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Abstract 

Catalytic degradation in proton exchange membrane fuel cells (PEMFCs) has always been a 
challenging subject. Despite the monumental research on the subject1-6, the complex 
relationship between the catalyst deactivation mechanisms and electrochemical degradation 
remains obscure owing to the heterogenous nature of the catalyst structure. Here we report a 
correlative electron and X-ray imaging method that enables a multi-modal and multi-length-
scale quantification and visualisation of Pt degradation mechanisms in the oxygen reduction 
reaction (ORR) for proton exchange membrane fuel cell (PEMFC). This technique provides 
statistical information of up to 107 Pt nanoparticle with 2-dimensional (2D) statistical 
distribution of Pt content and nanoparticle number in length scales from 2 nm to 20 µm. With 
the accelerated durability test (ADT) under an O2-saturated 0.1 M HClO4 electrolyte between 
0.4 and 1.2 V vs. reversible hydrogen electrode (RHE), the statistical results reveal that the 
carbon supported Pt nanoparticle catalyst experiences 1) 1:1.5 ratio between the type I 
degradation mechanisms, Pt dissolution and particle detachment, and type II, Ostwald ripening 
and particle agglomeration; 2) electrocatalytic activity losses of 33.4% and 41.8% for type I 
and II degradations, respectively; and 3) macro-scale Pt redistribution from Pt dense regions to 
sparse regions at an average distance of 1.6 ± 0.9 µm. 

Introduction 

Nanoparticles are widely studied and practically used in physical science7, engineering8, 
biology9 and medical applications10. Despite the large volume of research into nanoparticles, 
there is little statistical analysis of them. Obtaining such statistics is valuable to understand 
both the collective and individual behaviours of nanoparticles in order to optimize their 
performance11-13. Here we define the concept of Nano-Statistics as quantifying both the static 
(e.g. element distribution, particle number, size, shape) and dynamic (e.g. growth, aggregation, 
leaching, movement and phase transition) properties of nanomaterials. Nano-Statistics provide 
a quantitative understanding of nanomaterials and help predict collective nanoparticle 
behaviour at application relevant scales and requires advanced imaging techniques over 
multiple modal and length scales. Fluorescence microscopy is a common technique employed 
at the micrometre scale for labelled and monitoring nanoparticles within cellular systems14,15. 
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In a study by Summers et al., fluorescence microscopy was utilised to examine nanoparticle 
delivery and dosage in cellular systems16 and to trace cell populations17. Electron microscopy 
(EM) provides morphological and elemental information of individual nanoparticles from the 
nanometre scale down to atomic resolution, where changes in particle size distributions18 and 
porosity19 have been used to investigate degradation of oxygen reduction reaction (ORR) 
catalysts. In combination with energy dispersive spectroscopy (EDS) and identical location 
(IL) imaging20-24, exposed crystal facets and elemental distribution of individual Pt based alloy 
nanoparticles can further be tracked at different degraded states to explain the enhanced ORR 
performance25,26. 

Unfortunately, current microscopy techniques still fall short in bridging towards understanding 
in macroscopic performance of nanomaterials. Typical electron micrographs with well-
resolved nanoparticles are restricted to small field of views with particle number of 
questionable statistical significance27. Manual particle counting is also time consuming and 
laborious, and computational approaches are limited to thin layers or well dispersed 
nanoparticle systems27-29. Moreover, dynamically tracking nanoparticles require complex in 
situ experimental setup and analysis procedures30,31, further impairing the understanding of the 
highly convoluted catalytic degradation mechanisms. Therefore, a reliable method that can 
overcome such limitations while utilising the unique advantages of EM is crucial to advancing 
the quantitative understanding of nanomaterial performance and degradation.  

Correlative microscopy has long been adopted to connect the resolution gap to reveal 
multiscale structural morphologies32,33. This concept has recently been applied with X-ray 
imaging techniques. A same-view membrane cell was developed to achieve correlative EM –
EDS / nano-X-ray absorption fine structure imaging on Pt based catalysts in membrane 
electrode assembly34-36, revealing a correlation between S and F species from the Nafion 
ionomer and the presence of Pt2+ species in nano-cracks after electrochemical degradations36,37. 
Whilst insightful in the microscopy level, it remains uncertain how these observations translate 
into the macroscopic electrocatalytic degradation. Here, using a multi-modal and multi-length-
scale correlative electron and X-ray imaging technique, we report the statistics of the 
electrocatalytic degradation mechanisms for ORR of 107 Pt nanoparticles. First, a 2D particle 
number distribution containing up to 107 nanoparticles at the micrometre-scale is established 
by correlating Pt fluorescence signals to counted nanoparticle number. Second, the Pt 
dissolution/particle detachment and Ostwald ripening/particle agglomeration mechanisms and 
the macro-scale Pt redistribution caused by corrosion of the carbon support are quantified from 
the macroscopic level of 10 × 10 µm2 down to the microscopic level of 100  100 nm2. These 
results offer a statistical understanding of the electrochemical degradations of Pt ORR catalysts 
by overcoming the existing disadvantages of either single microscopy technique, highlighting 
the importance of correlative imaging at multiple length scale. 

Results and Discussion 

Pt degradation, imaging and analysis protocol 

Degradation mechanisms of carbon supported platinum nanoparticle (Pt/C) catalysts in 
PEMFCs are conventionally categorised into primary and secondary pathways based on the 
causality with the operating conditions4-6. The primary mechanisms – Pt dissolution (eq1) and 
carbon corrosion – are direct oxidations of the Pt catalyst and carbon support by the high 
operation potentials38-40; while the secondary mechanisms – particle agglomeration, 
detachment, and Ostwald ripening (eq2) – are subsidiary effects derived from the oxidised Pt2+ 
and weakened carbon support anchorage by the primary mechanisms41-43. However, to 
investigate the effects of the catalyst degradation mechanisms, an alternative categorisation 
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based on the apparent effects are proposed. Type I: Pt dissolution and particle detachment, 
where catalytic activity is loss due to an absolute reduction in the quantity of Pt catalyst from 
the electrode (Fig. 1a,c); Type II: Ostwald ripening and particle agglomeration, where active 
surface areas are reduced due to particle coarsening and decrease in particle number with the 
retention of Pt content (Fig. 1b,d); Type III: Carbon corrosion, apparent redistribution of Pt 
catalyst in the macro-scale with no direct change to the Pt nanoparticles and catalytic activity. 
By exploiting the commonalities in the effects of this proposed categorisation, quantifications 
between the different types of degradations can be achieved through the statistics of Pt content 
and particle number. 

Leaching: Pt(s)  Pt2+ (aq) + 2 e-        eq1 

Redeposition: Pt(s)  Pt2+ (surface or aq) + 2 e-  Pt (s)     eq2 

Correlative identical location transmission electron microscopy – X-ray fluorescence (IL-
TEM-XRF) imaging technique is employed at progressive degradation stages of the Pt/C 
catalysts (Supplementary Fig. 1). High angle annular dark field scanning transmission electron 
microscopy (HAADF-STEM) images can measure the size, morphology, and number of Pt 
nanoparticles with resolution up to 0.1 – 1 nm (Supplementary Fig. 2,3). On the other hand, 
XRF imaging can measure significant larger areas in the order of micrometres (Supplementary 
Fig. 6) with spatial resolution up to 50 – 100 nm as defined by the X-ray probe size 
(Supplementary Figs. 4,5). XRF-nanoprobe also possesses high spectral sensitivity which 
provides spatially resolved quantitative information on elemental compositions of a catalyst44,45.  

Both STEM and nanoprobe XRF imaging of the Pt/C catalysts are performed on an Au TEM 
finder grid. By utilising the pre-patterned locator marks on the labelled grid (Supplementary 
Fig. 1a), the identical locations of the catalyst nanoparticles can be located at different degraded 
states20-23. Between each correlative identical location imaging session, the same catalyst-
coated Au finder grid undergoes 6,000 and 10,000 cycles of accelerated durability test (ADT) 
between 0.4 – 1.4 V vs. RHE under an O2-saturated HClO4 electrolyte in a three-electrode 
rotating disk electrode (RDE) half-cell setup. Using this protocol, a multi-modal and multi-
length-scale identical location characterisation at progressive catalyst degradation stages is 
performed. 

 

Figure 1. Chemical nature of four Pt electrochemical deactivation pathways in ORR. a, 
type I: Pt dissolution and particle detachment; b, type II: Ostwald ripening and particle 
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agglomeration; c,d Corresponding change of metal content and particle number for a and b, 
respectively. 

2D Pt Particle Number Distribution and Quantification of Type I and II Degradation 
Mechanisms 

A series of XRF maps is taken at 10  10 μm2, 5  5 μm2 and 2.5  2.5 μm2 areas at two 
locations labelled L and Q on the finder grid. The Pt XRF signal of each pixel is extracted from 
batch peak fitting of Pt-L3-M5 (Lα1) signal and is calibrated with Ar-K-L3 (Kα1) signal to 
account for both I0 background and X-ray attenuation from the atmosphere. This normalises Pt 
XRF intensities across different experimental sessions to be proportional to the irradiated Pt 
mass and is represented as relative quantities of Pt present in the scanned area (Fig. 2a, 
Supplementary Fig. 8a, and methods). The integrated intensity across the entire recorded XRF 
map indicates the total Pt content in the image, which dropped by 36% and 61% at location L 
(Fig. 3a); and 31% and 57% at location Q (Supplementary Table 1) after 6,000 and 10,000 
ADT cycles, respectively. This corresponds to an average of 0.0056% type I degradation per 
cycle between 0 and 6,000 and 0.0064% per cycle between 6,000 and 10,000 cycles. 

Correlating information uniquely obtained from the IL-TEM-XRF data pairs, enables accurate 
estimation of nanoparticle number at the larger micro-scale areas covered by the XRF 
measurements. An example of the TEM-XRF data pair recorded after 6,000 ADT cycles at 
location L is shown in Fig. 2a,b. Ten identical locations of 300  300 nm2 area are selected, 
where the particle numbers manually counted from the HAADF-STEM image are correlated 
against the integrated Pt/Ar XRF signal within the ten areas (Fig. 2c,d, Supplementary Fig. 9). 
The resulting linear relationship between Pt XRF signal and nanoparticle numbers is then 
applied to the XRF map, resulting in a 2D particle number distribution across the 6.8  6.8 μm2 
scanned area (Fig. 2e,f). The integrated Pt signals of the ten areas span between 3.1 and 33.3 
covering 94% of the signal range, whereas the particle size distributions are similarly relatively 
narrow and uniform (Supplementary Fig. 10b). This suggests the obtained linear relationship 
is applicable for the entirety of the XRF area. To further account for uncertainty in alignment 
between the TEM-XRF image pair, the errors for each 300  300 nm2 area are also determined 
(Supplementary Fig. 8b). Nevertheless, it is determined that 1.00  105  1.0  104 Pt 
nanoparticles are present in this area. This correlative IL-TEM-XRF technique demonstrates 
efficient “particle number statistics” across an area that is several orders of magnitudes larger 
than what can be reasonably performed by manual analysis, and enables further quantification 
of the degradation pathways. 
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Figure 2. Correlative TEM and XRF imaging at location L after 6,000 ADT cycles. a, XRF 
map of Pt nanoparticles supported on conductive carbon (68  68 pixel, 100 nm/pixel). b, 
HAADF-STEM image at the same area of a. c, Selection of ten 3  3 pixel XRF maps indicated 
in the white box in a. d, High resolution HAADF-STEM images (300  300 nm2) 
corresponding to the same areas shown in c. They are numbered and indicated in the white 
boxes in b. e, Plot of Pt particles numbers counted from d as the function of overall XRF 
intensity determined from c, forming a linear relation with r = 0.998. f, The map of Pt particle 
numbers at the 6.8  6.8 μm2 area.  

The same processing method is applied to all correlative TEM-XRF images at each degradation 
stage and location, obtaining the respective 2D particle number distributions (Supplementary 
Fig. 11,12). Continue with location L as an example, after 6,000 ADT cycles, the Pt 
nanoparticle size changes from the initial 2.8  0.9 nm to a bimodal distribution with larger 
size of 15.9  5.1 nm and smaller size of < 2 nm (Supplementary Fig. 2k,3k), while the particle 
number drops significantly from 1.18  105 μm-2 to 1.94  103 μm-2 and 9.82  103 μm-2 

respectively for large and small particles (Supplementary Fig. 2k,3k). The coexistence of small 
and large particles suggests both type I and II degradation mechanisms take place. Assuming 
the quantity of Pt lost to type I mechanism can be accounted by the loss of particle number of 
the same proportion (Fig. 1c), it can be reasoned that 36% of the particles undergo Type I 
mechanism, completely lost from the catalyst either through dissolution, or detachment; 8.3% 
of the nanoparticles undergo dissolution only forming the smaller sized particles below 2 nm. 
Another 54.1% go through Type II degradation, either oxidised into Pt2+ before redepositing 
onto, or agglomerated with the remaining 1.6% of nanoparticles, increasing the particle size to 
the 15.9  5.1 nm of the larger particles (Fig. 3c).  
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Figure 3. a, Relative Pt content obtained from XRF maps at different ADT cycles. b, Absolute 
Pt particle numbers at different ADT cycles. c, Quantification of type I and II degradation 
mechanisms at 6,000 and 10,000 cycles. The particle number and XRF intensity is determined 
for each cycle measurements. 

Between 6,000 and 10,000 ADT cycles, the aforementioned 8.3% small particles under 2 nm 
in size completely disappear, and the size and number of the large particles remains similar 
respectively at 14.7  5.0 nm (Fig. 3c and Supplementary Fig. 10). This indicates Type I 
degradation as the dominant pathway between 6,000 and 10,000 ADT cycles. From the 
discussed observations, we conclude that both types of degradation mechanisms co-exist in the 
first 6,000 ADT cycles with the Type I/II ratio of 1:1.5 in location L and 1:2.1 for location Q; 
while Type I mechanism dominates in the additional 4,000 ADT cycles, especially to those 
small Pt nanoparticles below 2 nm in size. 

From a half-cell thin film RDE setup, degradation of electrochemical performance of the Pt/C 
catalyst is also obtained, in which the mass activity (MA) drops from the initial 0.289 A mgPt

-1 
to 0.073 A mgPt

-1 and 0.048 A mgPt
-1, while the electrochemically active surface area (ECSA) 

decreases from the initial 70.3 m2 gPt
-1 to 18.2 m2 gPt

-1 and 11.9 m2 gPt
-1 at 6,000 and 10,000 

ADT cycles, respectively (Supplementary Fig. 7 and Table 4). The corresponding specific 
activities remains largely the same at approximately 400 µA cm-2

Pt. This is as expected because 
the intrinsic activity of conventional Pt/C catalyst tend to stay constant, where bulk catalytic 
activity is loss mainly due to loss of active material and surface area. With the quantified Pt 
degradation via the correlative IL-TEM-XRF technique, the origin of activity loss can be 
distinguished between type I and II mechanisms. It can be reasoned that the activity degrades 
in the same proportion as the two types of degradation mechanisms, meaning between both 
locations, and average of 33.4%, or 0.096 A mgPt

-1 of activity degradation can be attributed to 
type I degradation mechanisms, with 0.120 A mgPt

-1
 be attributed to type II degradations after 

6,000 ADT cycles. Whereas, as established previously, all 0.025 A mgPt
-1 of activity loss can 

be attributed to type I mechanisms in the additional 4,000 ADT cycles (Supplementary Fig. 7a 
and Table 4). 

Quantification of Macro-Scale Pt Redistribution from Carbon Corrosion 

To statistically understand the locational dependency of the degradation mechanisms on the 
catalyst, the 9 × 9 µm2 XRF image at each degradation state is segmented into 6 regions based 
on their relative Pt signal via the multi-Otsu thresholding algorithm46 (Fig. 4a-c, Supplementary 
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Methods: Imaging Analysis). Cross referencing with the correlative bright field- (BF-)STEM 
images (Supplementary Fig. 15a-c) reveal that regions classified with the lowest Pt signal, 
labelled in dark blue, contain mostly carbon film of the TEM grid and are primarily devoid of 
any catalyst particles and carbon support – these areas are referred as the empty regions. On 
the other hand, regions classified with intermediate and high Pt signals represent areas with 
sparser and denser Pt nanoparticle densities (Fig. 4a-c and supplementary Fig. 15d-f). For the 
pristine catalyst at location L, 47.1% and 29.4% of the total 9.0 × 9.0 µm2 area are classified 
as sparse and dense regions, respectively. After 6,000 ADT cycles, the proportion of the sparse 
region increase to 59.2% and the dense region decreases to 17.7%, while the area of empty 
region remains broadly constant (Fig. 4d, Supplementary Fig. 16). These measurements 
illustrate the redistribution of the Pt/C catalyst, where part of the dense areas disperse into a 
larger area of the sparser region with a quantified rate of 1.57  103 nm2 per ADT cycle. This 
quantitation rises to 77% for the measurement in location Q (Supplementary Fig. 17-20). The 
additional 4,000 ADT cycles further reduce the relative areas of both sparse and dense regions 
to 54% and 17%, respectively, which represents an overall shrinkage of the Pt/C catalyst into 
a more heterogeneous distribution, a typical effect of carbon corrosion. As such, the rate of 
carbon corrosion between 6,000 and 10,000 ADT cycles is quantified to be 1.13  103 nm2 per 
ADT cycle. 

In order to further study the macro-scale Pt redistribution cause by carbon corrosion, an optical 
flow registration algorithm is applied between the IL-XRF image of the Pt/C catalyst at pristine 
state and after 6,000 ADT cycles (Fig. 4e and Supplementary Image Analysis). The algorithm 
generates an optical flow vector field that mimics the Pt signal redistribution between the IL-
XRF image pair based on the brightness constancy assumption. Assuming this macro-scale Pt 
redistribution is mainly induced by carbon corrosion, the magnitude of each flow vector can be 
interpreted as the range of the catalyst displacement by carbon corrosion at each localised 100 
 100 nm2 pixel area and be correlated to the Pt sparse and dense regions (Fig. 4f). As such, 
the average ranges of catalyst redistribution cause by carbo corrosion are 0.3  0.3 µm, 
0.6  0.6 µm, and 1.6  0.9 µm for the Pt empty, sparse, and dense regions, respectively. 

 

Figure 4. Segmentation of XRF maps after 0, 6,000 and 10,000 ADT cycles at location L. 
a-c, Segmented XRF map after a, 0, b, 6,000, and c, 10,000 ADT cycles. The colour code from 
dark blue (segment 1) to dark red (segment 6) indicates regions with the sparsest to the densest 
Pt nanoparticle distribution. d, Variations in pixel counts making up dense, sparse and empty 
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regions. e, Vector field of the simulated Pt redistribution presented as a quiver plot overlayed 
on the XRF map at 6,000 ADT cycle, the arrows are downscaled for visualisation. f, Histogram 
of the vector magnitudes at different segments from 0 to 6,000 cycles. 

 
Regional statistics of 2D type I and II Degradation Distributions 

Both types of degradations can be further quantified into pixel precision resulting in a 2D 
degradation distributions. First, the obtained vector field (Fig. 4e) is used to computationally 
warp the XRF image of the degraded catalyst at 6,000 ADT cycles, and that the integrated Pt 
signal is kept constant (Fig. 5a). Assuming both type I and II degradations are sufficiently short 
range to have negligible asymmetric macro-scale catalyst redistribution discussed above (Fig. 
4), the warped XRF image simulates the degraded catalyst without the influence of carbon 
corrosion. Second, the pixel-wise application of the same data processing principle for Fig. 3 
is performed, deconvoluting type I and II degradation pathways as 2D distributions (Fig. 5b,c) 
(eq3, Supplementary Image Analysis) 

Ptpristine = PtType I + PtType II + Ptremained        eq3 

Type II degradation mechanisms are uniformly distributed across the catalyst whereas Type I 
degradations distribute more significantly towards the centre of the catalyst with high Pt density 
(Fig. 5b,c). Between the pristine state and 6,000 ADT cycles, the Pt/C catalyst demonstrates a 
mono-modally distributed type I degradation primarily at regions with less than 500 Pt particle 
per 100  100 nm2 area, while that of type II degradation is bimodal distributed at both < 200 
and ~1000 Pt particle per 100  100 nm2 areas (Supplementary Fig. 21). To further investigate 
this regional dependence of the catalyst degradations, the segmented classifications are applied 
to both 2D degradation distributions. After 6,000 ADT cycles, 75% of the sparse region is 
dominated by type II degradations with an average of 787 Pt nanoparticles per 100  100 nm2 

area deactivated, equivalent to a 3.0  106 out of the total 4.0  106 Pt nanoparticles from the 
region deactivated through either Ostwald ripening and/or particle agglomeration; whilst the 
Pt dense region suffers from both Type I and II degradations with 43% and 49% out of the 4.0 
 106 nanoparticles within the region, respectively, and an average of 890 and 1029 Pt 
nanoparticles deactivated per 100  100 nm2 area. These quantifications can also be expressed 
in terms of degradation rates of 83.3 and 500 particles per cycle respectively for type I and II 
mechanisms at the Pt sparse region; and 350 and 400 particles per cycle at the Pt dense region. 
This also demonstrates that type II degradation dominates in Pt sparse region whereas both 
types of degradations contribute similarly in Pt dense regions. From 6,000 to 10,000 ADT 
cycles, type I degradation dominates and occur uniformly on both Pt sparse and dense regions, 
with respective proportions of 46% and 53% and equivalent particle numbers of 4.7  105 and 
2.7  105, corresponding to 99 and 191 per 100  100 nm2 area (Fig. 5e). 
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Figure 5. Pixel-wise visualization of the Pt Type I and II degradation. a, Simulated Pt XRF 
map after 6,000 ADT cycles without the influence of Pt redistribution by carbon corrosion. b,c 
2D Pt degradation distributions of b, type I mechanisms and c, type II mechanisms between 
pristine state and 6,000 ADT cycles. d, Pixel count histograms of the degradation distribution 
at different segments. e, XRF intensities and f, Pt particle numbers at different segments colour 
coded to the respective degradation mechanisms.  

Conclusion 
Correlative IL-TEM-XRF imaging has demonstrated the capability to quantify 2D distributions 
of Pt content and nanoparticle number of PEMFC Pt/C catalysts in areal size up to 10 × 10 µm2 
of the XRF scanned and resolution down to the 100 × 100 nm2 of the XRF nanoprobe size. 
This analysis enables the quantification 2D degradation distributions using the proposed 
categorisation of Type I and II degradations based on the different effects on the particle size, 
number, and Pt quantity of the Pt/C catalyst. It is found that in Type I and II contribute to Pt/C 
catalyst degradation in a ratio of 1:1.5 in the first 6,000 ADT cycles, and type I degradation 
dominates in the additional 4,000 ADT cycles between 0.4 and 1.2 V vs. RHE. Type II 
degradation tend to be pre-dominant in Pt sparse regions, while both degradation types prevail 
in Pt dense regions, where Pt is shown to migrate from Pt dense region to Pt sparse region to 
accommodate for such disproportionate loss in active material. This study has demonstrated 
the importance of multi-modal, multi-length scale analysis of catalyst material across various 
stages of activity cycle. The obtained/available quantitative and spatially resolved information 
is able to bridge between microscopy structure and macroscopic performance in dynamic 
catalytic systems. 
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