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Contemporary materials discovery requires intricate sequences of synthesis, formulation and characterization 
that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, 
we present a cloud-based strategy that enables delocalized and asynchronous design–make–test–analyze cycles. 
We showcase this approach through the exploration of molecular gain materials for organic solid-state lasers 
as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property 
characterization, orchestrated by a cloud-based AI experiment planner, resulted in the discovery of 21 new 
state-of-the-art materials. Automated gram-scale synthesis ultimately allowed for the verification of best-in-
class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories 
across the globe, this workflow provides a blueprint for delocalizing – and democratizing – scientific discovery. 

 

Introduction and Background 

Efficient molecular discovery for diverse applications in medicine,1 optoelectronics,2 or energy storage,3 requires 
intertwined loops of molecular synthesis, property characterization, formulation and system-level testing. There is an 
undebated necessity for accelerating these human-centric and often laborious workflows, in order to meet the societal 
demands for enhanced materials.4 In response to these demands, there has been a surge in the development of 
computational 5 and artificial intelligence (AI) tools for materials science,6,7 along with major advances in automation 
and high-throughput experimentation (HTE),8,9 – and eventually, the integration of both automated experimentation 
and automated decision making into “self-driving laboratories” (SDLs).10–13 Such efforts have shown the potential to 
significantly accelerate local units within these high-level workflows – examples include the optimization of reaction 
conditions, or the identification of ideal formulation parameters.14–17  

 

 
Figure 1: Delocalizing molecular materials discovery targeting OSL emitters. (A) Delocalized complex materials discovery workflows 
(traditional “design–make–test-analyze” cycles) over multiple sites, orchestrated by a single cloud-based application. Markers on the map 
correspond to the geographical locations of the laboratories participating in the current study. (B) Experimental bottlenecks can be bypassed by 
distributing experiments over multiple asynchronous worker “threads” running in different laboratories. In this work, we distribute molecular 
synthesis over multiple sites, orchestrated by a central experiment planning algorithm. (C) Schematic depiction of discovering gain materials for 
organic solid-state lasers (OSLs) by optimizing a proxy objective (the emission gain cross section) over multiple cycles before evaluating top 
candidates in thin-film devices. (D) Formal disconnection of 4,4’-Bis[(E)-4-(N-carbazoyl)styryl]biphenyl (BSBCz) into symmetric cap, bridge and 
core building blocks, upon which a vast search space of functional BSBCz-like molecules can be enumerated from sets of building blocks.  
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The evolution of the second generation of SDLs is driven by distribution and delocalization as major paradigms. As 
the complexity of discovery workflows continues to grow, the integration of advanced experimental and 
computational modules becomes essential. These units often rely on domain expertise and specific instrumentation, 
resulting in their dispersion over multiple geographical locations and time zones (Fig. 1a). In addition, the capacity to 
parallelize experiments over multiple modules offers solutions to enhance throughput and rapidly replicate 
experimental findings, ultimately facilitating democratized discovery. In both scenarios, distributed experimentation 
is the key factor for accelerating more complex discoveries. However, the implementation of distributed 
experimentation necessitates a central platform with clearly defined standards for communication, data transfer, and 
experiment planning,18–21 while flexibly accounting for the inevitable delays and asynchrony between different sites 
(Fig. 1b). The discussed aspects hold particular significance in expediting molecular materials discovery, where 
synthesis remains the main bottleneck.12 In fact, generalizable and readily automatable synthetic protocols have 
remained elusive for all but the most prominent classes of biomolecules, i.e. peptides,22 oligosaccharides,23 or 
oligonucleotides24 – impeding broad molecular materials discovery endeavors.  

Against this background, we herein demonstrate a decentralized discovery workflow, showcasing the automated 
design, synthesis, and testing of gain materials for organic solid-state lasers (OSL), which are characterized by best-
in-class emission gain cross section in solution and amplified spontaneous emission in thin-film. The workflow relies 
on a closed-loop protocol encompassing synthesis planning, automated synthesis, proxy characterization, and 
molecular function optimization through machine learning (ML). Importantly, the discussed synthesis bottleneck is 
bypassed by segmenting the OSL candidate space into a building block framework,25,26 which enables rapid, 
parallelizable assembly of OSL gain candidates, following a “synthesis–to–function” paradigm. Although all tasks are 
delocalized across five physical laboratories on three continents, they are orchestrated by a cloud server to ensure 
continuous learning from the incoming data, and continuous prioritization of informative experiments. This approach 
heralds future research campaigns in which the expertise and experimental capabilities of different SDL sites will 
work synergistically to expedite the discovery of functional materials.  

 

The Experimental Engine for OSL Candidate Discovery 

OSLs represent an emerging technology to provide flexible, readily processable and color-tunable lasing devices with 
potential applications in displays, medical devices, spectroscopy, or LiFi telecommunication (Fig. 1c).27–29 Crucial to 
the development of OSLs is the emissive gain material – typically a large, conjugated molecule such as 4,4’-Bis[(E)-
4-(N-carbazoyl)styryl]biphenyl (commonly referred to as BSBCz, Fig. 1d).30,31 These linear, symmetric molecular 
structures are inherently amenable to modularization into LEGO-like building blocks that can be subjected to 
automated syntheses based on iterative Suzuki–Miyaura couplings (SMC), which have been developed in previous 
works.25,26 With this general scheme, and by analogy to state-of-the-art emitters,32,33 we conceived a palindromic Cap–
Bridge–Core–Bridge–Cap architecture as a generalizable and synthesizable blueprint for powerful OSL gain materials 
(Fig. 1d). SMC assembly of this framework requires cap building blocks carrying a boronic acid ester, bridge 
precursors featuring both a halide and a protected boronic acid, and dibromo core building blocks (see Fig. 2a and 
Supplementary Information).  

We began by surveying the catalogs of specialty chemical suppliers and defined a fragment library comprising 32 cap, 
30 bridge and 161 core building blocks, spanning a hypothetical candidate space of > 150,000 putative gain materials. 
Building on recent advances in iterative SMC,16,34 we conceived a generalizable two-step, five-component one-pot 
synthesis protocol optimized for parallel high-throughput screening, avoiding the necessity for intermediate 
purification, and enabling facile adaptation on different automated experimental platforms. This two-step protocol 
consists of an initial SMC between a cap building block and a bifunctional bridge unit, followed by an in-situ 
deprotection and double coupling with the core building block (Fig. 2a).  

First-generation conditions for the two-step one-pot coupling were derived from literature reports on the well-
established iterative SMC of N-methyliminodiacetic acid (MIDA) protected boronic acids.25,35 This protocol showed  
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Figure 2: Overview of the modules for automated synthesis and characterization of OSL candidate molecules. (A) Conditions of the iterative 
two-step one-pot SMC coupling for synthesizing pentameric structures, and evaluation of the conditions on a representative subset of 500 target 
compounds, as obtained from Latin Hypercube Sampling (see Supplementary Section 3.5 for details). C: Coupling. D: Deprotection. (B) Selected 
examples of automated gram-scale synthesis of LEGO-like building blocks (top), and parallelized small-scale synthesis of OSL target molecules 
(bottom). (C) Cross-platform optimization of reproducible automated building block syntheses, enabled by the execution of standardized χDL 
protocols. (D) Scatter plot and histograms of measured photoluminescence quantum yields (horizontal axis) and photoluminescence lifetime 
(vertical axis) for the seed dataset of 500 attempted OSL candidate compounds (cf. a). Data points are colored according to their emission 
wavelength.  

 
decent applicability for a set of target molecules with high similarity to the parent BSBCz scaffold, with product 
formation observed for 43 of 81 target compounds (see Supplementary Tab. S6 for further details). Across the overall 
candidate space, however, these conditions proved to be less effective (successful target compound detection in 32% 
of all cases, see Supplementary Tab. S6 for further details). Circumventing this limitation, the recently developed 
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2,2,2’,2’-tetramethyl-N-methyliminodiacetic acid (TIDA) protecting group for boronic acids36 allowed the use of 
potassium trimethylsilanoxide (TMSOK) in the first coupling step,37,38 significantly reducing reaction time from 
12 hours to 1 hour, thus minimizing side reactions (Fig. 2a). Notably, the challenging second in-situ coupling step was 
enabled by the general slow-release coupling conditions for SMCs with protected boronates, which we recently 
developed through AI-guided optimization.16 In an exploratory seed campaign across 500 representative candidate 
pentamers selected through Latin Hypercube Sampling (see Supplementary Section 3.5 for further details), this 
second-generation protocol led to a substantial increase in the global synthetic hit rate (75%, Fig. 2a and Fig 2b). 

The transition to bifunctional TIDA boronates as the bridge building blocks led to a shift of the initial building block 
space, as it required access to a library of bifunctional TIDA-protected haloboronic acids. Unlike their MIDA analogs, 
these are not commercially available. Exploiting our capabilities to perform automated gram-scale synthesis and 
purification,39 the respective derivatization of commercially available reagents was rapidly performed across multiple 
laboratories, following general procedures encoded in the χDL language.40 Notably, information transfer in the form 
of χDL emphasizes the importance of standardization for reproducible synthesis: executing the identical χDL protocol 
across different laboratories resulted in identical reaction yields, and rapidly verifiable and transferable “global” 
reaction optimization (Fig. 2c). 

Large-scale building block preparation and parallelized small-scale target syntheses were performed on five different 
automated platforms across four laboratories (Fig. 2b), orchestrated from a single, readily accessible central database41 
for storing reagent availability, experiment progress, as well as all experimental and computational results (for details 
on the database integration, see Supplementary Section 4.1). Functional characterization of the obtained OSL target 
compounds was then performed from the crude reaction mixture through the automated analysis, purification and 
characterization workflow, as reported previously by our groups.34 Following separation and peak identification by 
HPLC-MS, the collected product fraction was subjected to down-stream spectroscopic characterization in solution. 
From steady-state absorption and emission spectroscopy, relative quantum yield measurements and transient emission 
spectroscopy, lasing performance can be approximated through the emission gain cross section 𝜎em (see 
Supplementary Section 3.3 for further details).42,43 This proxy objective is maximized by those molecules that 
simultaneously exhibit a narrow emission spectrum, a high photoluminescence quantum yield 𝜙 and a short emission 
lifetime 𝜏. Arguably, this non-adaptive workflow of automated synthesis, purification and spectroscopic 
characterization represents a tradeoff between throughput and accuracy – as full spectroscopic data could only be 
obtained for 48% of all characterized compounds, whereas the remaining 52% of molecules were either too weak 
emitters (enabling only partial characterization), or the collected product fraction was too low in concentration 
(Fig. 2a, see Supplementary Tab. S7 for further details). An overview of the obtained data is given in Fig. 2d and 
Supplementary Fig. S9. While a series of target molecules with short emission lifetimes (< 1.5 ns) were found within 
the exploratory seed dataset, no state-of-the-art emitters were discovered in that data, as the obtained quantum yields 
were predominantly very low. 

 
Asynchronous, Data-Driven Experiment Planning for OSL Candidate Discovery 

Having established the experimental engine to synthesize and characterize organic laser pentamers, we sought to 
develop a robust computational workflow for planning and orchestrating the synthesis of novel, improved OSL gain 
materials, and navigate the search within the space of >150,000 potential target compounds. In the context of 
experiment planning, Bayesian Optimization (BO) is regarded as the gold standard for the sample-efficient 
optimization of unknown spaces.44,45 Whereas BO research has largely focused on optimization over continuous 
parameter domains, the space of molecules is inherently discrete46 – and therefore requires a vectorized encoding of 
the molecular structure for training the surrogate model, as well as a scheme to optimize recommended candidates 
across a discrete space. 
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Figure 3: Bayesian optimization for OSL gain material discovery. (A) Supervised learning performance of a multi-task Gaussian process 
regressor for predicting emission gain cross section across the experimental seed dataset of 287 data points, comparing different molecular 
representations (OHE: one-hot encoding, ECFP6: extended-connectivity fingerprint with diameter 6, DFT (Fragment): per-fragment ground-state 
DFT descriptors, TDDFT: calculated excited-state descriptors, GNN: graph neural network embeddings). Results are given as R2, averaged over 
20 x 3-fold cross validation runs. (B) Scatter plot of pairwise molecular distances (in fingerprint or GNN embedding space), and pairwise functional 
distances (as difference in emission gain cross section). (C) Uniform manifold approximation and projection (UMAP) of the GNN embedding 
space (gray), and depiction of all experimentally observed data points (colored). (D) Benchmark of asynchronous and batch-wise Bayesian 
optimization strategies on the synthetic Ackley surface (6 dimensions, discretized). See Supplementary Section 4.4 for further details on the 
simulation of asynchronous optimization.  

 
We evaluated a series of established structural representations (molecular fingerprints, graph-level descriptors, 
computed building-block descriptors) for the supervised learning of emission gain cross section. However, the 
regression performance of models built on these representations failed to surpass a simple one-hot encoding of 
building block identity (Fig. 3a, see Supplementary Section 4.3 for a full evaluation of different surrogate model 
types). This indicates the absence of unambiguous structure–activity relationships within the experimental data, which 
is well reflected in the lack of clear canonical design principles for OSL gain materials in the literature.33 In fact, we 
did not observe any correlation between the structural similarity for all pairs of experimentally characterized target 
molecules (measured as Tanimoto similarity on fingerprints), and their respective functional similarity (Fig. 3b). 

In order to obtain better predictivity, we envisioned that additional physically meaningful information obtained from 
quantum chemistry simulations could improve the performance of our models.47 In a high-throughput computational 
campaign, excited-state properties of a large catalog of possible target molecules were approximated using time-
dependent density functional theory (TD-DFT) with a vertical-gradient (VG) approximation for vibrational coupling 
(for details on the workflow, see Supplementary Section 4.2).48 Including these simulated properties as molecular 
descriptors indeed resulted in a slightly increased predictive performance. The most significant boost in surrogate 
model predictivity, however, was obtained by learning a new molecular embedding from the computed data. In this 
manner, a graph neural network (GNN), trained on a randomized subset of the entire candidate space (training set of 
92,880 molecules) to predict a set of TD-DFT properties, achieved high accuracy (R2 = 0.86, averaged over seven 
computed properties, for network architecture and prediction performance, see Supplementary Section 4.2). Extracting 
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the embedding vector from this GNN in a transfer learning approach led to increased performance in predicting 
emission gain cross sections using a Gaussian process (GP) regressor (Fig. 3a). Importantly, a correlation between 
pairwise embedding distances and experimentally observed molecular function differences was observed (Fig. 3b), 
emphasizing the physical relevance of GNN embeddings as a functional molecular representation. Whilst analyzing 
this learned representation across the entire candidate space indicates localized domains of high lasing performance 
(visualized through uniform manifold approximation and projection, UMAP, see Fig. 3c), it also features a range of 
activity cliffs, i.e. pairs of molecules that are close in embedding space, but dissimilar in lasing performance (see 
Fig. 3b and Fig. 3c). The existence of such activity cliffs in embedding space leaves room for learning more globally 
informed representations, and emphasizes the importance of an explorative search strategy for navigating the space of 
OSL candidates.  

Orchestrating the required experiments across experimental platforms was realized through an asynchronous Bayesian 
optimization workflow, using the described GNN–GP as the surrogate model (for details, see Supplementary Section 
4.4). Parallelized optimization using multiple threads of experimentation is supported by maintaining a ranked catalog 
of recommended, currently synthesizable target compounds at all times, that can be allocated to experimental resources 
as available. Allocated, but incomplete experiments are handled by conditioning the model posterior on predicted 
“fantasy” values45 for these data points, enabling a more global exploration of the candidate space. In benchmark 
experiments on synthetic surfaces, this strategy was demonstrated to be superior to conventional, batch-wise closed-
loop experimentation (Fig. 3d), while maximizing the use of available experimental capacities. Notably, this strategy 
allows for full flexibility with respect to the number of parallel threads, as well as throughputs and instrument down-
times, thereby paving the path towards global democratized experimentation. 

 

Asynchronous Closed-Loop Optimization of OSL Gain Materials 

With the overall synthesis, characterization and experiment planning engine in hand, a two-month optimization 
campaign for OSL gain materials was carried out, starting from the available seed data. Synthesis of the cap–bridge–
core–bridge–cap pentamers was performed in the described multi-threaded, asynchronous fashion across three 
different robotic platforms at two different sites. Batches of target syntheses from the pool of recommended candidates 
were manually allocated to the robotic platforms as available, executed in an automated fashion, and subjected to the 
end-to-end characterization workflow.  

Already from the first pool of recommendations, the Bayesian optimizer identified sets of compounds with state-of-
the-art lasing performance (Fig. 4b). In fact, from the start of the optimization campaign, a total of 12 new compounds 
with higher solution gain cross section than the parent BSBCz were discovered, indicating accelerated discovery of 
high-gain materials through the inclusion of BO and automated experimentation. Structures and solution-state optical 
properties of selected molecules discovered in the course of this study are shown in Fig. 4c. These candidates represent 
the small-molecule emitters with the highest emission gain cross sections in solution known to date. Since the 
optimization campaign did not include any wavelength constraints, most OSL candidates were identified in the violet–
blue region of the emission spectrum. Notably, in this wavelength range, our optimization campaign approaches the 
upper limit of the proxy’s linear range,49 i.e. the solution-state emission gain cross section at room temperature cannot 
be optimized much further due to physical constraints to emission lifetime and spectral width (see Supplementary 
Section 3.4 for a detailed discussion). 

A visual analysis of the full dataset of potential OSL emitters (Fig. 4a) suggests the existence of a Pareto front between 
the emission color and the gain cross section within our current search space. This leaves room for further optimization 
campaigns with tailored building blocks, targeting the development of yellow OSL emitters, which have remained 
largely elusive, even for inorganic solid-state lasers.50  
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Figure 4: Discovered OSL gain materials. (A) Scatter plot of emission wavelength vs. emission gain cross section for all candidates the OSL 
gain materials dataset obtained throughout the optimization campaign. (B) Cumulative number of discovered materials with emission gain cross 
sections greater than BSBCz (green) and the top candidate from Wu et al. (blue). (C) Molecular structure and optical properties of selected OSL 
gain materials discovered in the course of the optimization campaign. (D) In-situ monitoring of reactant, intermediate and product concentrations 
for the synthesis of 1 by HPLC-MS as a function of time. Blue: Bridge building block, green: Core building block, red: mono-dehalogenation side 
product Br–[Core]–H, yellow: bis-dehalogenation side product H–[Core]–H, black: proto-deboronation product Cap–Bridge–H homocoupling 
product, violet: product 1. (E) Schematic depiction of the automated crystallization module for scalable purification of OSL emitter materials. (F) 
Thin-film spectral data of 3 (3 wt% in matrix of 4,4’-Bis(N-carbazolyl)-1,1’-biphenyl). Emission spectra (left) and emission intensity (right) as a 
function of excitation intensity, demonstrating amplified spontaneous emission.  

 
Evaluating Candidates in Thin-Film Devices 

In order to evaluate the identified lasing candidates in an actual OSL device, synthesis and isolation of larger materials 
quantities at high purity are required. In the static two-step one-pot synthesis protocol used throughout the optimization 
campaign, reaction yields for different target molecules can vary substantially. Real-time tracking of starting material 
and reaction intermediate quantities allows for more precise control of the reaction outcome, particularly for a two-
step protocol, in which competing reactions and intermediate decomposition can be minimized by adjusting the timing 
at which reactants and reagents are added, or reactions are terminated. Against this background, candidate compounds 
1–3 were prepared on scale.51 At the example of compound 1, tracking intermediate concentrations by means of on-
line HPLC-MS (Fig. 4d)52,53 revealed reductive dehalogenation and protodeboronation as major side reactions, which 
could be suppressed by adjusting the reaction duration in real-time, and adding further XPhos ligand in the second 
coupling step. Using these specifically adapted conditions allowed for the isolation of 1 on a larger scale (460 mg, 
63% yield). 
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At the same time, purification of the obtained materials evolved as a second major challenge, particularly when high 
purity (>99.5%) is required for device fabrication. In the case of our OSL material candidates, well established 
chromatography or sublimation protocols are hampered by poor solubility and decomposition upon sublimation, 
respectively. For this purpose, we developed a module for continuous preferential crystallization purification (CPC, 
Fig. 4e, see Supplementary Section 3.8 for further details)54,55. Using this automated workflow, gram-scale quantities 
of 1, 2 and 3 could be obtained, which were used for the preparation of thin-film devices. 

Eventually, device-level properties were determined by spin-coating thin films of 1–3 (3 wt%) in a matrix of 4,4’-
Bis(N-carbazolyl)-1,1’-biphenyl (CBP), and subsequent spectroscopic characterization. For all materials, amplified 
spontaneous emission (ASE) could be observed, and low ASE thresholds of 1.5–1.7 µJ cm-2 were determined (Fig. 4f 
and Supplementary Fig. S56–S63). Notably, material 3, initially identified as the highest-gain emitter in solution, 
exhibited the lowest ASE threshold in thin film, and significantly outperformed a solution-processable BSBCz 
derivative used as a reference material (Eth = 1.71 µJ cm-2).32 This underscores its best-in-class lasing performance, 
and highlights the effectiveness of our proxy-based materials discovery workflow. In addition, it is worth noting that 
the ability to prepare thin-film devices through spin-coating represents a further advancement over the parent BSBCz, 
where thin films need to be prepared through vapor deposition.  

 

Outlook 

In summary, we demonstrated an asynchronous, delocalized discovery campaign for gain materials for OSL devices, 
integrating multiple automated synthesis and characterization modules across different laboratories and time zones 
with a central, cloud-based AI optimizer. Key to the success of the discovery campaign was the identification of a 
robust two-step, five-component, one-pot synthesis protocol for assembling functional targets from pre-fabricated 
building blocks. By optimizing a solution-state proxy for lasing performance, BO enabled the efficient navigation of 
a large virtual space of synthesizable OSL candidate compounds. Overall, this study resulted in the discovery of a 
library of 21 novel gain materials with state-of-the-art lasing performance. A set of optimized candidate molecules 
was prepared and purified on gram scale, and device-level performance confirms the identification of best-in-class 
gain materials (in terms of stimulated emission threshold). 

Drawing from these findings, we envisage three major directions for next-generation workflows towards improved 
OSL devices: a) While our current synthesis module operates on a static set of conditions for building block assembly, 
adaptive treatment of synthesizability and substrate-dependent condition selection can lead to a significant 
improvement of reaction yields and robust quantification of molecular properties. b) Advanced proxy measurements, 
e.g. assessing optical properties in thin films rather than in solution, are required to provide a more realistic estimation 
of the lasing performance, taking into account important parameters such as solid packing or matrix effects. c) The 
systematic identification of sets of function-infused building blocks would enable encoding an optimized candidate 
space, enabling interpretability and hybrid human–AI molecular design. 

Most importantly, our work demonstrates a blueprint for delocalized discovery campaigns. The integration of various 
synthesis and characterization modules delocalized over multiple sites across the globe enabled a complex discovery 
workflow, synergistically merging the capacities of automated and human-centric experimentation. At the heart of 
such a campaign must be an accessible, cloud-based platform for centralized data storage and AI experiment planning, 
to harness the full potential of automated experimentation and data-driven experiment design –  while more rigorous 
and ideally automated policies for ensuring robustness and reproducibility should be enacted. Eventually, the 
abstraction of integrating multiple reproducible experimental modules to fog units, and their assembly into high-level 
cloud computing workflows, can provide a scalable framework for the democratization of (materials) discovery.56  
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All data and code generated as part of this study are openly accessible either in the supplementary materials or in open 
repositories. Raw characterization data (NMR spectra of all building blocks and scaled-up materials, raw HPLC-MS 
data in open-source format) are available at Zenodo (https://doi.org/10.5281/zenodo.8357283). Synthesis and optical 
spectroscopy results for all target compounds have been deposited at Zenodo. Results of the high-throughput 
computational analysis are available at Zenodo. All training data for machine learning models are deposited at Zenodo. 
All software utilized in this work is freely available on GitHub (https://github.com/aspuru-guzik-
group/acdc_laser.git), and a snapshot of the code has been deposited at Zenodo 
(https://doi.org/10.5281/zenodo.8357375).  
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