead optimization
stages of a drug discovery program.

In addition, this study successfully identified potent and novel IRAK1 inhibitors.
The most potent 5 nanomolar hits represent 3 distinct scaffolds, which are syntheti-
cally accessible, 2 of which are novel when compared to known IRAKI actives. The
scope to optimize these compound scaffolds was strengthened through the identifi-
cation of analogues in the HTS, which revealed additional compounds with varying
degrees of activity for all 3 nanomolar scaffolds (A: 8; B: 5; C: 32). Although the
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hits have high Crippen LogP, the lack of correlation between the single point fluo-
rescence readout and LogP suggested that activity is not driven by lipophilicity. The
general high molecular weight and lipophilicity of the compounds will have to be fur-
ther explored during a medicinal chemistry program. One of the identified nanomolar
scaffolds exhibits high similarity to a known Pan-RAF inhibitor LY3009120 [17], while
the other two do not have drug analogues. These compounds and associated series
show promise for further development.

The most important contribution of this study is the prospective validation of
HydraScreen for virtual screening. Prospective virtual screening evaluation studies
reported in the literature usually experimentally test only a small fraction of the
library, well below 1% - a dozen of compounds in total (median value of 44 based on
401 studies) [55]. The median of hit rates reported in these studies is approximately
~ 11.76% for 385 studies across all target classes and ~ 9.61% for 67 studies focusing
on kinases [55]. However, the reported hit rates are prone to bias due to a small
test size. A comparable study that used a support-vector machine (SVM) model for
virtual screening in IRAK1 reported a 2.83% hit rate (1/38) with the most potent
compounds reaching 2uM activity [7]. In contrast, we screened the entire 47k library
to provide a robust assessment of HydraScreen and report a hit discovery rate of
upwards of 15.9% for the top 1% (470) of tested compounds, which is well above the
median and substantially higher than the comparable IRAK1 virtual screening study
[7]. Furthermore, HydraScreen achieves even better hit rates (up to 23.8%, greater
than the 3rd quartile 23.5% of hit rates reported in [55]) for higher IRAK1 inhibition
thresholds. This is an important observation, since HT'S assays are inherently noisy
and their own intrinsic false-positive rate [56]. HydraScreen’s evaluation at stricter
TIRAKTI inhibition thresholds is potentially more representative of its true performance
due to a higher confidence in the hits selected from the assay (i.e. lower false-positive
rate).

Summary

This study provides compelling evidence for the effectiveness Ro5’s innovative tools,
SpectraView and HydraScreen in early stage drug discovery.. By leveraging Rob5’s
HydraScreen and Strateos’ automated labs, we show how Al-driven virtual screening
with HydraScreen could offer high hit discovery rates and reduce experimental costs.
In the top 1% of the ranked compounds, HydraScreen identified all three nanomolar
classes with favorable chemical properties and almost a quarter of the total actives
in the library. The unbiased, prospective evaluation of HydraScreenand comparison
against industry-standard methods supports the reliability and robustness of our
findings. Ro5’s SpectraView and HydraScreen provide innovative methods that can
expedite the early stages of drug discovery.
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Appendix A SpectraView
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